H3K4me3 breadth is linked to cell identity and transcriptional consistency

Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and fu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell Ročník 158; číslo 3; s. 673
Hlavní autoři: Benayoun, Bérénice A, Pollina, Elizabeth A, Ucar, Duygu, Mahmoudi, Salah, Karra, Kalpana, Wong, Edith D, Devarajan, Keerthana, Daugherty, Aaron C, Kundaje, Anshul B, Mancini, Elena, Hitz, Benjamin C, Gupta, Rakhi, Rando, Thomas A, Baker, Julie C, Snyder, Michael P, Cherry, J Michael, Brunet, Anne
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 31.07.2014
Témata:
ISSN:1097-4172, 1097-4172
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.
AbstractList Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.
Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes.
Author Devarajan, Keerthana
Benayoun, Bérénice A
Gupta, Rakhi
Wong, Edith D
Snyder, Michael P
Brunet, Anne
Mahmoudi, Salah
Ucar, Duygu
Baker, Julie C
Mancini, Elena
Cherry, J Michael
Karra, Kalpana
Pollina, Elizabeth A
Kundaje, Anshul B
Daugherty, Aaron C
Hitz, Benjamin C
Rando, Thomas A
Author_xml – sequence: 1
  givenname: Bérénice A
  surname: Benayoun
  fullname: Benayoun, Bérénice A
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford CA 94305, USA
– sequence: 2
  givenname: Elizabeth A
  surname: Pollina
  fullname: Pollina, Elizabeth A
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA; Cancer Biology Program, Stanford University, Stanford CA 94305, USA
– sequence: 3
  givenname: Duygu
  surname: Ucar
  fullname: Ucar, Duygu
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 4
  givenname: Salah
  surname: Mahmoudi
  fullname: Mahmoudi, Salah
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 5
  givenname: Kalpana
  surname: Karra
  fullname: Karra, Kalpana
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 6
  givenname: Edith D
  surname: Wong
  fullname: Wong, Edith D
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 7
  givenname: Keerthana
  surname: Devarajan
  fullname: Devarajan, Keerthana
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 8
  givenname: Aaron C
  surname: Daugherty
  fullname: Daugherty, Aaron C
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 9
  givenname: Anshul B
  surname: Kundaje
  fullname: Kundaje, Anshul B
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 10
  givenname: Elena
  surname: Mancini
  fullname: Mancini, Elena
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 11
  givenname: Benjamin C
  surname: Hitz
  fullname: Hitz, Benjamin C
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 12
  givenname: Rakhi
  surname: Gupta
  fullname: Gupta, Rakhi
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 13
  givenname: Thomas A
  surname: Rando
  fullname: Rando, Thomas A
  organization: Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford CA 94305, USA; RR&D REAP, VA Palo Alto Health Care Systems, Palo Alto, CA 94304,USA
– sequence: 14
  givenname: Julie C
  surname: Baker
  fullname: Baker, Julie C
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 15
  givenname: Michael P
  surname: Snyder
  fullname: Snyder, Michael P
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 16
  givenname: J Michael
  surname: Cherry
  fullname: Cherry, J Michael
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA
– sequence: 17
  givenname: Anne
  surname: Brunet
  fullname: Brunet, Anne
  email: anne.brunet@stanford.edu
  organization: Department of Genetics, Stanford University, Stanford CA 94305, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University, Stanford CA 94305, USA; Cancer Biology Program, Stanford University, Stanford CA 94305, USA. Electronic address: anne.brunet@stanford.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25083876$$D View this record in MEDLINE/PubMed
BookMark eNpNUDtPwzAYtFARfcAfYEAeWRL8-ZHHiCqgQCUWmCPH_iJcEifE7tB_TyqKxHSn0-l0d0sy871HQq6BpcAgu9ulBts25QxkyrKU8fyMLICVeSIh57N_fE6WIewYY4VS6oLMuWKFKPJsQV424lV2KGg9orbxk7pAW-e_0NLY02M-dRZ9dPFAtZ_EUftgRjdE13vdUtP74EJEbw6X5LzRbcCrE67Ix-PD-3qTbN-entf328QoJWMirCgbYxqlhESuOWCmJbNC2EwYrLUyDS8ASit5o5WF2uqyVFiDEdpCUfMVuf3NHcb-e48hVp0Lx6baY78PFSgF0xdFKSbrzcm6rzu01TC6To-H6m8__wE0LWAv
CitedBy_id crossref_primary_10_1016_j_tma_2020_08_002
crossref_primary_10_1016_j_tcb_2017_10_008
crossref_primary_10_1038_srep37942
crossref_primary_10_3389_fnins_2015_00176
crossref_primary_10_3390_cells10061354
crossref_primary_10_3390_ijms252010979
crossref_primary_10_1007_s10620_019_05529_2
crossref_primary_10_1016_j_archoralbio_2023_105695
crossref_primary_10_1038_s41467_021_27719_1
crossref_primary_10_1016_j_molmed_2021_09_006
crossref_primary_10_3389_fphys_2021_686270
crossref_primary_10_1186_s41065_021_00182_0
crossref_primary_10_1038_s41421_020_00211_8
crossref_primary_10_1016_j_gene_2021_145862
crossref_primary_10_1186_s12864_024_10270_w
crossref_primary_10_1038_s41420_023_01604_w
crossref_primary_10_3390_ijms232112873
crossref_primary_10_1016_j_jbc_2025_108568
crossref_primary_10_1038_s41467_022_30484_4
crossref_primary_10_1007_s40495_016_0054_1
crossref_primary_10_1038_ng_3385
crossref_primary_10_1038_s41467_018_04426_y
crossref_primary_10_3389_fcell_2023_1167111
crossref_primary_10_1038_s41392_023_01528_y
crossref_primary_10_1073_pnas_1708044114
crossref_primary_10_3390_genes10050348
crossref_primary_10_1016_j_biotechadv_2021_107822
crossref_primary_10_3389_freae_2024_1451971
crossref_primary_10_1016_j_bbadis_2024_167226
crossref_primary_10_1093_bib_bbaa393
crossref_primary_10_1016_j_molcel_2014_10_008
crossref_primary_10_1073_pnas_2118938119
crossref_primary_10_3390_epigenomes3020011
crossref_primary_10_7554_eLife_17985
crossref_primary_10_1038_s41467_020_16539_4
crossref_primary_10_1186_s13059_018_1485_2
crossref_primary_10_1139_bcb_2019_0107
crossref_primary_10_1038_s41587_021_00869_9
crossref_primary_10_1002_advs_201801483
crossref_primary_10_1038_s41467_024_54740_x
crossref_primary_10_1038_celldisc_2015_8
crossref_primary_10_1186_s13148_023_01556_z
crossref_primary_10_1016_j_xgen_2024_100542
crossref_primary_10_1016_S0021_9258_17_49885_1
crossref_primary_10_1007_s12035_017_0427_4
crossref_primary_10_1002_bies_201500124
crossref_primary_10_1002_bies_202200239
crossref_primary_10_1038_nature19362
crossref_primary_10_1080_15592294_2016_1278095
crossref_primary_10_1093_procel_pwaf010
crossref_primary_10_1038_nsmb_2990
crossref_primary_10_1038_nature19360
crossref_primary_10_1186_s12864_019_5932_6
crossref_primary_10_2217_epi_2016_0062
crossref_primary_10_1371_journal_pone_0221270
crossref_primary_10_1007_s12035_016_0010_4
crossref_primary_10_1016_j_bbagrm_2020_194560
crossref_primary_10_1073_pnas_1414841112
crossref_primary_10_1093_nar_gkx251
crossref_primary_10_1016_j_gene_2023_147581
crossref_primary_10_3390_genes12081182
crossref_primary_10_1002_prot_25399
crossref_primary_10_1038_mt_2015_208
crossref_primary_10_1038_s41467_024_48990_y
crossref_primary_10_1016_j_bbagrm_2020_194567
crossref_primary_10_1186_s13072_025_00601_w
crossref_primary_10_1016_j_ccell_2018_10_014
crossref_primary_10_1101_gr_217075_116
crossref_primary_10_1007_s13277_015_4710_6
crossref_primary_10_1016_j_cell_2015_01_038
crossref_primary_10_15252_embr_202357020
crossref_primary_10_1111_nph_70349
crossref_primary_10_3390_biom11020143
crossref_primary_10_1093_nar_gkad105
crossref_primary_10_1016_j_csbj_2020_05_008
crossref_primary_10_1016_j_freeradbiomed_2021_03_043
crossref_primary_10_1111_febs_14728
crossref_primary_10_2337_db21_0706
crossref_primary_10_1016_j_immuni_2019_09_021
crossref_primary_10_1007_s11892_015_0635_0
crossref_primary_10_1101_gr_266924_120
crossref_primary_10_1080_10985549_2024_2388254
crossref_primary_10_1007_s00294_021_01196_x
crossref_primary_10_1093_nar_gkac265
crossref_primary_10_1016_j_molmet_2025_102197
crossref_primary_10_3389_fgene_2021_701049
crossref_primary_10_1016_j_taap_2023_116747
crossref_primary_10_1038_s41467_024_51426_2
crossref_primary_10_1186_s12711_017_0331_4
crossref_primary_10_3390_epigenomes5020014
crossref_primary_10_1016_j_cell_2017_02_015
crossref_primary_10_1038_s41556_024_01433_8
crossref_primary_10_1038_s41598_022_25881_0
crossref_primary_10_1016_j_canlet_2024_216840
crossref_primary_10_1038_s41576_022_00468_7
crossref_primary_10_1038_s41525_021_00232_6
crossref_primary_10_1016_j_ygeno_2016_09_003
crossref_primary_10_1016_j_csbj_2022_07_004
crossref_primary_10_1186_s13075_016_1169_9
crossref_primary_10_3389_fcell_2025_1559183
crossref_primary_10_1093_nar_gkae498
crossref_primary_10_1074_jbc_RA119_011174
crossref_primary_10_3389_fgene_2023_1108104
crossref_primary_10_1242_dev_182568
crossref_primary_10_1002_jcp_30211
crossref_primary_10_1016_j_theriogenology_2020_02_036
crossref_primary_10_1155_2022_3490433
crossref_primary_10_1038_s41586_019_1658_5
crossref_primary_10_1038_s41598_023_39979_6
crossref_primary_10_15252_embr_202051264
crossref_primary_10_1002_ijc_35315
crossref_primary_10_1139_gen_2023_0011
crossref_primary_10_1146_annurev_pathmechdis_051122_110756
crossref_primary_10_1186_s12915_020_00842_z
crossref_primary_10_1016_j_csbj_2021_12_027
crossref_primary_10_1101_gr_240093_118
crossref_primary_10_1007_s11357_023_00875_6
crossref_primary_10_1038_s41586_023_06585_5
crossref_primary_10_1016_j_ygeno_2015_07_003
crossref_primary_10_1038_s41467_021_24466_1
crossref_primary_10_1007_s00018_015_2125_6
crossref_primary_10_1073_pnas_1510510112
crossref_primary_10_7717_peerj_1750
crossref_primary_10_1002_bies_201600095
crossref_primary_10_1016_j_cels_2020_09_004
crossref_primary_10_1186_s13148_016_0179_4
crossref_primary_10_1242_dev_180018
crossref_primary_10_2217_epi_2018_0084
crossref_primary_10_1093_nar_gkae021
crossref_primary_10_3892_ijo_2018_4347
crossref_primary_10_1038_s41467_019_10502_8
crossref_primary_10_1371_journal_ppat_1008562
crossref_primary_10_3390_ani14091345
crossref_primary_10_1016_j_cbpa_2021_01_011
crossref_primary_10_1016_j_molcel_2016_10_019
crossref_primary_10_1093_hmg_ddv198
crossref_primary_10_3389_fonc_2022_916947
crossref_primary_10_1158_0008_5472_CAN_19_3228
crossref_primary_10_3390_cells10051209
crossref_primary_10_1016_j_nlm_2019_04_009
crossref_primary_10_2337_db20_1214
crossref_primary_10_1016_j_gene_2020_144758
crossref_primary_10_1016_j_cels_2016_03_009
crossref_primary_10_1016_j_diff_2016_03_001
crossref_primary_10_1128_MCB_00382_15
crossref_primary_10_1093_bioadv_vbae074
crossref_primary_10_1101_gad_349803_122
crossref_primary_10_1186_s13059_025_03618_2
crossref_primary_10_1126_sciadv_adu5653
crossref_primary_10_1016_j_omto_2020_05_004
crossref_primary_10_1016_j_cels_2020_11_001
crossref_primary_10_1038_leu_2016_182
crossref_primary_10_1038_cdd_2017_157
crossref_primary_10_1016_j_asjsur_2025_05_096
crossref_primary_10_1186_s40478_021_01234_2
crossref_primary_10_1038_s41597_024_03648_8
crossref_primary_10_3389_fpls_2021_761059
crossref_primary_10_1186_s12935_022_02552_8
crossref_primary_10_1016_j_ceb_2016_12_009
crossref_primary_10_1038_s41586_025_09400_5
crossref_primary_10_1038_s41598_023_38879_z
crossref_primary_10_1016_j_semcancer_2018_11_001
crossref_primary_10_1073_pnas_2406519121
crossref_primary_10_1016_j_cmet_2023_02_001
crossref_primary_10_1146_annurev_genom_083117_021632
crossref_primary_10_15252_embj_201796764
crossref_primary_10_1016_j_neuint_2024_105853
crossref_primary_10_1038_s41467_023_40776_y
crossref_primary_10_1007_s12031_017_0901_5
crossref_primary_10_1080_15592294_2016_1265713
crossref_primary_10_1080_13543784_2022_2158810
crossref_primary_10_1038_s41388_022_02311_z
crossref_primary_10_1534_genetics_118_301525
crossref_primary_10_3390_biomedicines10040748
crossref_primary_10_3390_cells11182830
crossref_primary_10_7554_eLife_103417_3
crossref_primary_10_1002_stem_2711
crossref_primary_10_1080_15592294_2018_1514231
crossref_primary_10_1038_s41598_020_65006_z
crossref_primary_10_1038_s41467_020_18303_0
crossref_primary_10_1016_j_stem_2014_10_019
crossref_primary_10_1210_endocr_bqab128
crossref_primary_10_1016_j_molcel_2017_02_005
crossref_primary_10_1038_s41594_020_0443_3
crossref_primary_10_1101_gr_276126_121
crossref_primary_10_1161_ATVBAHA_115_305561
crossref_primary_10_1007_s40610_016_0031_9
crossref_primary_10_1038_cdd_2017_32
crossref_primary_10_1038_ncb3629
crossref_primary_10_1038_s41467_018_04552_7
crossref_primary_10_1128_MCB_00677_15
crossref_primary_10_1016_j_cmet_2021_06_005
crossref_primary_10_2217_epi_2019_0290
crossref_primary_10_1007_s11060_018_03029_3
crossref_primary_10_1038_s41388_025_03314_2
crossref_primary_10_1038_s41598_024_55189_0
crossref_primary_10_1016_j_stem_2016_06_020
crossref_primary_10_1371_journal_pcbi_1005585
crossref_primary_10_1084_jem_20160185
crossref_primary_10_1371_journal_pone_0225801
crossref_primary_10_1016_j_dib_2015_08_037
crossref_primary_10_1016_j_molcel_2017_10_013
crossref_primary_10_1186_s13072_018_0212_2
crossref_primary_10_1016_j_molcel_2018_04_028
crossref_primary_10_1007_s11427_016_5028_3
crossref_primary_10_1111_cas_15623
crossref_primary_10_3390_vaccines13070768
crossref_primary_10_1016_j_gpb_2016_09_001
crossref_primary_10_3390_epigenomes3030013
crossref_primary_10_1101_gad_350594_123
crossref_primary_10_1186_s13059_017_1159_5
crossref_primary_10_1186_s13062_016_0148_z
crossref_primary_10_1007_s00335_016_9645_8
crossref_primary_10_1186_s13040_015_0051_7
crossref_primary_10_26508_lsa_202101302
crossref_primary_10_5498_wjp_v11_i10_711
crossref_primary_10_1161_CIRCULATIONAHA_116_026991
crossref_primary_10_1101_gr_240606_118
crossref_primary_10_1186_s12864_024_10068_w
crossref_primary_10_1007_s00439_023_02529_1
crossref_primary_10_1158_0008_5472_CAN_17_3498
crossref_primary_10_1016_j_cancergen_2015_02_008
crossref_primary_10_1016_j_stem_2015_08_009
crossref_primary_10_1016_j_exer_2021_108663
crossref_primary_10_1007_s12035_019_1486_5
crossref_primary_10_1016_j_redox_2025_103598
crossref_primary_10_1159_000514305
crossref_primary_10_3389_fgene_2021_749850
crossref_primary_10_1016_j_cels_2017_10_003
crossref_primary_10_1111_nyas_12956
crossref_primary_10_1038_s41467_021_22024_3
crossref_primary_10_1038_s41598_017_02257_3
crossref_primary_10_1016_j_tcb_2019_03_003
crossref_primary_10_1038_s41598_017_14389_7
crossref_primary_10_1128_microbiolspec_MCHD_0010_2015
crossref_primary_10_1038_nrm4048
crossref_primary_10_1042_BJ20140496
crossref_primary_10_1038_s41375_025_02638_y
crossref_primary_10_1038_s41598_021_98889_7
crossref_primary_10_1016_j_molcel_2018_08_015
crossref_primary_10_1016_j_tig_2021_06_017
crossref_primary_10_1038_tp_2015_169
crossref_primary_10_1016_j_isci_2022_104235
crossref_primary_10_1371_journal_pone_0144398
crossref_primary_10_1038_s41467_021_21707_1
crossref_primary_10_1016_j_bbagrm_2024_195009
crossref_primary_10_1016_j_gpb_2020_10_008
crossref_primary_10_1371_journal_pone_0151917
crossref_primary_10_1007_s12185_016_2118_8
crossref_primary_10_1093_nar_gkad198
crossref_primary_10_2217_epi_14_87
crossref_primary_10_1007_s00125_023_05896_6
crossref_primary_10_1155_2016_7276161
crossref_primary_10_1038_s41580_021_00335_z
crossref_primary_10_1038_s44318_024_00329_5
crossref_primary_10_1016_j_celrep_2025_115619
crossref_primary_10_1038_ncomms15011
crossref_primary_10_1186_s13072_018_0251_8
crossref_primary_10_1136_jitc_2022_005693
crossref_primary_10_1016_j_bpj_2019_04_006
crossref_primary_10_1016_j_exppara_2018_07_001
crossref_primary_10_3389_fmolb_2023_1273046
crossref_primary_10_1038_s41467_024_50725_y
crossref_primary_10_1186_s12885_018_4580_6
crossref_primary_10_1016_j_mce_2016_07_010
crossref_primary_10_1016_j_scib_2017_09_011
crossref_primary_10_1093_molehr_gaad019
crossref_primary_10_1038_s41588_018_0234_5
crossref_primary_10_1063_5_0271050
crossref_primary_10_7554_eLife_104076_3
crossref_primary_10_1016_j_tcb_2024_06_001
crossref_primary_10_1038_ng_3740
crossref_primary_10_1016_j_cmet_2017_07_019
crossref_primary_10_1016_j_tig_2019_12_004
crossref_primary_10_1038_s41467_022_32165_8
crossref_primary_10_1186_s12915_024_01903_3
crossref_primary_10_1371_journal_pcbi_1008926
crossref_primary_10_1016_j_compbiolchem_2016_07_006
crossref_primary_10_1016_j_jplph_2020_153167
crossref_primary_10_1186_s13059_023_02977_y
crossref_primary_10_15252_embj_201696035
crossref_primary_10_1371_journal_pgen_1007466
crossref_primary_10_1016_j_devcel_2017_01_013
crossref_primary_10_1093_nar_gkv1354
crossref_primary_10_1074_jbc_M115_672931
crossref_primary_10_1038_s41467_018_03904_7
crossref_primary_10_3390_cancers13051025
crossref_primary_10_1139_bcb_2023_0211
crossref_primary_10_1007_s00018_019_03143_z
crossref_primary_10_1093_nar_gkaf632
crossref_primary_10_1016_j_molcel_2016_05_013
crossref_primary_10_1007_s40484_020_0225_2
crossref_primary_10_1016_j_cmet_2018_04_013
crossref_primary_10_1101_gr_225896_117
crossref_primary_10_1186_s12864_019_5729_7
crossref_primary_10_1158_1541_7786_MCR_23_0454
crossref_primary_10_1016_j_molcel_2015_04_022
crossref_primary_10_1038_s41598_017_03665_1
crossref_primary_10_1111_jcmm_13238
crossref_primary_10_1186_s13148_021_01126_1
crossref_primary_10_1016_j_cmet_2015_08_024
crossref_primary_10_1104_pp_114_252999
crossref_primary_10_1038_s41598_017_12335_1
crossref_primary_10_1139_gen_2020_0124
crossref_primary_10_1038_s41467_023_38002_w
crossref_primary_10_1186_s11658_025_00690_1
crossref_primary_10_1186_s13072_016_0110_4
crossref_primary_10_1038_ng_3402
crossref_primary_10_1093_nar_gkaf720
crossref_primary_10_1093_nar_gkad300
crossref_primary_10_7554_eLife_104076
crossref_primary_10_1101_gr_183368_114
crossref_primary_10_1515_hsz_2017_0190
crossref_primary_10_1016_j_envpol_2024_123396
crossref_primary_10_3390_plants13152079
crossref_primary_10_3390_ijms20092158
crossref_primary_10_1038_s41422_025_01080_0
crossref_primary_10_1016_j_tcb_2018_09_002
crossref_primary_10_1158_0008_5472_CAN_18_3663
crossref_primary_10_1016_j_stem_2017_03_003
crossref_primary_10_1038_ni_3818
crossref_primary_10_3390_ijms252413545
crossref_primary_10_7554_eLife_13087
crossref_primary_10_7554_eLife_103417
crossref_primary_10_1186_s13072_024_00542_w
crossref_primary_10_4049_jimmunol_1400789
crossref_primary_10_1111_febs_15219
crossref_primary_10_1016_j_chemosphere_2023_138900
crossref_primary_10_1097_MOH_0000000000000346
crossref_primary_10_15252_msb_20199156
crossref_primary_10_1038_s41467_022_35059_x
crossref_primary_10_1002_bies_201700124
crossref_primary_10_1007_s42994_025_00223_6
crossref_primary_10_1038_ncomms12331
crossref_primary_10_1038_s41467_022_33433_3
crossref_primary_10_1002_1873_3468_12424
ContentType Journal Article
Copyright Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2014.06.027
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 25083876
Genre Research Support, U.S. Gov't, Non-P.H.S
Meta-Analysis
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P01 AG036695
– fundername: NIA NIH HHS
  grantid: F31 AG043232
– fundername: NIGMS NIH HHS
  grantid: P01 GM099130
– fundername: NCI NIH HHS
  grantid: T32 CA009302
– fundername: NIA NIH HHS
  grantid: DP1 AG044848
– fundername: NIGMS NIH HHS
  grantid: T32 GM007790
– fundername: NIGMS NIH HHS
  grantid: R01 GM103787
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6J9
7-5
85S
AAEDT
AAEDW
AAFWJ
AAHBH
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
AAYJJ
AAYWO
ABCQX
ABDGV
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
ADXHL
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YYQ
YZZ
ZCA
7X8
ID FETCH-LOGICAL-c554t-3d39fccf5534e2a21e6a40d33d63ceba5cf28119d42fa5d1bda995eb1c3ad18b2
IEDL.DBID 7X8
ISICitedReferencesCount 384
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340944300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Sat Sep 27 21:56:05 EDT 2025
Mon Jul 21 06:05:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-3d39fccf5534e2a21e6a40d33d63ceba5cf28119d42fa5d1bda995eb1c3ad18b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cell.2014.06.027
PMID 25083876
PQID 1551027893
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1551027893
pubmed_primary_25083876
PublicationCentury 2000
PublicationDate 2014-07-31
PublicationDateYYYYMMDD 2014-07-31
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2014
References Cell. 2015 Nov 19;163(5):1281-6
References_xml – reference: - Cell. 2015 Nov 19;163(5):1281-6
SSID ssj0008555
Score 2.6079977
SecondaryResourceType review_article
Snippet Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 673
SubjectTerms Animals
Artificial Intelligence
Cells - metabolism
Genomics
Histone Code
Histones - metabolism
Humans
Lysine - metabolism
Methylation
Mice, Inbred C57BL
Neural Stem Cells - metabolism
RNA Polymerase II - metabolism
Transcription, Genetic
Title H3K4me3 breadth is linked to cell identity and transcriptional consistency
URI https://www.ncbi.nlm.nih.gov/pubmed/25083876
https://www.proquest.com/docview/1551027893
Volume 158
WOSCitedRecordID wos000340944300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NQEH6oVfDivtSNJ3h9mLdkO4mIpbiUHhR6Cy9vwR5MqolC_70zSUpPguAlh0DCMJnM983yZgi5AjuJfKwlCw33TEHcw3KRRkylTmmAFynzZs7sUzwaJZNJOu4SblXXVrnwiY2jtqXBHPk1QjtWyVJ5M_tguDUKq6vdCo1V0pNAZbClK54sp4UnYbP1FIusTAFSd4dm2v4uTIxja5dq5neK-HeK2UDNYPu_Qu6QrY5k0tvWKnbJiiv2yEa7dnK-Tx6G8lG9O0khHNa2fqPTimIh11lalxQlptP2_O6c6gJuIp4tvAu812BTbYVke35AXgf3L3dD1u1UYAaIQ82klak3xoehVE5owV2kVWCltJE0Lteh8SLhPLVKeB1anludpiE4dCO15UkuDslaURbumNAYIp1YB5rrIFdcGR3ExksHqKs5sJKoTy4XSsrAZlF6Xbjyq8qWauqTo1bT2awdrpEJnE8PLvrkD0-fkk38gG2q9Yz0PPyx7pysm-96Wn1eNMYA19H4-Qetqb5S
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H3K4me3+breadth+is+linked+to+cell+identity+and+transcriptional+consistency&rft.jtitle=Cell&rft.au=Benayoun%2C+B%C3%A9r%C3%A9nice+A&rft.au=Pollina%2C+Elizabeth+A&rft.au=Ucar%2C+Duygu&rft.au=Mahmoudi%2C+Salah&rft.date=2014-07-31&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=158&rft.issue=3&rft.spage=673&rft_id=info:doi/10.1016%2Fj.cell.2014.06.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon