Prediction of potent shRNAs with a sequential classification algorithm

The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably pre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature biotechnology Ročník 35; číslo 4; s. 350 - 353
Hlavní autoři: Pelossof, Raphael, Fairchild, Lauren, Huang, Chun-Hao, Widmer, Christian, Sreedharan, Vipin T, Sinha, Nishi, Lai, Dan-Yu, Guan, Yuanzhe, Premsrirut, Prem K, Tschaharganeh, Darjus F, Hoffmann, Thomas, Thapar, Vishal, Xiang, Qing, Garippa, Ralph J, Rätsch, Gunnar, Zuber, Johannes, Lowe, Scott W, Leslie, Christina S, Fellmann, Christof
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.04.2017
Nature Publishing Group
Témata:
ISSN:1087-0156, 1546-1696, 1546-1696
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1087-0156
1546-1696
1546-1696
DOI:10.1038/nbt.3807