Prediction of potent shRNAs with a sequential classification algorithm
The most effective shRNAs to silence a gene are calculated by a machine learning algorithm. We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably pre...
Uloženo v:
| Vydáno v: | Nature biotechnology Ročník 35; číslo 4; s. 350 - 353 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Nature Publishing Group US
01.04.2017
Nature Publishing Group |
| Témata: | |
| ISSN: | 1087-0156, 1546-1696, 1546-1696 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The most effective shRNAs to silence a gene are calculated by a machine learning algorithm.
We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1087-0156 1546-1696 1546-1696 |
| DOI: | 10.1038/nbt.3807 |