In silico tools for splicing defect prediction: a survey from the viewpoint of end users

RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Genetics in medicine Ročník 16; číslo 7; s. 497 - 503
Hlavní autoři: Jian, Xueqiu, Boerwinkle, Eric, Liu, Xiaoming
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.07.2014
Elsevier Limited
Témata:
ISSN:1098-3600, 1530-0366, 1530-0366
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently, the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end users. Bioinformaticians in relevant areas who are working on huge data sets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5′ and 3′ splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed. Genet Med 16 7, 497–503.
AbstractList RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently, the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end users. Bioinformaticians in relevant areas who are working on huge data sets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5[OElig and 3[OElig splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed.
RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently, the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end users. Bioinformaticians in relevant areas who are working on huge data sets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5′ and 3′ splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed. Genet Med 16 7, 497–503.
RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently, the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end users. Bioinformaticians in relevant areas who are working on huge data sets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5′ and 3′ splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed.Genet Med16 7, 497–503.
RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end-users. Bioinformaticians in relevant areas who are working on huge datasets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5′ and 3′ splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed.
RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently, the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end users. Bioinformaticians in relevant areas who are working on huge data sets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5' and 3' splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed.RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently, the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end users. Bioinformaticians in relevant areas who are working on huge data sets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5' and 3' splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed.
RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process, and mutations affecting splicing comprise a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is the most straightforward and reliable method to detect splicing defects. However, currently, the technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we provide medical geneticists with some basic insights into some of the most popular in silico tools for splicing defect prediction, from the viewpoint of end users. Bioinformaticians in relevant areas who are working on huge data sets may also benefit from this review. Specifically, we focus on those tools whose primary goal is to predict the impact of mutations within the 5' and 3' splicing consensus regions: the algorithms used by different tools as well as their major advantages and disadvantages are briefly introduced; the formats of their input and output are summarized; and the interpretation, evaluation, and prospection are also discussed.
Author Liu, Xiaoming
Jian, Xueqiu
Boerwinkle, Eric
AuthorAffiliation 2 Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
1 Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
AuthorAffiliation_xml – name: 2 Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
– name: 1 Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
Author_xml – sequence: 1
  givenname: Xueqiu
  surname: Jian
  fullname: Jian, Xueqiu
  organization: Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
– sequence: 2
  givenname: Eric
  surname: Boerwinkle
  fullname: Boerwinkle, Eric
  organization: Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Human Genome Sequencing Center, Baylor College of Medicine
– sequence: 3
  givenname: Xiaoming
  surname: Liu
  fullname: Liu, Xiaoming
  email: Xiaoming.Liu@uth.tmc.edu
  organization: Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24263461$$D View this record in MEDLINE/PubMed
BookMark eNqFkctvFSEUh4mpsQ_duTYkblw4Vx4zwLgwMY2PJk3caOKOAHPmlmYGRmCu6X8vN7dWbTSuIPCdH-fwnaKjEAMg9JSSDSVcvdr6ecMI5RsqxQN0QjtOGsKFOKp70quGC0KO0WnO14RQyRl5hI5ZywRvBT1BXy8Czn7yLuIS45TxGBPOSz3wYYsHGMEVvCQYvCs-htfY4LymHdzgMcUZlyvAOw_fl-hDwXHEEAa8Zkj5MXo4minDk9v1DH15_-7z-cfm8tOHi_O3l43r2r401HI1WGElVS3pmHXE0gFkX19mtu2kIbYjVvaGA7XWcClHRwSzzIwwWCP4GXpzyF1WO8PgIJRkJr0kP5t0o6Px-s-b4K_0Nu50S1ivJKsBL24DUvy2Qi569tnBNJkAcc2aCt7vQUb_j3YtZ4pyTir6_B56HdcU6k9oppSs4yqqKvXs9-bvuv7ppwIvD4BLMecE4x1Cid7r11W_3uvXVX_F2T3c-WL24urofvpXUXMoyjU7bCH9avWv_A92ocLb
CitedBy_id crossref_primary_10_1016_j_critrevonc_2022_103626
crossref_primary_10_1165_rcmb_2023_0398OC
crossref_primary_10_3390_ijms18122711
crossref_primary_10_1093_nar_gkaa1033
crossref_primary_10_1111_tpj_15675
crossref_primary_10_1177_2515841420954592
crossref_primary_10_1186_s13073_021_00835_9
crossref_primary_10_1007_s00439_024_02699_6
crossref_primary_10_1007_s12041_024_01482_w
crossref_primary_10_1002_mgg3_2406
crossref_primary_10_1016_j_ajhg_2021_03_006
crossref_primary_10_3390_genes7120133
crossref_primary_10_1038_s41431_022_01193_9
crossref_primary_10_1093_nar_gkx1039
crossref_primary_10_1016_j_mam_2019_03_004
crossref_primary_10_1016_j_ekir_2025_02_023
crossref_primary_10_1155_2022_5265686
crossref_primary_10_1007_s40618_017_0817_5
crossref_primary_10_1016_j_preteyeres_2020_100874
crossref_primary_10_34067_KID_0005252021
crossref_primary_10_1042_EBC20200069
crossref_primary_10_1093_hmg_ddab286
crossref_primary_10_3233_JND_150074
crossref_primary_10_1016_j_hrthm_2022_02_004
crossref_primary_10_1016_j_mrrev_2022_108444
crossref_primary_10_1080_14737159_2020_1738221
crossref_primary_10_7717_peerj_16950
crossref_primary_10_1016_j_ajhg_2018_10_001
crossref_primary_10_1101_gr_219899_116
crossref_primary_10_1002_wrna_1451
crossref_primary_10_1093_nar_gky372
crossref_primary_10_1016_j_ajhg_2019_07_013
crossref_primary_10_1002_mds_26521
crossref_primary_10_1093_nar_gku1206
crossref_primary_10_1016_j_jbiotec_2022_04_001
crossref_primary_10_3390_genes14081600
crossref_primary_10_1007_s11042_021_10619_3
crossref_primary_10_1002_ajmg_c_32057
crossref_primary_10_1155_2017_3941483
crossref_primary_10_1515_cclm_2014_1047
crossref_primary_10_1160_TH15_07_0604
crossref_primary_10_1186_s12863_023_01148_z
crossref_primary_10_1007_s12031_020_01789_0
crossref_primary_10_1038_s41588_024_02031_y
crossref_primary_10_1002_humu_24212
crossref_primary_10_1016_j_ekir_2025_08_010
crossref_primary_10_3389_fgene_2019_00258
crossref_primary_10_1161_CIRCGEN_118_002368
crossref_primary_10_3389_fimmu_2018_02846
crossref_primary_10_1038_s41525_023_00375_8
crossref_primary_10_1155_2016_5614058
crossref_primary_10_1002_mgg3_1405
crossref_primary_10_1016_j_jmoldx_2023_12_005
crossref_primary_10_1038_s41594_022_00844_1
crossref_primary_10_1016_j_ejmg_2023_104882
crossref_primary_10_1155_2016_2469523
crossref_primary_10_1111_hae_13542
crossref_primary_10_1093_hmg_ddac286
crossref_primary_10_1016_j_ejpn_2022_01_017
crossref_primary_10_1016_j_bbadis_2021_166166
crossref_primary_10_1002_humu_23390
crossref_primary_10_1016_j_molcel_2018_10_037
crossref_primary_10_1016_j_jdermsci_2016_08_011
crossref_primary_10_3390_ijms21030721
crossref_primary_10_1515_med_2021_0264
crossref_primary_10_1016_j_atherosclerosis_2021_02_003
crossref_primary_10_1038_nature15816
crossref_primary_10_1007_s10549_018_4980_y
crossref_primary_10_1111_tan_14695
crossref_primary_10_3390_jcm8101729
crossref_primary_10_3389_fimmu_2024_1499415
crossref_primary_10_1002_mgg3_840
crossref_primary_10_1007_s12029_021_00693_z
crossref_primary_10_1007_s10157_023_02361_x
crossref_primary_10_1158_1078_0432_CCR_18_2445
crossref_primary_10_3390_atmos12080959
crossref_primary_10_1158_1940_6207_CAPR_17_0058
crossref_primary_10_1016_j_gene_2022_146984
crossref_primary_10_1016_j_gene_2022_146970
crossref_primary_10_1038_s41467_022_29271_y
crossref_primary_10_1002_humu_23294
crossref_primary_10_3390_mps4030062
crossref_primary_10_1093_nargab_lqaa084
crossref_primary_10_1002_mgg3_1856
crossref_primary_10_1038_s10038_020_0786_y
crossref_primary_10_1038_s41431_019_0442_1
crossref_primary_10_3389_fimmu_2024_1396426
crossref_primary_10_3389_fgene_2018_00366
crossref_primary_10_1002_mgg3_1840
crossref_primary_10_1016_j_biocel_2018_12_009
crossref_primary_10_1101_gr_238444_118
crossref_primary_10_3389_fped_2024_1487927
crossref_primary_10_1016_j_compbiolchem_2018_02_005
crossref_primary_10_3389_fphar_2018_01437
crossref_primary_10_1038_s10038_021_00959_1
crossref_primary_10_1093_clinchem_hvab130
crossref_primary_10_3892_mmr_2017_6434
Cites_doi 10.1101/gr.118638.110
10.1089/cmb.1997.4.311
10.1161/CIRCGENETICS.108.829747
10.1093/nar/gkg616
10.1073/pnas.1101135108
10.1371/journal.pone.0057173
10.1093/nar/15.17.7155
10.1093/nar/29.5.1185
10.1126/science.278.5341.1315
10.1089/1066527041410418
10.1093/bioinformatics/bth058
10.1038/nrg775
10.1038/ejhg.2008.257
10.1038/ng854
10.1093/nar/gkm407
10.1016/j.ymgme.2008.12.014
10.1086/498853
10.1016/j.cell.2009.02.011
10.1002/humu.20151
10.1038/ejhg.2011.100
10.1073/pnas.74.8.3171
10.1002/humu.20765
10.1038/nrg2164
10.1016/0092-8674(95)90460-3
10.1002/humu.22101
10.1002/humu.20811
10.1186/1471-2105-12-S4-S2
10.1007/PL00006200
10.1016/0092-8674(77)90180-5
10.1093/nar/gkg901
10.1006/jmbi.1997.0951
10.1016/0022-2836(91)90380-O
10.1002/humu.10295
10.1007/BF00210743
10.1038/embor.2009.170
10.1093/nar/gkp215
10.1146/annurev.bi.50.070181.002025
10.1093/bioinformatics/bts074
10.1093/nar/gkp320
ContentType Journal Article
Copyright American College of Medical Genetics and Genomics 2013
American College of Medical Genetics and Genomics 2013.
Copyright_xml – notice: American College of Medical Genetics and Genomics 2013
– notice: American College of Medical Genetics and Genomics 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1038/gim.2013.176
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Genetics Abstracts

ProQuest One Academic Middle East (New)

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1530-0366
EndPage 503
ExternalDocumentID PMC4029872
24263461
10_1038_gim_2013_176
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: RC2 HL102419
– fundername: NHLBI NIH HHS
  grantid: RC2-HL102419
– fundername: NIGMS NIH HHS
  grantid: P50GM065509
– fundername: NIGMS NIH HHS
  grantid: P50 GM065509
GroupedDBID ---
.-D
..I
.GJ
08G
39C
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
70F
7X7
88E
8FI
8FJ
AAFWJ
AAKAS
AALRI
AAXUO
AAYEP
AAYWO
ABAWZ
ABJNI
ABLJU
ABUWG
ACGFO
ACGFS
ACKTT
ACRQY
ACVFH
ADBBV
ADBIZ
ADCNI
ADVLN
ADZCM
AE3
AEJRE
AENEX
AEUPX
AEXYK
AFETI
AFJKZ
AFKRA
AFPUW
AFSHS
AFTRI
AGAYW
AGCQF
AHMBA
AHSBF
AHVBC
AIGII
AILAN
AITUG
AIZYK
AJRNO
AKBMS
AKRWK
AKYEP
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AXYYD
BENPR
BKKNO
BPHCQ
BS7
BVXVI
CCPQU
CS3
DNIVK
DU5
EBS
EE.
EFKBS
EIOEI
EJD
EX3
F5P
FDB
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
H0~
HMCUK
JF9
JG8
JK3
JSO
K-O
KD2
M1P
M41
N9A
NQJWS
N~M
OAG
OAH
ODA
OK1
OLG
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P-K
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
R58
RNT
RNTTT
ROL
S4R
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
T8P
TAOOD
TBHMF
TDRGL
TEORI
TSG
UKHRP
VVN
W3M
WOQ
WOW
XXN
XYM
YFH
ZFV
AAYXX
AFFHD
CITATION
EBLON
3V.
AAZLF
ACZOJ
ADHDB
AWKKM
CGR
CUY
CVF
ECM
EIF
NAO
NPM
SNX
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c549t-1b38db6b7184052bc0b1de79def2b457a0b50b79a3e1bba377fc062b2afedba63
IEDL.DBID 7X7
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338601400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-3600
1530-0366
IngestDate Tue Nov 04 01:59:28 EST 2025
Sun Nov 09 09:31:25 EST 2025
Sun Sep 28 10:50:54 EDT 2025
Sat Nov 15 15:41:51 EST 2025
Wed Feb 19 02:26:59 EST 2025
Wed Oct 29 21:25:14 EDT 2025
Tue Nov 18 22:28:30 EST 2025
Mon Jul 21 06:06:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords splicing mutation
splicing consensus region
end user
medical genetics
in silico prediction tool
bioinformatics
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-1b38db6b7184052bc0b1de79def2b457a0b50b79a3e1bba377fc062b2afedba63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4029872
PMID 24263461
PQID 2887718818
PQPubID 2043492
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4029872
proquest_miscellaneous_1639987221
proquest_miscellaneous_1543281330
proquest_journals_2887718818
pubmed_primary_24263461
crossref_primary_10_1038_gim_2013_176
crossref_citationtrail_10_1038_gim_2013_176
springer_journals_10_1038_gim_2013_176
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Bethesda
PublicationSubtitle Official journal of the American College of Medical Genetics and Genomics
PublicationTitle Genetics in medicine
PublicationTitleAbbrev Genet Med
PublicationTitleAlternate Genet Med
PublicationYear 2014
Publisher Nature Publishing Group US
Elsevier Limited
Publisher_xml – name: Nature Publishing Group US
– name: Elsevier Limited
References Sterne-Weiler, Howard, Mort, Cooper, Sanford (CR15) 2011; 21
Baralle, Lucassen, Buratti (CR16) 2009; 10
Houdayer, Dehainault, Mattler (CR38) 2008; 29
Psaty, O’Donnell, Gudnason (CR36) 2009; 2
Holla, Nakken, Mattingsdal (CR39) 2009; 96
Freund, Asang, Kammler (CR27) 2003; 31
CR37
Chow, Gelinas, Broker, Roberts (CR2) 1977; 12
Rogozin, Milanesi (CR18) 1997; 45
Schwartz, Hall, Ast (CR32) 2009; 37
Cartegni, Hastings, Calarco, de Stanchina, Krainer (CR10) 2006; 78
CR34
Cartegni, Chew, Krainer (CR6) 2002; 3
Wang, Cooper (CR11) 2007; 8
Brunak, Engelbrecht, Knudsen (CR21) 1991; 220
Divina, Kvitkovicova, Buratti, Vorechovsky (CR29) 2009; 17
Shapiro, Senapathy (CR4) 1987; 15
Desmet, Hamroun, Lalande, Collod-Béroud, Claustres, Béroud (CR31) 2009; 37
Houdayer, Caux-Moncoutier, Krieger (CR35) 2012; 33
Cartegni, Krainer (CR9) 2002; 30
Krawczak, Reiss, Cooper (CR13) 1992; 90
Lim, Fairbrother (CR30) 2012; 28
Cartegni, Wang, Zhu, Zhang, Krainer (CR17) 2003; 31
Lim, Ferraris, Filloux, Raphael, Fairbrother (CR14) 2011; 108
Lefebvre, Bürglen, Reboullet (CR8) 1995; 80
Berget, Moore, Sharp (CR1) 1977; 74
Eng, Coutinho, Nahas (CR26) 2004; 23
Yeo, Burge (CR25) 2004; 11
Pertea, Lin, Salzberg (CR20) 2001; 29
Cooper, Wan, Dreyfuss (CR12) 2009; 136
Théry, Krieger, Gaildrat (CR41) 2011; 19
Colombo, De Vecchi, Caleca (CR42) 2013; 8
Burge, Tuschl, Sharp, Gesteland, Cech, Atkins (CR5) 1999
Faber, Glatting, Mueller, Risch, Hotz-Wagenblatt (CR33) 2011; 12
Vreeswijk, Kraan, van der Klift (CR40) 2009; 30
Burge, Karlin (CR19) 1997; 268
Reese, Eeckman, Kulp, Haussler (CR22) 1997; 4
Nalla, Rogan (CR28) 2005; 25
Breathnach, Chambon (CR3) 1981; 50
Dogan, Getoor, Wilbur, Mount (CR23) 2007; 35
Brendel, Xing, Zhu (CR24) 2004; 20
Lynch, Lee, Morrow, Welcsh, León, King (CR7) 1997; 278
Faber (10.1038/gim.2013.176_bb0170)
Lefebvre (10.1038/gim.2013.176_bb0045)
Cartegni (10.1038/gim.2013.176_bb0055)
10.1038/gim.2013.176_bb0190
Yeo (10.1038/gim.2013.176_bb0130)
Desmet (10.1038/gim.2013.176_bb0160)
Houdayer (10.1038/gim.2013.176_bb0195)
Rogozin (10.1038/gim.2013.176_bb0095)
10.1038/gim.2013.176_bb0175
Sterne-Weiler (10.1038/gim.2013.176_bb0080)
Shapiro (10.1038/gim.2013.176_bb0025)
Lim (10.1038/gim.2013.176_bb0075)
Eng (10.1038/gim.2013.176_bb0135)
Chow (10.1038/gim.2013.176_bb0015)
Cooper (10.1038/gim.2013.176_bb0065)
Dogan (10.1038/gim.2013.176_bb0120)
Vreeswijk (10.1038/gim.2013.176_bb0205)
Wang (10.1038/gim.2013.176_bb0060)
Freund (10.1038/gim.2013.176_bb0140)
Cartegni (10.1038/gim.2013.176_bb0035)
Reese (10.1038/gim.2013.176_bb0115)
Lynch (10.1038/gim.2013.176_bb0040)
Burge (10.1038/gim.2013.176_bb0100)
Cartegni (10.1038/gim.2013.176_bb0050)
Pertea (10.1038/gim.2013.176_bb0105)
Nalla (10.1038/gim.2013.176_bb0145)
Berget (10.1038/gim.2013.176_bb0010)
Lim (10.1038/gim.2013.176_bb0155)
CHARGE Consortium (10.1038/gim.2013.176_bb0185)
Cartegni (10.1038/gim.2013.176_bb0090)
Holla (10.1038/gim.2013.176_bb0200)
Houdayer (10.1038/gim.2013.176_bb0180)
Krawczak (10.1038/gim.2013.176_bb0070)
Brendel (10.1038/gim.2013.176_bb0125)
Brunak (10.1038/gim.2013.176_bb0110)
Breathnach (10.1038/gim.2013.176_bb0020)
Théry (10.1038/gim.2013.176_bb0210)
Schwartz (10.1038/gim.2013.176_bb0165)
Baralle (10.1038/gim.2013.176_bb0085)
Divina (10.1038/gim.2013.176_bb0150)
Burge (10.1038/gim.2013.176_bb0030) 1999
Colombo (10.1038/gim.2013.176_bb0215)
References_xml – start-page: 525
  year: 1999
  end-page: 560
  ident: CR5
  article-title: Splicing of precursors to mRNAs by the spliceosomes.
  publication-title: The RNA World
– volume: 21
  start-page: 1563
  year: 2011
  end-page: 1571
  ident: CR15
  article-title: Loss of exon identity is a common mechanism of human inherited disease.
  publication-title: Genome Res
  doi: 10.1101/gr.118638.110
– volume: 4
  start-page: 311
  year: 1997
  end-page: 323
  ident: CR22
  article-title: Improved splice site detection in Genie.
  publication-title: J Comput Biol
  doi: 10.1089/cmb.1997.4.311
– volume: 2
  start-page: 73
  year: 2009
  end-page: 80
  ident: CR36
  article-title: Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of genome-wide association studies from 5 cohorts.
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.108.829747
– volume: 31
  start-page: 3568
  year: 2003
  end-page: 3571
  ident: CR17
  article-title: ESEfinder: A web resource to identify exonic splicing enhancers.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg616
– ident: CR37
– volume: 108
  start-page: 11093
  year: 2011
  end-page: 11098
  ident: CR14
  article-title: Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1101135108
– volume: 8
  start-page: e57173
  year: 2013
  ident: CR42
  article-title: Comparative and in silico analyses of variants in splicing regions of BRCA1 and BRCA2 genes and characterization of novel pathogenic mutations.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0057173
– volume: 15
  start-page: 7155
  year: 1987
  end-page: 7174
  ident: CR4
  article-title: RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/15.17.7155
– volume: 29
  start-page: 1185
  year: 2001
  end-page: 1190
  ident: CR20
  article-title: GeneSplicer: a new computational method for splice site prediction.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.5.1185
– volume: 278
  start-page: 1315
  year: 1997
  end-page: 1318
  ident: CR7
  article-title: Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous.
  publication-title: Science
  doi: 10.1126/science.278.5341.1315
– volume: 11
  start-page: 377
  year: 2004
  end-page: 394
  ident: CR25
  article-title: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals.
  publication-title: J Comput Biol
  doi: 10.1089/1066527041410418
– volume: 20
  start-page: 1157
  year: 2004
  end-page: 1169
  ident: CR24
  article-title: Gene structure prediction from consensus spliced alignment of multiple ESTs matching the same genomic locus.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth058
– volume: 3
  start-page: 285
  year: 2002
  end-page: 298
  ident: CR6
  article-title: Listening to silence and understanding nonsense: exonic mutations that affect splicing.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg775
– volume: 17
  start-page: 759
  year: 2009
  end-page: 765
  ident: CR29
  article-title: Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping.
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2008.257
– volume: 30
  start-page: 377
  year: 2002
  end-page: 384
  ident: CR9
  article-title: Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1.
  publication-title: Nat Genet
  doi: 10.1038/ng854
– volume: 35
  start-page: W285
  year: 2007
  end-page: W291
  ident: CR23
  article-title: SplicePort–an interactive splice-site analysis tool.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm407
– volume: 96
  start-page: 245
  year: 2009
  end-page: 252
  ident: CR39
  article-title: Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses.
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2008.12.014
– volume: 78
  start-page: 63
  year: 2006
  end-page: 77
  ident: CR10
  article-title: Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2.
  publication-title: Am J Hum Genet
  doi: 10.1086/498853
– volume: 136
  start-page: 777
  year: 2009
  end-page: 793
  ident: CR12
  article-title: RNA and disease.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.011
– volume: 25
  start-page: 334
  year: 2005
  end-page: 342
  ident: CR28
  article-title: Automated splicing mutation analysis by information theory.
  publication-title: Hum Mutat
  doi: 10.1002/humu.20151
– volume: 19
  start-page: 1052
  year: 2011
  end-page: 1058
  ident: CR41
  article-title: Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes.
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2011.100
– volume: 74
  start-page: 3171
  year: 1977
  end-page: 3175
  ident: CR1
  article-title: Spliced segments at the 5’ terminus of adenovirus 2 late mRNA.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.74.8.3171
– volume: 29
  start-page: 975
  year: 2008
  end-page: 982
  ident: CR38
  article-title: Evaluation of in silico splice tools for decision-making in molecular diagnosis.
  publication-title: Hum Mutat
  doi: 10.1002/humu.20765
– volume: 8
  start-page: 749
  year: 2007
  end-page: 761
  ident: CR11
  article-title: Splicing in disease: disruption of the splicing code and the decoding machinery.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2164
– volume: 80
  start-page: 155
  year: 1995
  end-page: 165
  ident: CR8
  article-title: Identification and characterization of a spinal muscular atrophy-determining gene.
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90460-3
– volume: 33
  start-page: 1228
  year: 2012
  end-page: 1238
  ident: CR35
  article-title: Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants.
  publication-title: Hum Mutat
  doi: 10.1002/humu.22101
– volume: 30
  start-page: 107
  year: 2009
  end-page: 114
  ident: CR40
  article-title: Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs.
  publication-title: Hum Mutat
  doi: 10.1002/humu.20811
– volume: 12
  start-page: S2
  issue: suppl 4
  year: 2011
  ident: CR33
  article-title: Genome-wide prediction of splice-modifying SNPs in human genes using a new analysis pipeline called AASsites.
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-S4-S2
– volume: 45
  start-page: 50
  year: 1997
  end-page: 59
  ident: CR18
  article-title: Analysis of donor splice sites in different eukaryotic organisms.
  publication-title: J Mol Evol
  doi: 10.1007/PL00006200
– volume: 12
  start-page: 1
  year: 1977
  end-page: 8
  ident: CR2
  article-title: An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA.
  publication-title: Cell
  doi: 10.1016/0092-8674(77)90180-5
– volume: 31
  start-page: 6963
  year: 2003
  end-page: 6975
  ident: CR27
  article-title: A novel approach to describe a U1 snRNA binding site.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg901
– volume: 268
  start-page: 78
  year: 1997
  end-page: 94
  ident: CR19
  article-title: Prediction of complete gene structures in human genomic DNA.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1997.0951
– volume: 220
  start-page: 49
  year: 1991
  end-page: 65
  ident: CR21
  article-title: Prediction of human mRNA donor and acceptor sites from the DNA sequence.
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(91)90380-O
– volume: 23
  start-page: 67
  year: 2004
  end-page: 76
  ident: CR26
  article-title: Nonclassical splicing mutations in the coding and noncoding regions of the ATM Gene: maximum entropy estimates of splice junction strengths.
  publication-title: Hum Mutat
  doi: 10.1002/humu.10295
– ident: CR34
– volume: 90
  start-page: 41
  year: 1992
  end-page: 54
  ident: CR13
  article-title: The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences.
  publication-title: Hum Genet
  doi: 10.1007/BF00210743
– volume: 10
  start-page: 810
  year: 2009
  end-page: 816
  ident: CR16
  article-title: Missed threads. The impact of pre-mRNA splicing defects on clinical practice.
  publication-title: EMBO Rep
  doi: 10.1038/embor.2009.170
– volume: 37
  start-page: e67
  year: 2009
  ident: CR31
  article-title: Human Splicing Finder: an online bioinformatics tool to predict splicing signals.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp215
– volume: 50
  start-page: 349
  year: 1981
  end-page: 383
  ident: CR3
  article-title: Organization and expression of eucaryotic split genes coding for proteins.
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.50.070181.002025
– volume: 28
  start-page: 1031
  year: 2012
  end-page: 1032
  ident: CR30
  article-title: Spliceman–a computational web server that predicts sequence variations in pre-mRNA splicing.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts074
– volume: 37
  start-page: W189
  issue: Web Server issue
  year: 2009
  end-page: W192
  ident: CR32
  article-title: SROOGLE: webserver for integrative, user-friendly visualization of splicing signals.
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp320
– ident: 10.1038/gim.2013.176_bb0155
– start-page: 525
  year: 1999
  ident: 10.1038/gim.2013.176_bb0030
  article-title: Splicing of precursors to mRNAs by the spliceosomes.
– ident: 10.1038/gim.2013.176_bb0125
– ident: 10.1038/gim.2013.176_bb0145
– ident: 10.1038/gim.2013.176_bb0200
– ident: 10.1038/gim.2013.176_bb0070
– ident: 10.1038/gim.2013.176_bb0080
– ident: 10.1038/gim.2013.176_bb0095
– ident: 10.1038/gim.2013.176_bb0160
– ident: 10.1038/gim.2013.176_bb0210
– ident: 10.1038/gim.2013.176_bb0140
– ident: 10.1038/gim.2013.176_bb0050
– ident: 10.1038/gim.2013.176_bb0135
– ident: 10.1038/gim.2013.176_bb0055
– ident: 10.1038/gim.2013.176_bb0060
– ident: 10.1038/gim.2013.176_bb0165
– ident: 10.1038/gim.2013.176_bb0035
– ident: 10.1038/gim.2013.176_bb0085
– ident: 10.1038/gim.2013.176_bb0170
– ident: 10.1038/gim.2013.176_bb0020
– ident: 10.1038/gim.2013.176_bb0110
– ident: 10.1038/gim.2013.176_bb0010
– ident: 10.1038/gim.2013.176_bb0150
– ident: 10.1038/gim.2013.176_bb0185
– ident: 10.1038/gim.2013.176_bb0175
– ident: 10.1038/gim.2013.176_bb0190
– ident: 10.1038/gim.2013.176_bb0130
– ident: 10.1038/gim.2013.176_bb0100
– ident: 10.1038/gim.2013.176_bb0015
– ident: 10.1038/gim.2013.176_bb0195
– ident: 10.1038/gim.2013.176_bb0115
– ident: 10.1038/gim.2013.176_bb0065
– ident: 10.1038/gim.2013.176_bb0025
– ident: 10.1038/gim.2013.176_bb0180
– ident: 10.1038/gim.2013.176_bb0040
– ident: 10.1038/gim.2013.176_bb0120
– ident: 10.1038/gim.2013.176_bb0045
– ident: 10.1038/gim.2013.176_bb0215
– ident: 10.1038/gim.2013.176_bb0090
– ident: 10.1038/gim.2013.176_bb0205
– ident: 10.1038/gim.2013.176_bb0105
– ident: 10.1038/gim.2013.176_bb0075
SSID ssj0017320
Score 2.4456964
SecondaryResourceType review_article
Snippet RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process,...
RNA splicing is the process during which introns are excised and exons are spliced. The precise recognition of splicing signals is critical to this process and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms 631/114
631/208/1516
631/208/1792
Biomedical and Life Sciences
Biomedicine
Computational Biology - methods
Computer Simulation
Genetic Variation - genetics
Human Genetics
Humans
Laboratory Medicine
Mutation
review
RNA Precursors - genetics
RNA Splicing - genetics
Software
Title In silico tools for splicing defect prediction: a survey from the viewpoint of end users
URI https://link.springer.com/article/10.1038/gim.2013.176
https://www.ncbi.nlm.nih.gov/pubmed/24263461
https://www.proquest.com/docview/2887718818
https://www.proquest.com/docview/1543281330
https://www.proquest.com/docview/1639987221
https://pubmed.ncbi.nlm.nih.gov/PMC4029872
Volume 16
WOSCitedRecordID wos000338601400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1530-0366
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0017320
  issn: 1098-3600
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1530-0366
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0017320
  issn: 1098-3600
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9UwDLdgA8SFj_FVNqYgARdU1iZp03KZAG2CA08TAundqqRNtUpP7eOlb9L-e-w2r2MMduHSS1wlke3Yjp2fAV7JvLSEgBsaq20oFcashmArq9ymiayzyKRjswk1m2XzeX7iL9ycL6vcnInDQV11Jd2RH3DUBjxH0b4cLn-G1DWKsqu-hcZN2Ka22STnaj4FXLESfEQjwMkFWnZf-B4JDPoaeoYei3cxoY38bpKu-JlXyyX_yJkOpuj4_v9u4gHc804o-zBKzUO4YdsduD22pTzfgTtffcL9Ecy_tMw1CxQX1nfdwjH0cZmjnDeujFWWikHYckX0xOH3TDO3Xp3Zc0bvVhh6l4yWtOyatmddzWxbMboXcY_hx_HR90-fQ9-MISwxhOzD2IisMqlRFBIm3JSRiSurcpyJG5koHZkkMirXwsbGaKFUXUYpN1zXtjI6FU9gq-1a-wyYQS-rqkUZyzqVCfrNOqvxLym45mmubABvN_woSo9UTg0zFsWQMRdZgdwriHsFci-A1xP1ckTo-Afd3oYnhddTV1wwJICX0zBqGKVNdGu7tSvQyRQ8w1g-uoaGHL1McR4H8HSUlmkxAya-THFEXZKjiYAQvi-PtM3pgPQtCSBf8QDebCTuYul_2-Pz6_e4C3eRUo7Vxnuw1a_W9gXcKs_6xq32B90Zvtk-bH88mp18-wVw6yXW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoULj1IgUMBItBcUSGwnTpAQQkDVVdsVhyLtLdiJIyKtkmWzW7R_it_ITF6lFHrrgbPHiR-fxzP2-BuAFzJOLTHgusZq60qFPqsh2sostmEg88gzYZtsQo3H0WQSf16Dn_1bGAqr7HVio6izKqUz8tccVwPqUdxf3s2-u5Q1im5X-xQaLSwO7OoHumz129FHnN8dzvc-HX_Yd7usAm6KvtDC9Y2IMhMaRb5NwE3qGT-zKs5szo0MlPZM4BkVa2F9Y7RQKk-9kBuuc5sZHQr87hW4inpckbOnJoOD5yvBW_YD7KxAS6ILtPcEOpkFPXv3xSuf2E1-3wLP2bXnwzP_uKNttr692__boN2BW52Rzd63q-IurNlyE663aTdXm7Bx1AUU3IPJqGR1McXlwBZVNa0Z2vCspjt9HAmG_8X9gM3mJE8IfsM0q5fzE7ti9C6HofXMaAhmVVEuWJUzW2aMzn3qLfhyKT28D-tlVdqHwAxakVkuUl_moQzQL9BRjrWk4JqHsbIOvOznP0k7JnZKCDJNmogAESWIloTQkiBaHNgZpGctA8k_5LZ7DCSdHqqTUwA48HwoRg1C10K6tNWyTtCIFjzyhfAukCFDNlKc-w48aNE5NKbh_JchlqgzuB0EiMH8bElZfGuYzCUlAFDcgd0e4adN_1sfH13cx2dwY__46DA5HI0PHsNNrCXbyOptWF_Ml_YJXEtPFkU9f9qsWwZfLxvzvwDCG4MC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVRceBQogQJGolxQaGI7cYKEENCuWBVWKwTS3kKcOGqkVbJsdov2r_HrmMmrlEJvPXD2JLGdz-NvPOMZgGcyTAxlwLW1iY0tFdqsmtJWpqHxPZkFjvabYhNqPA6m03CyAT-7uzAUVtnpxFpRp2VCZ-T7HFcD6lHcX_azNixicjB8M_9uUwUp8rR25TQaiByZ9Q8036rXowP813ucDw-_vP9gtxUG7ATtoqXtahGk2teK7ByP68TRbmpUmJqMa-mp2NGeo1UYC-NqHQulssTxueZxZlId-wLfewU2FZIMOYDNd4fjyefeh6EEb3Ih4NAF8oo27N4RaHLmdAneFS9dynXy-4Z4juWeD9b8w2Nbb4TDm__zFN6CGy39Zm-b9XIbNkyxDdeagpzrbdj61IYa3IHpqGBVPsOFwpZlOasYsntWkbcfZ4Xhd3GnYPMFyRO2X7GYVavFiVkzurHDkFczmo55mRdLVmbMFCmjE6HqLny9lBHeg0FRFuY-MI38Ms1E4srMlx5aDHGQ4VNS8Jj7oTIWvOiwECVtjnYqFTKL6lgBEUSInIiQEyFyLNjrpedNbpJ_yO12eIhaDVVFp2Cw4GnfjLqFHEZxYcpVFSG9FjxwhXAukCGKGyjOXQt2GqT2namrAUgfW9QZDPcClNv8bEuRH9c5ziWVBlDcgucd2k-7_rcxPrh4jE9gC6EefRyNjx7CdXxINiHXuzBYLlbmEVxNTpZ5tXjcLmIG3y4b9L8A4pONIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+tools+for+splicing+defect+prediction%3A+a+survey+from+the+viewpoint+of+end+users&rft.jtitle=Genetics+in+medicine&rft.au=Jian%2C+Xueqiu&rft.au=Boerwinkle%2C+Eric&rft.au=Liu%2C+Xiaoming&rft.date=2014-07-01&rft.issn=1530-0366&rft.eissn=1530-0366&rft.volume=16&rft.issue=7&rft.spage=497&rft_id=info:doi/10.1038%2Fgim.2013.176&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-3600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-3600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-3600&client=summon