Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets
Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. Methods: A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outsid...
Uložené v:
| Vydané v: | Medical physics (Lancaster) Ročník 43; číslo 4; s. 1882 - 1896 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
American Association of Physicists in Medicine
01.04.2016
|
| Predmet: | |
| ISSN: | 0094-2405, 2473-4209, 2473-4209 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Purpose:
The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer.
Methods:
A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours.
Results:
With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively.
Conclusions:
The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder. |
|---|---|
| AbstractList | Purpose:
The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer‐aided detection of bladder cancer.
Methods:
A deep‐learning convolutional neural network (DL‐CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL‐CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole‐filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand‐segmented reference contours.
Results:
With DL‐CNN‐based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar‐feature‐based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively.
Conclusions:
The authors demonstrated that the DL‐CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient‐based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL‐CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar‐feature‐based likelihood map, the DL‐CNN‐based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL‐CNN in combination with level sets for segmentation of the bladder. The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours. With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder. The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer.PURPOSEThe authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer.A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours.METHODSA deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours.With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively.RESULTSWith DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively.The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder.CONCLUSIONSThe authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder. |
| Author | Cha, Kenny H. Samala, Ravi K. Hadjiiski, Lubomir Caoili, Elaine M. Chan, Heang-Ping Cohan, Richard H. |
| Author_xml | – sequence: 1 givenname: Kenny H. surname: Cha fullname: Cha, Kenny H. email: heekon@med.umich.edu organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904 – sequence: 2 givenname: Lubomir surname: Hadjiiski fullname: Hadjiiski, Lubomir organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904 – sequence: 3 givenname: Ravi K. surname: Samala fullname: Samala, Ravi K. organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904 – sequence: 4 givenname: Heang-Ping surname: Chan fullname: Chan, Heang-Ping organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904 – sequence: 5 givenname: Elaine M. surname: Caoili fullname: Caoili, Elaine M. organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904 – sequence: 6 givenname: Richard H. surname: Cohan fullname: Cohan, Richard H. organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27036584$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v1DAQQC1URLeFA38A-QiV0trJJI4vSNUKClIRHNqz5STjrcFrBzvZav892WYXFUQ5jSy_efN1Qo588EjIa87OOef1BT8HCQCyfkYWOYgig5zJI7JgTEKWAyuPyUlK3xljVVGyF-Q4F6yoyhoWxN1G63Xc0sbprsNIE67W6Ac92OCp9XR5Q8cYVlH3d1s6JutXtEPsM4c6-t2rDX4T3LjjtaMex_gQhvsQf1DtO-pwg27yDukleW60S_hqH0_J7ccPN8tP2fXXq8_Ly-usLachMiNE09RQmK5pilrmlYFSaonGAHBoWFkzEGigakvOtM4NoNQ5YtGUUGDHi1Pyfvb2Y7PGrp3mmZpSfbTraVQVtFV__nh7p1Zho6BmNavEJHi7F8Twc8Q0qLVNLTqnPYYxKS6EkELyB_TN41q_ixxWPAEXM9DGkFJEo1o7r3cqbZ3iTO2OqLjaH3HKePdXxkH6Lzab2XvrcPs0qL582_NnM58OXfxX_iS8CfGRvO9M8QtPRsiJ |
| CODEN | MPHYA6 |
| CitedBy_id | crossref_primary_10_1007_s00371_017_1379_4 crossref_primary_10_1109_ACCESS_2020_2965885 crossref_primary_10_1016_j_compbiolchem_2021_107510 crossref_primary_10_1088_1361_6560_aabd19 crossref_primary_10_1002_rcs_2169 crossref_primary_10_1016_j_neuri_2022_100095 crossref_primary_10_1007_s00345_024_04921_6 crossref_primary_10_1016_j_cmpb_2025_108645 crossref_primary_10_1002_mp_12510 crossref_primary_10_1002_mp_13438 crossref_primary_10_3390_jimaging8060151 crossref_primary_10_1002_widm_1410 crossref_primary_10_3389_fphy_2023_1331441 crossref_primary_10_1002_mp_12593 crossref_primary_10_1007_s11042_025_20606_7 crossref_primary_10_3233_XST_190524 crossref_primary_10_3390_diagnostics13132308 crossref_primary_10_1109_RBME_2021_3136343 crossref_primary_10_1109_TMI_2018_2867837 crossref_primary_10_3390_s22145242 crossref_primary_10_1016_j_media_2024_103189 crossref_primary_10_1016_j_ejmp_2018_05_006 crossref_primary_10_1016_j_urology_2023_04_030 crossref_primary_10_1016_j_compmedimag_2018_09_004 crossref_primary_10_1038_s41598_017_15720_y crossref_primary_10_1148_radiol_2018180547 crossref_primary_10_1007_s42235_022_00234_9 crossref_primary_10_1177_1533033818802789 crossref_primary_10_1007_s13246_020_00933_9 crossref_primary_10_1016_j_drudis_2018_01_039 crossref_primary_10_1109_ACCESS_2023_3317148 crossref_primary_10_1016_j_media_2018_03_010 crossref_primary_10_1109_TBME_2019_2894123 crossref_primary_10_1088_1361_6560_abc09c crossref_primary_10_1109_ACCESS_2017_2781278 crossref_primary_10_1051_0004_6361_201935211 crossref_primary_10_1007_s11548_016_1501_5 crossref_primary_10_1371_journal_pone_0212550 crossref_primary_10_1016_j_neucom_2018_02_062 crossref_primary_10_1002_mp_13620 crossref_primary_10_1007_s12194_017_0406_5 crossref_primary_10_1118_1_4967345 crossref_primary_10_3390_cancers15225468 crossref_primary_10_1016_j_neucom_2018_01_015 crossref_primary_10_3390_diseases13080242 crossref_primary_10_1016_j_jflm_2020_102066 crossref_primary_10_1109_JBHI_2017_2787487 crossref_primary_10_1088_1361_6560_abfbf4 crossref_primary_10_1109_JBHI_2018_2852635 crossref_primary_10_1007_s11042_019_07959_6 crossref_primary_10_1007_s11063_023_11232_1 crossref_primary_10_1109_ACCESS_2020_2982197 crossref_primary_10_1109_TMI_2017_2695227 crossref_primary_10_1016_j_ymeth_2022_08_010 crossref_primary_10_3389_fonc_2017_00315 crossref_primary_10_1109_ACCESS_2019_2953942 crossref_primary_10_3389_fonc_2024_1487676 crossref_primary_10_1002_mp_13326 crossref_primary_10_1088_1361_6560_ab6f51 crossref_primary_10_1109_ACCESS_2020_3024277 crossref_primary_10_1002_mp_12124 crossref_primary_10_1109_ACCESS_2019_2944958 crossref_primary_10_3389_fonc_2019_01297 crossref_primary_10_1002_mp_12480 crossref_primary_10_1038_s41598_017_09315_w crossref_primary_10_1007_s10462_019_09788_3 crossref_primary_10_3390_bioengineering9120811 crossref_primary_10_1155_2017_4037190 crossref_primary_10_1002_mp_13240 crossref_primary_10_1016_j_patcog_2018_05_014 crossref_primary_10_1088_1361_6560_aacdd4 crossref_primary_10_3390_diagnostics12112765 crossref_primary_10_1002_mp_14732 crossref_primary_10_3390_app10031154 crossref_primary_10_1016_j_compbiomed_2020_104097 crossref_primary_10_3389_fonc_2022_930917 crossref_primary_10_1155_2017_4067832 crossref_primary_10_32604_cmes_2022_018418 crossref_primary_10_3390_bioengineering11121225 crossref_primary_10_1002_ett_4017 crossref_primary_10_1016_j_cmpb_2020_105833 crossref_primary_10_1016_j_neucom_2022_07_070 crossref_primary_10_1088_1361_6560_aca38a crossref_primary_10_1007_s10278_016_9914_9 crossref_primary_10_1186_s12880_020_00457_4 crossref_primary_10_1007_s12530_019_09297_2 crossref_primary_10_1016_j_euf_2025_07_011 crossref_primary_10_1186_s12938_020_00831_x crossref_primary_10_3390_diagnostics12081788 crossref_primary_10_1016_j_compbiomed_2022_105334 crossref_primary_10_3233_JIFS_210213 crossref_primary_10_3390_bioengineering10080970 crossref_primary_10_1007_s13755_022_00176_w crossref_primary_10_1007_s13246_019_00822_w crossref_primary_10_1016_j_compbiomed_2021_104269 crossref_primary_10_3390_mti2030047 crossref_primary_10_1016_j_media_2022_102562 crossref_primary_10_1155_2020_5689301 crossref_primary_10_1016_j_compmedimag_2025_102571 crossref_primary_10_1016_j_compbiomed_2022_105809 crossref_primary_10_1016_j_critrevonc_2022_103601 crossref_primary_10_3390_cancers11091235 crossref_primary_10_3390_diagnostics11111964 crossref_primary_10_3390_jimaging6120133 crossref_primary_10_1002_mp_13264 crossref_primary_10_1038_s41598_019_40710_7 crossref_primary_10_1002_mp_14512 crossref_primary_10_2340_sju_v59_39930 crossref_primary_10_1109_ACCESS_2020_3003138 crossref_primary_10_1007_s11831_024_10209_0 crossref_primary_10_1016_j_compbiomed_2021_104472 crossref_primary_10_1109_TMI_2020_2966389 crossref_primary_10_1016_j_clgc_2021_03_012 crossref_primary_10_3233_JIFS_210263 crossref_primary_10_1007_s00256_021_03873_x crossref_primary_10_1088_1742_6596_1549_4_042074 crossref_primary_10_1088_2057_1976_ac26e8 crossref_primary_10_1007_s11547_025_02051_6 crossref_primary_10_3390_s23125720 crossref_primary_10_1155_2019_8597606 crossref_primary_10_1016_j_compbiomed_2016_11_003 crossref_primary_10_1016_j_media_2017_11_005 crossref_primary_10_1002_mp_14580 crossref_primary_10_1016_j_imed_2021_04_001 crossref_primary_10_1016_j_media_2018_02_001 crossref_primary_10_1016_j_ymeth_2019_02_010 crossref_primary_10_1088_1361_6560_aaef0a crossref_primary_10_3233_THC_191718 crossref_primary_10_1007_s00261_025_05094_5 crossref_primary_10_1007_s00261_025_04838_7 crossref_primary_10_1016_j_ins_2016_07_017 crossref_primary_10_1016_j_imu_2019_100205 crossref_primary_10_1109_TMI_2017_2715284 |
| Cites_doi | 10.1117/12.535913 10.1118/1.597428 10.1016/j.juro.2007.10.061 10.2214/AJR.04.0218 10.1088/0031‐9155/60/21/8457 10.1053/j.sult.2003.11.002 10.1117/12.912847 10.1109/ICIP.2002.1038171 10.1148/radiol.2222010667 10.1118/1.2794174 10.1088/0031‐9155/57/12/3945 10.1007/s11263‐015‐0816‐y 10.1109/tmi.2009.2039756 10.1088/0031‐9155/59/11/2767 10.1118/1.3002311 10.1111/j.1469‐8137.1912.tb05611.x 10.1148/radiol.2452061060 10.1088/0031‐9155/52/4/008 10.1118/1.2207129 10.1118/1.4922503 10.1117/12.813864 10.1118/1.4823792 10.1148/radiology.217.2.r00nv09436 10.1109/titb.2012.2200496 10.1259/bjr/13478281 10.1118/1.1395036 10.1088/0031‐9155/59/23/7457 10.1118/1.2211710 10.1016/j.media.2013.08.002 |
| ContentType | Journal Article |
| Copyright | American Association of Physicists in Medicine 2016 American Association of Physicists in Medicine Copyright © 2016 American Association of Physicists in Medicine 2016 American Association of Physicists in Medicine |
| Copyright_xml | – notice: American Association of Physicists in Medicine – notice: 2016 American Association of Physicists in Medicine – notice: Copyright © 2016 American Association of Physicists in Medicine 2016 American Association of Physicists in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
| DOI | 10.1118/1.4944498 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | Bladder segmentation using DL-CNN and level sets |
| EISSN | 2473-4209 |
| EndPage | 1896 |
| ExternalDocumentID | PMC4808067 27036584 10_1118_1_4944498 MP4498 |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: U.S. Public Health Service (USPHS) grantid: U01CA179106 funderid: http://dx.doi.org/10.13039/100007197 – fundername: U.S. Public Health Service (USPHS) funderid: U01CA179106 – fundername: NCI NIH HHS grantid: U01CA179106 – fundername: NCI NIH HHS grantid: U01 CA179106 – fundername: ; ; grantid: U01CA179106 |
| GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 476 53G 5GY 5RE 5VS AAHHS AANLZ AAQQT AASGY AAXRX AAZKR ABCUV ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACSMX ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P G8K HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAHQN AAIPD AAMNL AAYCA ABDPE ADMLS AFWVQ AITYG ALVPJ AAMMB AAYXX ABUFD AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c5498-f77bb843fdbb38926f459a9eff4414b058047ef46c510aa2f4e9a2ee3b543ed13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 195 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373711000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-2405 2473-4209 |
| IngestDate | Tue Nov 04 01:55:36 EST 2025 Sun Nov 09 14:26:36 EST 2025 Wed Feb 19 01:56:20 EST 2025 Sat Nov 29 01:33:02 EST 2025 Tue Nov 18 22:33:42 EST 2025 Mon Feb 10 04:01:30 EST 2025 Fri Jun 21 00:16:20 EDT 2024 Sun Jul 14 10:05:06 EDT 2019 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | CT urography segmentation deep-learning computer-aided detection level set bladder |
| Language | English |
| License | 0094-2405/2016/43(4)/1882/15/$30.00 http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5498-f77bb843fdbb38926f459a9eff4414b058047ef46c510aa2f4e9a2ee3b543ed13 |
| Notes | Telephone: (734) 647‐8556; Fax: (734) 615‐5513. heekon@med.umich.edu Author to whom correspondence should be addressed. Electronic mail ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author to whom correspondence should be addressed. Electronic mail: heekon@med.umich.edu; Telephone: (734) 647-8556; Fax: (734) 615-5513. |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4944498 |
| PMID | 27036584 |
| PQID | 1777979167 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | pubmed_primary_27036584 scitation_primary_10_1118_1_4944498 crossref_citationtrail_10_1118_1_4944498 wiley_primary_10_1118_1_4944498_MP4498 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808067 crossref_primary_10_1118_1_4944498 proquest_miscellaneous_1777979167 |
| PublicationCentury | 2000 |
| PublicationDate | April 2016 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Medical physics (Lancaster) |
| PublicationTitleAlternate | Med Phys |
| PublicationYear | 2016 |
| Publisher | American Association of Physicists in Medicine |
| Publisher_xml | – name: American Association of Physicists in Medicine |
| References | Hadjiiski, Chan, Law, Cohan, Caoili, Cho, Zhou, Wei (c15) 2012; 8315 Hadjiiski, Sahiner, Chan, Caoili, Cohan, Zhou (c16) 2009; 7260 Chai, van Herk, Betgen, Hulshof, Bel (c14) 2012; 57 Liu, Mortele, Silverman (c4) 2005; 185 Noroozian, Cohan, Caoili, Cowan, Ellis (c6) 2004; 77 Park, Kim, Lee, Choi, Cho (c7) 2007; 245 Hadjiiski, Chan, Cohan, Caoili, Law, Cha, Zhou, Wei (c17) 2013; 40 Sudakoff, Dunn, Guralnick, Hellman, Eastwood, See (c8) 2008; 179 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (c29) 2015; 115 Duan, Liang, Bao, Zhu, Wang, Zhang, Chen, Lu (c11) 2010; 29 Samala, Chan, Lu, Hadjiiski, Wei, Helvie (c26) 2015; 60 Caoili, Cohan, Korobkin, Platt, Francis, Faerber, Montie, Ellis (c3) 2002; 222 Duan, Yuan, Liu, Xiao, Lv, Liang (c12) 2012; 16 Chan, Lo, Sahiner, Lam, Helvie (c19) 1995; 22 Cha, Hadjiiski, Chan, Cohan, Caoili, Zhou (c9) 2015; 42 Akbar, Mortele, Baeyens, Kekelidze, Silverman (c2) 2004; 25 Way, Hadjiiski, Sahiner, Chan, Cascade, Kazerooni, Bogot, Zhou (c36) 2006; 33 Li, Wang, Li, Wei, Adler, Huang, Rizvi, Meng, Harrington, Liang (c10) 2004; 5369 Samala, Chan, Lu, Hadjiiski, Wei, Helvie (c20) 2014; 59 Jaccard (c35) 1912; 11 McCarthy, Cowan (c5) 2002; 225 Filev, Hadjiiski, Chan, Sahiner, Ge, Helvie, Roubidoux, Zhou (c25) 2008; 35 Gurcan, Sahiner, Chan, Hadjiiski, Petrick (c22) 2001; 28 Street, Hadjiiski, Sahiner, Gujar, Ibrahim, Mukherji, Chan (c34) 2007; 34 Ge, Hadjiiski, Sahiner, Wei, Helvie, Zhou, Chan (c24) 2007; 52 Gurcan, Sahiner, Chan, Hadjiiski, Petrick (c21) 2000; 217 Ge, Sahiner, Hadjiiski, Chan, Wei, Helvie, Zhou (c23) 2006; 33 Cha, Hadjiiski, Chan, Caoili, Cohan, Zhou (c18) 2014; 59 Han, Li, Duan, Zhang, Zhao, Liang (c13) 2013; 17 2007; 245 2012 2012; 8315 2010 2006; 33 2004; 25 2013; 40 2000; 217 2009; 7260 2008; 35 2012; 16 2001; 28 2007; 52 2012; 57 2004; 5369 2007; 34 2004; 77 2005; 185 2013; 17 2015; 60 2015; 115 2010; 29 2015; 42 1995; 22 2002; 222 2014; 59 2002; 225 2001; 1 2008; 179 2002; I 1912; 11 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 Nair V. (e_1_2_7_34_1) 2010 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Viola P. (e_1_2_7_32_1) 2001 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 McCarthy C. L. (e_1_2_7_6_1) 2002; 225 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 24001932 - Med Image Anal. 2013 Dec;17(8):1192-205 25393654 - Phys Med Biol. 2014 Dec 7;59(23):7457-77 15035531 - Semin Ultrasound CT MR. 2004 Feb;25(1):41-54 24801066 - Phys Med Biol. 2014 Jun 7;59(11):2767-85 16898434 - Med Phys. 2006 Jul;33(7):2323-37 22645274 - IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):720-9 24320439 - Med Phys. 2013 Nov;40(11):111906 8551980 - Med Phys. 1995 Oct;22(10):1555-67 11818599 - Radiology. 2002 Feb;222(2):353-60 26464355 - Phys Med Biol. 2015 Nov 7;60(21):8457-79 15546844 - Br J Radiol. 2004;77 Spec No 1:S74-86 16964876 - Med Phys. 2006 Aug;33(8):2975-88 18221955 - J Urol. 2008 Mar;179(3):862-7; discussion 867 20199924 - IEEE Trans Med Imaging. 2010 Mar;29(3):903-15 16177432 - AJR Am J Roentgenol. 2005 Oct;185(4):1051-6 26133625 - Med Phys. 2015 Jul;42(7):4271-84 17264365 - Phys Med Biol. 2007 Feb 21;52(4):981-1000 17951346 - Radiology. 2007 Dec;245(3):798-805 11585225 - Med Phys. 2001 Sep;28(9):1937-48 18072505 - Med Phys. 2007 Nov;34(11):4399-408 19175093 - Med Phys. 2008 Dec;35(12):5340-50 22643320 - Phys Med Biol. 2012 Jun 21;57(12):3945-62 |
| References_xml | – volume: 60 start-page: 8457 year: 2015 ident: c26 article-title: Computer- aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images publication-title: Phys. Med. Biol. – volume: 8315 start-page: 83150J-83151 year: 2012 ident: c15 article-title: Segmentation of urinary bladder in CT urography (CTU) using class publication-title: Proc. SPIE – volume: 42 start-page: 4271 year: 2015 ident: c9 article-title: Detection of urinary bladder mass in CT urography with SPAN publication-title: Med. Phys. – volume: 29 start-page: 903 year: 2010 ident: c11 article-title: A coupled level set framework for bladder wall segmentation with application to MR cystography publication-title: IEEE Trans. Med. Imaging – volume: 16 start-page: 720 year: 2012 ident: c12 article-title: An adaptive window-setting scheme for segmentation of bladder tumor surface via MR cystography publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 225 start-page: 237 year: 2002 ident: c5 article-title: Multidetector CT urography (MD-CTU) for urothelial imaging publication-title: Radiology – volume: 185 start-page: 1051 year: 2005 ident: c4 article-title: Incidental extraurinary findings at MDCT urography in patients with hematuria: Prevalence and impact on imaging costs publication-title: Am. J. Roentgenol. – volume: 7260 start-page: 72603R-72601 year: 2009 ident: c16 article-title: Automated segmentation of urinary bladder and detection of bladder lesions in multi-detector row CT urography publication-title: Proc. SPIE – volume: 17 start-page: 1192 year: 2013 ident: c13 article-title: A unified EM approach to bladder wall segmentation with coupled level-set constraints publication-title: Med. Image Anal. – volume: 11 start-page: 37 year: 1912 ident: c35 article-title: The distribution of the flora in the alpine zone publication-title: New Phytol. – volume: 59 start-page: 2767 year: 2014 ident: c18 article-title: CT urography: Segmentation of urinary bladder using CLASS with local contour refinement publication-title: Phys. Med. Biol. – volume: 35 start-page: 5340 year: 2008 ident: c25 article-title: Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis publication-title: Med. Phys. – volume: 115 start-page: 211 year: 2015 ident: c29 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 25 start-page: 41 year: 2004 ident: c2 article-title: Multidetector CT urography: Techniques, clinical applications, and pitfalls publication-title: Semin. Ultrasound CT MRI – volume: 33 start-page: 2975 year: 2006 ident: c23 article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms publication-title: Med. Phys. – volume: 34 start-page: 4399 year: 2007 ident: c34 article-title: Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation publication-title: Med. Phys. – volume: 40 start-page: 111906 year: 2013 ident: c17 article-title: Urinary bladder segmentation in CT urography (CTU) using CLASS publication-title: Med. Phys. – volume: 179 start-page: 862 year: 2008 ident: c8 article-title: Multidetector computerized tomography urography as the primary imaging modality for detecting urinary tract neoplasms in patients with asymptomatic hematuria publication-title: J. Urol. – volume: 77 start-page: S74 year: 2004 ident: c6 article-title: Multislice CT urography: State of the art publication-title: Br. J. Radiol. – volume: 33 start-page: 2323 year: 2006 ident: c36 article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours publication-title: Med. Phys. – volume: 245 start-page: 798 year: 2007 ident: c7 article-title: Hematuria: Portal venous phase multi detector row CT of the bladder–a prospective study publication-title: Radiology – volume: 22 start-page: 1555 year: 1995 ident: c19 article-title: Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network publication-title: Med. Phys. – volume: 222 start-page: 353 year: 2002 ident: c3 article-title: Urinary tract abnormalities: Initial experience with multi-detector row CT urography publication-title: Radiology – volume: 57 start-page: 3945 year: 2012 ident: c14 article-title: Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model publication-title: Phys. Med. Biol. – volume: 52 start-page: 981 year: 2007 ident: c24 article-title: Computer-aided detection system for clustered microcalcifications: Comparison of performance on full-field digital mammograms and digitized screen-film mammograms publication-title: Phys. Med. Biol. – volume: 217 start-page: 436 year: 2000 ident: c21 article-title: Selection of an optimal neural network architecture for computer-aided diagnosis—Comparison of automated optimization techniques publication-title: Radiology – volume: 5369 start-page: 199 year: 2004 ident: c10 article-title: A new partial volume segmentation approach to extract bladder wall for computer aided detection in virtual cystoscopy publication-title: Proc. SPIE – volume: 59 start-page: 7457 year: 2014 ident: c20 article-title: Digital breast tomosynthesis: Computer-aided detection of clustered microcalcifications on planar projection images publication-title: Phys. Med. Biol. – volume: 28 start-page: 1937 year: 2001 ident: c22 article-title: Selection of an optimal neural network architecture for computer-aided detection of microcalcifications—Comparison of automated optimization techniques publication-title: Med. Phys. – volume: 35 start-page: 5340 year: 2008 end-page: 5350 article-title: Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis publication-title: Med. Phys. – volume: 77 start-page: S74 year: 2004 end-page: S86 article-title: Multislice CT urography: State of the art publication-title: Br. J. Radiol. – volume: 225 start-page: 237 year: 2002 article-title: Multidetector CT urography (MD‐CTU) for urothelial imaging publication-title: Radiology – volume: 33 start-page: 2323 year: 2006 end-page: 2337 article-title: Computer‐aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours publication-title: Med. Phys. – volume: 52 start-page: 981 year: 2007 end-page: 1000 article-title: Computer‐aided detection system for clustered microcalcifications: Comparison of performance on full‐field digital mammograms and digitized screen‐film mammograms publication-title: Phys. Med. Biol. – volume: 42 start-page: 4271 year: 2015 end-page: 4284 article-title: Detection of urinary bladder mass in CT urography with SPAN publication-title: Med. Phys. – volume: 28 start-page: 1937 year: 2001 end-page: 1948 article-title: Selection of an optimal neural network architecture for computer‐aided detection of microcalcifications—Comparison of automated optimization techniques publication-title: Med. Phys. – volume: 115 start-page: 211 year: 2015 end-page: 252 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 5369 start-page: 199 year: 2004 end-page: 206 article-title: A new partial volume segmentation approach to extract bladder wall for computer aided detection in virtual cystoscopy publication-title: Proc. SPIE – volume: 60 start-page: 8457 year: 2015 end-page: 8479 article-title: Computer‐ aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images publication-title: Phys. Med. Biol. – volume: 11 start-page: 37 year: 1912 end-page: 50 article-title: The distribution of the flora in the alpine zone publication-title: New Phytol. – volume: 1 start-page: 511 year: 2001 end-page: 518 – volume: 59 start-page: 2767 year: 2014 end-page: 2785 article-title: CT urography: Segmentation of urinary bladder using CLASS with local contour refinement publication-title: Phys. Med. Biol. – volume: 179 start-page: 862 year: 2008 end-page: 867 article-title: Multidetector computerized tomography urography as the primary imaging modality for detecting urinary tract neoplasms in patients with asymptomatic hematuria publication-title: J. Urol. – volume: 40 start-page: 111906 year: 2013 article-title: Urinary bladder segmentation in CT urography (CTU) using CLASS publication-title: Med. Phys. – volume: 16 start-page: 720 year: 2012 end-page: 729 article-title: An adaptive window‐setting scheme for segmentation of bladder tumor surface via MR cystography publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 57 start-page: 3945 year: 2012 end-page: 3962 article-title: Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient‐specific bladder model publication-title: Phys. Med. Biol. – volume: 22 start-page: 1555 year: 1995 end-page: 1567 article-title: Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network publication-title: Med. Phys. – year: 2010 – volume: 59 start-page: 7457 year: 2014 end-page: 7477 article-title: Digital breast tomosynthesis: Computer‐aided detection of clustered microcalcifications on planar projection images publication-title: Phys. Med. Biol. – volume: I start-page: 900 year: 2002 end-page: 903 – volume: 33 start-page: 2975 year: 2006 end-page: 2988 article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms publication-title: Med. Phys. – volume: 245 start-page: 798 year: 2007 end-page: 805 article-title: Hematuria: Portal venous phase multi detector row CT of the bladder–a prospective study publication-title: Radiology – volume: 17 start-page: 1192 year: 2013 end-page: 1205 article-title: A unified EM approach to bladder wall segmentation with coupled level‐set constraints publication-title: Med. Image Anal. – volume: 217 start-page: 436 year: 2000 article-title: Selection of an optimal neural network architecture for computer‐aided diagnosis—Comparison of automated optimization techniques publication-title: Radiology – volume: 222 start-page: 353 year: 2002 end-page: 360 article-title: Urinary tract abnormalities: Initial experience with multi‐detector row CT urography publication-title: Radiology – volume: 29 start-page: 903 year: 2010 end-page: 915 article-title: A coupled level set framework for bladder wall segmentation with application to MR cystography publication-title: IEEE Trans. Med. Imaging – article-title: Learning Multiple Layers of Features from Tiny Images – volume: 185 start-page: 1051 year: 2005 end-page: 1056 article-title: Incidental extraurinary findings at MDCT urography in patients with hematuria: Prevalence and impact on imaging costs publication-title: Am. J. Roentgenol. – volume: 25 start-page: 41 year: 2004 end-page: 54 article-title: Multidetector CT urography: Techniques, clinical applications, and pitfalls publication-title: Semin. Ultrasound CT MRI – volume: 8315 start-page: 83150J‐83151 year: 2012 end-page: 83150J‐83157 article-title: Segmentation of urinary bladder in CT urography (CTU) using class publication-title: Proc. SPIE – volume: 34 start-page: 4399 year: 2007 end-page: 4408 article-title: Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation publication-title: Med. Phys. – year: 2012 article-title: ImageNet classification with deep convolutional neural networks – volume: 7260 start-page: 72603R‐72601 year: 2009 end-page: 72603R‐72607 article-title: Automated segmentation of urinary bladder and detection of bladder lesions in multi‐detector row CT urography publication-title: Proc. SPIE – ident: e_1_2_7_11_1 doi: 10.1117/12.535913 – ident: e_1_2_7_20_1 doi: 10.1118/1.597428 – ident: e_1_2_7_9_1 doi: 10.1016/j.juro.2007.10.061 – ident: e_1_2_7_5_1 doi: 10.2214/AJR.04.0218 – volume: 225 start-page: 237 year: 2002 ident: e_1_2_7_6_1 article-title: Multidetector CT urography (MD‐CTU) for urothelial imaging publication-title: Radiology – ident: e_1_2_7_27_1 doi: 10.1088/0031‐9155/60/21/8457 – ident: e_1_2_7_3_1 doi: 10.1053/j.sult.2003.11.002 – ident: e_1_2_7_29_1 – ident: e_1_2_7_16_1 doi: 10.1117/12.912847 – ident: e_1_2_7_33_1 doi: 10.1109/ICIP.2002.1038171 – ident: e_1_2_7_4_1 doi: 10.1148/radiol.2222010667 – ident: e_1_2_7_28_1 – ident: e_1_2_7_35_1 doi: 10.1118/1.2794174 – start-page: 511 volume-title: Rapid object detection using a boosted cascade of simple features year: 2001 ident: e_1_2_7_32_1 – ident: e_1_2_7_15_1 doi: 10.1088/0031‐9155/57/12/3945 – ident: e_1_2_7_30_1 doi: 10.1007/s11263‐015‐0816‐y – ident: e_1_2_7_12_1 doi: 10.1109/tmi.2009.2039756 – ident: e_1_2_7_19_1 doi: 10.1088/0031‐9155/59/11/2767 – ident: e_1_2_7_26_1 doi: 10.1118/1.3002311 – ident: e_1_2_7_36_1 doi: 10.1111/j.1469‐8137.1912.tb05611.x – ident: e_1_2_7_2_1 – ident: e_1_2_7_8_1 doi: 10.1148/radiol.2452061060 – ident: e_1_2_7_25_1 doi: 10.1088/0031‐9155/52/4/008 – volume-title: Presented at the Proceedings of the 27th International Conference on Machine Learning (ICML‐10) year: 2010 ident: e_1_2_7_34_1 – ident: e_1_2_7_37_1 doi: 10.1118/1.2207129 – ident: e_1_2_7_10_1 doi: 10.1118/1.4922503 – ident: e_1_2_7_17_1 doi: 10.1117/12.813864 – ident: e_1_2_7_18_1 doi: 10.1118/1.4823792 – ident: e_1_2_7_22_1 doi: 10.1148/radiology.217.2.r00nv09436 – ident: e_1_2_7_13_1 doi: 10.1109/titb.2012.2200496 – ident: e_1_2_7_7_1 doi: 10.1259/bjr/13478281 – ident: e_1_2_7_23_1 doi: 10.1118/1.1395036 – ident: e_1_2_7_21_1 doi: 10.1088/0031‐9155/59/23/7457 – ident: e_1_2_7_24_1 doi: 10.1118/1.2211710 – ident: e_1_2_7_14_1 doi: 10.1016/j.media.2013.08.002 – ident: e_1_2_7_31_1 – reference: 19175093 - Med Phys. 2008 Dec;35(12):5340-50 – reference: 11818599 - Radiology. 2002 Feb;222(2):353-60 – reference: 16898434 - Med Phys. 2006 Jul;33(7):2323-37 – reference: 22645274 - IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):720-9 – reference: 18072505 - Med Phys. 2007 Nov;34(11):4399-408 – reference: 26133625 - Med Phys. 2015 Jul;42(7):4271-84 – reference: 25393654 - Phys Med Biol. 2014 Dec 7;59(23):7457-77 – reference: 8551980 - Med Phys. 1995 Oct;22(10):1555-67 – reference: 17264365 - Phys Med Biol. 2007 Feb 21;52(4):981-1000 – reference: 15546844 - Br J Radiol. 2004;77 Spec No 1:S74-86 – reference: 24801066 - Phys Med Biol. 2014 Jun 7;59(11):2767-85 – reference: 26464355 - Phys Med Biol. 2015 Nov 7;60(21):8457-79 – reference: 15035531 - Semin Ultrasound CT MR. 2004 Feb;25(1):41-54 – reference: 20199924 - IEEE Trans Med Imaging. 2010 Mar;29(3):903-15 – reference: 16177432 - AJR Am J Roentgenol. 2005 Oct;185(4):1051-6 – reference: 24001932 - Med Image Anal. 2013 Dec;17(8):1192-205 – reference: 24320439 - Med Phys. 2013 Nov;40(11):111906 – reference: 18221955 - J Urol. 2008 Mar;179(3):862-7; discussion 867 – reference: 16964876 - Med Phys. 2006 Aug;33(8):2975-88 – reference: 17951346 - Radiology. 2007 Dec;245(3):798-805 – reference: 22643320 - Phys Med Biol. 2012 Jun 21;57(12):3945-62 – reference: 11585225 - Med Phys. 2001 Sep;28(9):1937-48 |
| SSID | ssj0006350 |
| Score | 2.5920258 |
| Snippet | Purpose:
The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection... Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer‐aided detection... The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder... |
| SourceID | pubmedcentral proquest pubmed crossref wiley scitation |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1882 |
| SubjectTerms | Anatomy Artificial neural networks Biological material, e.g. blood, urine; Haemocytometers biological organs bladder cancer Computed tomography Computerised tomographs computerised tomography computer‐aided detection CT urography deep‐learning Digital computing or data processing equipment or methods, specially adapted for specific applications Humans Image data processing or generation, in general Image detection systems Image Processing, Computer-Assisted - methods image segmentation level set Likelihood Functions Medical image contrast medical image processing Medical image segmentation Medical magnetic resonance imaging neural nets Neural Networks (Computer) pattern classification QUANTITATIVE IMAGING AND IMAGE PROCESSING Radiologists Reference Standards segmentation Tomography, X-Ray Computed Urinary Bladder - diagnostic imaging Urography |
| Title | Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets |
| URI | http://dx.doi.org/10.1118/1.4944498 https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4944498 https://www.ncbi.nlm.nih.gov/pubmed/27036584 https://www.proquest.com/docview/1777979167 https://pubmed.ncbi.nlm.nih.gov/PMC4808067 |
| Volume | 43 |
| WOSCitedRecordID | wos000373711000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2473-4209 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006350 issn: 0094-2405 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1qp0DZ8GihhEdlHkJsAk3i2LFYocKIBa0q1JFmF9mJPR1p8IySma75BL6RL8HX8QSNWhASKy9y7Tx8rn0cH98L8AqlFXnFTFwzpWOaURZLZo5iXUtH7pGkV4VPNsFPT4vxWJxtwfv1WZguPkT_ww09w4_X6OBShSwkCQrXk7dUUEpFsQ07qcMtHcDOx6_D0Zd-IHZzaXcCRVDcRMhDYCFX_V1feXM6usIxr0old93M1G2Sb9JZPx8N7_7Xm9yDO4GGkg8dbu7DlrZ7cOskbLTvwU2vDK3afbCjxh_ZJWqGg1RDWj35Fg4sWTK15PicrJoQ-JqgjH5Caq0XP7__CBkpJgSl7QHi7qYYQtMXXoBOpK3JDKVLruVl-wBGw0_nx5_jkKQhrtzSsogN50oVNDO1Uo78pMzQXEihjXFEi6qj3HU414ayynm_lKmhWshU60zlNNN1kj2EgZ1b_QhIXmXCVUmFympaC6aYQw1nghYmEyrNIniz7qty3QmYSGNWdiuZokzK8CUjeNGbLrqwHdcZPV93eOmcCndKpNXzVVsmnHPBHXPmERx0AOibQawhbYuAb0CjN8CA3ZtX7PTCB-6mGMQT23zZg-hvT3eN1eW8-W1RLmoTwWsPrT-3U56cYfH4Xw2fwG1HClmnTnoKg2Wz0s_gRnW5nLbNIWzzcXEYPO0XHRsqgQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aHWx74bINCFdzEdpLYE0cO5Z4QYNqiLaaUCvtLYoTu1QqbpW0e-Yn8Bv5JfNx3KBqAyHxlIccOxefY3_2-fwZ4DVSK5KC6bBkUoU0pizMmT4OVZlbcI8gvUjdYRN8OEzPz8XZFrxf74Vp9CHaBTeMDNdfY4DjgrSPcmSud99SQSkV6Q3YptaNkg5sf_zaG_fbntgOps0WFEExi5B4ZSFb_F1beHM8ugIyr3Ild-3Q1GTJN_GsG5B6d_7vU-7CbQ9EyYfGc-7BljL7sDPwqfZ9uOW4oUV9AGZcuU27RM6wm6pIrSbf_ZYlQ6aGnIzIqvLS1wSJ9BNSKrX49eOnP5NiQpDc7p3cPhRFNN3FUdBJbkoyQ_KSrXlZH8K492l0chr6YxrCwk4u01BzLmVKY11KaeFPxDRNRC6U1hZqUXmc2CbnSlNW2PjP80hTJfJIqVgmNFZlN74PHTM36iGQpIiFLRIJGZe0FEwy6zecCZrqWMgoDuBo3VjZuhXwKI1Z1sxl0qyb-T8ZwMvWdNEId1xn9GLd4pkNK8yV5EbNV3XW5ZwLbrEzD-BB4wFtNRGKllngFgDf8I3WACW7N--Y6Tcn3U1RxhPrfNV60d_e7hqri3n12yJblDqAN863_lxPNjjDy6N_NXwOu6ejQT_rfx5-eQx7FiKyhqv0BDrLaqWews3iYjmtq2c-4C4B4QstiQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aGwxeuGwMwtVchPYSWBPHjiVe0EYFYqsqtEp7i-LYLpU6t0raPfMT-I38Eo4dN6jaQEg8-SHHzuWcY3-OP38GeO2oFVnFTKyY1DFNKYtLZg5irUoE9w6kV7k_bIIPBvnZmRhuwPvVXphWH6L74eYyw_fXLsH1XJmQ5Y653ntLBaVU5Ndgi2aCYVpuHX3tj467nhgH03YLiqBuFSELykJY_V1XeX08ugQyL3Mlb-LQ1K6Sr-NZPyD17_zfq9yF2wGIkg9t5NyDDW13YPskLLXvwA3PDa2aXbCj2m_aJXLquqmaNHp8HrYsWTKx5PCULOsgfU0ckX5MlNbzn99_hDMpxsSR20OQ402diKYvPAWdlFaRqSMvYcuL5j6M-h9PDz_F4ZiGuMLJZR4bzqXMaWqUlAh_EmbQG6XQxiDUovIgQ5dzbSirMP_LMjFUizLROpUZTbXqpXuwaWdWPwSSVanAKomQqaJKMMkwbjgTNDepkEkawf7KWcXKC-4ojWnRzmXyoleELxnBy8503gp3XGX0YuXxAtPKrZWUVs-WTdHjnAuO2JlH8KCNgK6ZxImWIXCLgK_FRmfgJLvXr9jJNy_dTZ2Mp2vzVRdFf3u6K6wuZvVviwLDKII3Prb-3E5xMnTFo381fA7bw6N-cfx58OUx3EKEyFqq0hPYXNRL_RSuVxeLSVM_C_n2CysnLQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urinary+bladder+segmentation+in+CT+urography+using+deep-learning+convolutional+neural+network+and+level+sets&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Cha%2C+Kenny+H&rft.au=Hadjiiski%2C+Lubomir&rft.au=Samala%2C+Ravi+K&rft.au=Chan%2C+Heang-Ping&rft.date=2016-04-01&rft.eissn=2473-4209&rft.volume=43&rft.issue=4&rft.spage=1882&rft_id=info:doi/10.1118%2F1.4944498&rft_id=info%3Apmid%2F27036584&rft.externalDocID=27036584 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |