Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets

Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. Methods: A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outsid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) Jg. 43; H. 4; S. 1882 - 1896
Hauptverfasser: Cha, Kenny H., Hadjiiski, Lubomir, Samala, Ravi K., Chan, Heang-Ping, Caoili, Elaine M., Cohan, Richard H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Association of Physicists in Medicine 01.04.2016
Schlagworte:
ISSN:0094-2405, 2473-4209, 2473-4209
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. Methods: A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours. Results: With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. Conclusions: The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder.
AbstractList Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer‐aided detection of bladder cancer. Methods: A deep‐learning convolutional neural network (DL‐CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL‐CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole‐filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand‐segmented reference contours. Results: With DL‐CNN‐based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar‐feature‐based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. Conclusions: The authors demonstrated that the DL‐CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient‐based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL‐CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar‐feature‐based likelihood map, the DL‐CNN‐based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL‐CNN in combination with level sets for segmentation of the bladder.
The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer. A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours. With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively. The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder.
The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer.PURPOSEThe authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder cancer.A deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours.METHODSA deep-learning convolutional neural network (DL-CNN) was trained to distinguish between the inside and the outside of the bladder using 160 000 regions of interest (ROI) from CTU images. The trained DL-CNN was used to estimate the likelihood of an ROI being inside the bladder for ROIs centered at each voxel in a CTU case, resulting in a likelihood map. Thresholding and hole-filling were applied to the map to generate the initial contour for the bladder, which was then refined by 3D and 2D level sets. The segmentation performance was evaluated using 173 cases: 81 cases in the training set (42 lesions, 21 wall thickenings, and 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, and 13 normal bladders). The computerized segmentation accuracy using the DL likelihood map was compared to that using a likelihood map generated by Haar features and a random forest classifier, and that using our previous conjoint level set analysis and segmentation system (CLASS) without using a likelihood map. All methods were evaluated relative to the 3D hand-segmented reference contours.With DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively.RESULTSWith DL-CNN-based likelihood map and level sets, the average volume intersection ratio, average percent volume error, average absolute volume error, average minimum distance, and the Jaccard index for the test set were 81.9% ± 12.1%, 10.2% ± 16.2%, 14.0% ± 13.0%, 3.6 ± 2.0 mm, and 76.2% ± 11.8%, respectively. With the Haar-feature-based likelihood map and level sets, the corresponding values were 74.3% ± 12.7%, 13.0% ± 22.3%, 20.5% ± 15.7%, 5.7 ± 2.6 mm, and 66.7% ± 12.6%, respectively. With our previous CLASS with local contour refinement (LCR) method, the corresponding values were 78.0% ± 14.7%, 16.5% ± 16.8%, 18.2% ± 15.0%, 3.8 ± 2.3 mm, and 73.9% ± 13.5%, respectively.The authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder.CONCLUSIONSThe authors demonstrated that the DL-CNN can overcome the strong boundary between two regions that have large difference in gray levels and provides a seamless mask to guide level set segmentation, which has been a problem for many gradient-based segmentation methods. Compared to our previous CLASS with LCR method, which required two user inputs to initialize the segmentation, DL-CNN with level sets achieved better segmentation performance while using a single user input. Compared to the Haar-feature-based likelihood map, the DL-CNN-based likelihood map could guide the level sets to achieve better segmentation. The results demonstrate the feasibility of our new approach of using DL-CNN in combination with level sets for segmentation of the bladder.
Author Cha, Kenny H.
Samala, Ravi K.
Hadjiiski, Lubomir
Caoili, Elaine M.
Chan, Heang-Ping
Cohan, Richard H.
Author_xml – sequence: 1
  givenname: Kenny H.
  surname: Cha
  fullname: Cha, Kenny H.
  email: heekon@med.umich.edu
  organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904
– sequence: 2
  givenname: Lubomir
  surname: Hadjiiski
  fullname: Hadjiiski, Lubomir
  organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904
– sequence: 3
  givenname: Ravi K.
  surname: Samala
  fullname: Samala, Ravi K.
  organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904
– sequence: 4
  givenname: Heang-Ping
  surname: Chan
  fullname: Chan, Heang-Ping
  organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904
– sequence: 5
  givenname: Elaine M.
  surname: Caoili
  fullname: Caoili, Elaine M.
  organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904
– sequence: 6
  givenname: Richard H.
  surname: Cohan
  fullname: Cohan, Richard H.
  organization: Department of Radiology, The University of Michigan, Ann Arbor, Michigan 48109-0904
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27036584$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQQC1URLeFA38A-QiV0trJJI4vSNUKClIRHNqz5STjrcFrBzvZav892WYXFUQ5jSy_efN1Qo588EjIa87OOef1BT8HCQCyfkYWOYgig5zJI7JgTEKWAyuPyUlK3xljVVGyF-Q4F6yoyhoWxN1G63Xc0sbprsNIE67W6Ac92OCp9XR5Q8cYVlH3d1s6JutXtEPsM4c6-t2rDX4T3LjjtaMex_gQhvsQf1DtO-pwg27yDukleW60S_hqH0_J7ccPN8tP2fXXq8_Ly-usLachMiNE09RQmK5pilrmlYFSaonGAHBoWFkzEGigakvOtM4NoNQ5YtGUUGDHi1Pyfvb2Y7PGrp3mmZpSfbTraVQVtFV__nh7p1Zho6BmNavEJHi7F8Twc8Q0qLVNLTqnPYYxKS6EkELyB_TN41q_ixxWPAEXM9DGkFJEo1o7r3cqbZ3iTO2OqLjaH3HKePdXxkH6Lzab2XvrcPs0qL582_NnM58OXfxX_iS8CfGRvO9M8QtPRsiJ
CODEN MPHYA6
CitedBy_id crossref_primary_10_1007_s00371_017_1379_4
crossref_primary_10_1109_ACCESS_2020_2965885
crossref_primary_10_1016_j_compbiolchem_2021_107510
crossref_primary_10_1088_1361_6560_aabd19
crossref_primary_10_1002_rcs_2169
crossref_primary_10_1016_j_neuri_2022_100095
crossref_primary_10_1007_s00345_024_04921_6
crossref_primary_10_1016_j_cmpb_2025_108645
crossref_primary_10_1002_mp_12510
crossref_primary_10_1002_mp_13438
crossref_primary_10_3390_jimaging8060151
crossref_primary_10_1002_widm_1410
crossref_primary_10_3389_fphy_2023_1331441
crossref_primary_10_1002_mp_12593
crossref_primary_10_1007_s11042_025_20606_7
crossref_primary_10_3233_XST_190524
crossref_primary_10_3390_diagnostics13132308
crossref_primary_10_1109_RBME_2021_3136343
crossref_primary_10_1109_TMI_2018_2867837
crossref_primary_10_3390_s22145242
crossref_primary_10_1016_j_media_2024_103189
crossref_primary_10_1016_j_ejmp_2018_05_006
crossref_primary_10_1016_j_urology_2023_04_030
crossref_primary_10_1016_j_compmedimag_2018_09_004
crossref_primary_10_1038_s41598_017_15720_y
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_1007_s42235_022_00234_9
crossref_primary_10_1177_1533033818802789
crossref_primary_10_1007_s13246_020_00933_9
crossref_primary_10_1016_j_drudis_2018_01_039
crossref_primary_10_1109_ACCESS_2023_3317148
crossref_primary_10_1016_j_media_2018_03_010
crossref_primary_10_1109_TBME_2019_2894123
crossref_primary_10_1088_1361_6560_abc09c
crossref_primary_10_1109_ACCESS_2017_2781278
crossref_primary_10_1051_0004_6361_201935211
crossref_primary_10_1007_s11548_016_1501_5
crossref_primary_10_1371_journal_pone_0212550
crossref_primary_10_1016_j_neucom_2018_02_062
crossref_primary_10_1002_mp_13620
crossref_primary_10_1007_s12194_017_0406_5
crossref_primary_10_1118_1_4967345
crossref_primary_10_3390_cancers15225468
crossref_primary_10_1016_j_neucom_2018_01_015
crossref_primary_10_3390_diseases13080242
crossref_primary_10_1016_j_jflm_2020_102066
crossref_primary_10_1109_JBHI_2017_2787487
crossref_primary_10_1088_1361_6560_abfbf4
crossref_primary_10_1109_JBHI_2018_2852635
crossref_primary_10_1007_s11042_019_07959_6
crossref_primary_10_1007_s11063_023_11232_1
crossref_primary_10_1109_ACCESS_2020_2982197
crossref_primary_10_1109_TMI_2017_2695227
crossref_primary_10_1016_j_ymeth_2022_08_010
crossref_primary_10_3389_fonc_2017_00315
crossref_primary_10_1109_ACCESS_2019_2953942
crossref_primary_10_3389_fonc_2024_1487676
crossref_primary_10_1002_mp_13326
crossref_primary_10_1088_1361_6560_ab6f51
crossref_primary_10_1109_ACCESS_2020_3024277
crossref_primary_10_1002_mp_12124
crossref_primary_10_1109_ACCESS_2019_2944958
crossref_primary_10_3389_fonc_2019_01297
crossref_primary_10_1002_mp_12480
crossref_primary_10_1038_s41598_017_09315_w
crossref_primary_10_1007_s10462_019_09788_3
crossref_primary_10_3390_bioengineering9120811
crossref_primary_10_1155_2017_4037190
crossref_primary_10_1002_mp_13240
crossref_primary_10_1016_j_patcog_2018_05_014
crossref_primary_10_1088_1361_6560_aacdd4
crossref_primary_10_3390_diagnostics12112765
crossref_primary_10_1002_mp_14732
crossref_primary_10_3390_app10031154
crossref_primary_10_1016_j_compbiomed_2020_104097
crossref_primary_10_3389_fonc_2022_930917
crossref_primary_10_1155_2017_4067832
crossref_primary_10_32604_cmes_2022_018418
crossref_primary_10_3390_bioengineering11121225
crossref_primary_10_1002_ett_4017
crossref_primary_10_1016_j_cmpb_2020_105833
crossref_primary_10_1016_j_neucom_2022_07_070
crossref_primary_10_1088_1361_6560_aca38a
crossref_primary_10_1007_s10278_016_9914_9
crossref_primary_10_1186_s12880_020_00457_4
crossref_primary_10_1007_s12530_019_09297_2
crossref_primary_10_1016_j_euf_2025_07_011
crossref_primary_10_1186_s12938_020_00831_x
crossref_primary_10_3390_diagnostics12081788
crossref_primary_10_1016_j_compbiomed_2022_105334
crossref_primary_10_3233_JIFS_210213
crossref_primary_10_3390_bioengineering10080970
crossref_primary_10_1007_s13755_022_00176_w
crossref_primary_10_1007_s13246_019_00822_w
crossref_primary_10_1016_j_compbiomed_2021_104269
crossref_primary_10_3390_mti2030047
crossref_primary_10_1016_j_media_2022_102562
crossref_primary_10_1155_2020_5689301
crossref_primary_10_1016_j_compmedimag_2025_102571
crossref_primary_10_1016_j_compbiomed_2022_105809
crossref_primary_10_1016_j_critrevonc_2022_103601
crossref_primary_10_3390_cancers11091235
crossref_primary_10_3390_diagnostics11111964
crossref_primary_10_3390_jimaging6120133
crossref_primary_10_1002_mp_13264
crossref_primary_10_1038_s41598_019_40710_7
crossref_primary_10_1002_mp_14512
crossref_primary_10_2340_sju_v59_39930
crossref_primary_10_1109_ACCESS_2020_3003138
crossref_primary_10_1007_s11831_024_10209_0
crossref_primary_10_1016_j_compbiomed_2021_104472
crossref_primary_10_1109_TMI_2020_2966389
crossref_primary_10_1016_j_clgc_2021_03_012
crossref_primary_10_3233_JIFS_210263
crossref_primary_10_1007_s00256_021_03873_x
crossref_primary_10_1088_1742_6596_1549_4_042074
crossref_primary_10_1088_2057_1976_ac26e8
crossref_primary_10_1007_s11547_025_02051_6
crossref_primary_10_3390_s23125720
crossref_primary_10_1155_2019_8597606
crossref_primary_10_1016_j_compbiomed_2016_11_003
crossref_primary_10_1016_j_media_2017_11_005
crossref_primary_10_1002_mp_14580
crossref_primary_10_1016_j_imed_2021_04_001
crossref_primary_10_1016_j_media_2018_02_001
crossref_primary_10_1016_j_ymeth_2019_02_010
crossref_primary_10_1088_1361_6560_aaef0a
crossref_primary_10_3233_THC_191718
crossref_primary_10_1007_s00261_025_05094_5
crossref_primary_10_1007_s00261_025_04838_7
crossref_primary_10_1016_j_ins_2016_07_017
crossref_primary_10_1016_j_imu_2019_100205
crossref_primary_10_1109_TMI_2017_2715284
Cites_doi 10.1117/12.535913
10.1118/1.597428
10.1016/j.juro.2007.10.061
10.2214/AJR.04.0218
10.1088/0031‐9155/60/21/8457
10.1053/j.sult.2003.11.002
10.1117/12.912847
10.1109/ICIP.2002.1038171
10.1148/radiol.2222010667
10.1118/1.2794174
10.1088/0031‐9155/57/12/3945
10.1007/s11263‐015‐0816‐y
10.1109/tmi.2009.2039756
10.1088/0031‐9155/59/11/2767
10.1118/1.3002311
10.1111/j.1469‐8137.1912.tb05611.x
10.1148/radiol.2452061060
10.1088/0031‐9155/52/4/008
10.1118/1.2207129
10.1118/1.4922503
10.1117/12.813864
10.1118/1.4823792
10.1148/radiology.217.2.r00nv09436
10.1109/titb.2012.2200496
10.1259/bjr/13478281
10.1118/1.1395036
10.1088/0031‐9155/59/23/7457
10.1118/1.2211710
10.1016/j.media.2013.08.002
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2016 American Association of Physicists in Medicine
Copyright © 2016 American Association of Physicists in Medicine 2016 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2016 American Association of Physicists in Medicine
– notice: Copyright © 2016 American Association of Physicists in Medicine 2016 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1118/1.4944498
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Bladder segmentation using DL-CNN and level sets
EISSN 2473-4209
EndPage 1896
ExternalDocumentID PMC4808067
27036584
10_1118_1_4944498
MP4498
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Public Health Service (USPHS)
  grantid: U01CA179106
  funderid: http://dx.doi.org/10.13039/100007197
– fundername: U.S. Public Health Service (USPHS)
  funderid: U01CA179106
– fundername: NCI NIH HHS
  grantid: U01CA179106
– fundername: NCI NIH HHS
  grantid: U01 CA179106
– fundername: ; ;
  grantid: U01CA179106
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
ADMLS
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c5498-f77bb843fdbb38926f459a9eff4414b058047ef46c510aa2f4e9a2ee3b543ed13
IEDL.DBID DRFUL
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373711000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Tue Nov 04 01:55:36 EST 2025
Sun Nov 09 14:26:36 EST 2025
Wed Feb 19 01:56:20 EST 2025
Sat Nov 29 01:33:02 EST 2025
Tue Nov 18 22:33:42 EST 2025
Mon Feb 10 04:01:30 EST 2025
Fri Jun 21 00:16:20 EDT 2024
Sun Jul 14 10:05:06 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CT urography
segmentation
deep-learning
computer-aided detection
level set
bladder
Language English
License 0094-2405/2016/43(4)/1882/15/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5498-f77bb843fdbb38926f459a9eff4414b058047ef46c510aa2f4e9a2ee3b543ed13
Notes Telephone: (734) 647‐8556; Fax: (734) 615‐5513.
heekon@med.umich.edu
Author to whom correspondence should be addressed. Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author to whom correspondence should be addressed. Electronic mail: heekon@med.umich.edu; Telephone: (734) 647-8556; Fax: (734) 615-5513.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4944498
PMID 27036584
PQID 1777979167
PQPubID 23479
PageCount 15
ParticipantIDs pubmed_primary_27036584
scitation_primary_10_1118_1_4944498
crossref_citationtrail_10_1118_1_4944498
wiley_primary_10_1118_1_4944498_MP4498
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808067
crossref_primary_10_1118_1_4944498
proquest_miscellaneous_1777979167
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2016
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Hadjiiski, Chan, Law, Cohan, Caoili, Cho, Zhou, Wei (c15) 2012; 8315
Hadjiiski, Sahiner, Chan, Caoili, Cohan, Zhou (c16) 2009; 7260
Chai, van Herk, Betgen, Hulshof, Bel (c14) 2012; 57
Liu, Mortele, Silverman (c4) 2005; 185
Noroozian, Cohan, Caoili, Cowan, Ellis (c6) 2004; 77
Park, Kim, Lee, Choi, Cho (c7) 2007; 245
Hadjiiski, Chan, Cohan, Caoili, Law, Cha, Zhou, Wei (c17) 2013; 40
Sudakoff, Dunn, Guralnick, Hellman, Eastwood, See (c8) 2008; 179
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (c29) 2015; 115
Duan, Liang, Bao, Zhu, Wang, Zhang, Chen, Lu (c11) 2010; 29
Samala, Chan, Lu, Hadjiiski, Wei, Helvie (c26) 2015; 60
Caoili, Cohan, Korobkin, Platt, Francis, Faerber, Montie, Ellis (c3) 2002; 222
Duan, Yuan, Liu, Xiao, Lv, Liang (c12) 2012; 16
Chan, Lo, Sahiner, Lam, Helvie (c19) 1995; 22
Cha, Hadjiiski, Chan, Cohan, Caoili, Zhou (c9) 2015; 42
Akbar, Mortele, Baeyens, Kekelidze, Silverman (c2) 2004; 25
Way, Hadjiiski, Sahiner, Chan, Cascade, Kazerooni, Bogot, Zhou (c36) 2006; 33
Li, Wang, Li, Wei, Adler, Huang, Rizvi, Meng, Harrington, Liang (c10) 2004; 5369
Samala, Chan, Lu, Hadjiiski, Wei, Helvie (c20) 2014; 59
Jaccard (c35) 1912; 11
McCarthy, Cowan (c5) 2002; 225
Filev, Hadjiiski, Chan, Sahiner, Ge, Helvie, Roubidoux, Zhou (c25) 2008; 35
Gurcan, Sahiner, Chan, Hadjiiski, Petrick (c22) 2001; 28
Street, Hadjiiski, Sahiner, Gujar, Ibrahim, Mukherji, Chan (c34) 2007; 34
Ge, Hadjiiski, Sahiner, Wei, Helvie, Zhou, Chan (c24) 2007; 52
Gurcan, Sahiner, Chan, Hadjiiski, Petrick (c21) 2000; 217
Ge, Sahiner, Hadjiiski, Chan, Wei, Helvie, Zhou (c23) 2006; 33
Cha, Hadjiiski, Chan, Caoili, Cohan, Zhou (c18) 2014; 59
Han, Li, Duan, Zhang, Zhao, Liang (c13) 2013; 17
2007; 245
2012
2012; 8315
2010
2006; 33
2004; 25
2013; 40
2000; 217
2009; 7260
2008; 35
2012; 16
2001; 28
2007; 52
2012; 57
2004; 5369
2007; 34
2004; 77
2005; 185
2013; 17
2015; 60
2015; 115
2010; 29
2015; 42
1995; 22
2002; 222
2014; 59
2002; 225
2001; 1
2008; 179
2002; I
1912; 11
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
Nair V. (e_1_2_7_34_1) 2010
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Viola P. (e_1_2_7_32_1) 2001
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
McCarthy C. L. (e_1_2_7_6_1) 2002; 225
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
24001932 - Med Image Anal. 2013 Dec;17(8):1192-205
25393654 - Phys Med Biol. 2014 Dec 7;59(23):7457-77
15035531 - Semin Ultrasound CT MR. 2004 Feb;25(1):41-54
24801066 - Phys Med Biol. 2014 Jun 7;59(11):2767-85
16898434 - Med Phys. 2006 Jul;33(7):2323-37
22645274 - IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):720-9
24320439 - Med Phys. 2013 Nov;40(11):111906
8551980 - Med Phys. 1995 Oct;22(10):1555-67
11818599 - Radiology. 2002 Feb;222(2):353-60
26464355 - Phys Med Biol. 2015 Nov 7;60(21):8457-79
15546844 - Br J Radiol. 2004;77 Spec No 1:S74-86
16964876 - Med Phys. 2006 Aug;33(8):2975-88
18221955 - J Urol. 2008 Mar;179(3):862-7; discussion 867
20199924 - IEEE Trans Med Imaging. 2010 Mar;29(3):903-15
16177432 - AJR Am J Roentgenol. 2005 Oct;185(4):1051-6
26133625 - Med Phys. 2015 Jul;42(7):4271-84
17264365 - Phys Med Biol. 2007 Feb 21;52(4):981-1000
17951346 - Radiology. 2007 Dec;245(3):798-805
11585225 - Med Phys. 2001 Sep;28(9):1937-48
18072505 - Med Phys. 2007 Nov;34(11):4399-408
19175093 - Med Phys. 2008 Dec;35(12):5340-50
22643320 - Phys Med Biol. 2012 Jun 21;57(12):3945-62
References_xml – volume: 60
  start-page: 8457
  year: 2015
  ident: c26
  article-title: Computer- aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images
  publication-title: Phys. Med. Biol.
– volume: 8315
  start-page: 83150J-83151
  year: 2012
  ident: c15
  article-title: Segmentation of urinary bladder in CT urography (CTU) using class
  publication-title: Proc. SPIE
– volume: 42
  start-page: 4271
  year: 2015
  ident: c9
  article-title: Detection of urinary bladder mass in CT urography with SPAN
  publication-title: Med. Phys.
– volume: 29
  start-page: 903
  year: 2010
  ident: c11
  article-title: A coupled level set framework for bladder wall segmentation with application to MR cystography
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  start-page: 720
  year: 2012
  ident: c12
  article-title: An adaptive window-setting scheme for segmentation of bladder tumor surface via MR cystography
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 225
  start-page: 237
  year: 2002
  ident: c5
  article-title: Multidetector CT urography (MD-CTU) for urothelial imaging
  publication-title: Radiology
– volume: 185
  start-page: 1051
  year: 2005
  ident: c4
  article-title: Incidental extraurinary findings at MDCT urography in patients with hematuria: Prevalence and impact on imaging costs
  publication-title: Am. J. Roentgenol.
– volume: 7260
  start-page: 72603R-72601
  year: 2009
  ident: c16
  article-title: Automated segmentation of urinary bladder and detection of bladder lesions in multi-detector row CT urography
  publication-title: Proc. SPIE
– volume: 17
  start-page: 1192
  year: 2013
  ident: c13
  article-title: A unified EM approach to bladder wall segmentation with coupled level-set constraints
  publication-title: Med. Image Anal.
– volume: 11
  start-page: 37
  year: 1912
  ident: c35
  article-title: The distribution of the flora in the alpine zone
  publication-title: New Phytol.
– volume: 59
  start-page: 2767
  year: 2014
  ident: c18
  article-title: CT urography: Segmentation of urinary bladder using CLASS with local contour refinement
  publication-title: Phys. Med. Biol.
– volume: 35
  start-page: 5340
  year: 2008
  ident: c25
  article-title: Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis
  publication-title: Med. Phys.
– volume: 115
  start-page: 211
  year: 2015
  ident: c29
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 25
  start-page: 41
  year: 2004
  ident: c2
  article-title: Multidetector CT urography: Techniques, clinical applications, and pitfalls
  publication-title: Semin. Ultrasound CT MRI
– volume: 33
  start-page: 2975
  year: 2006
  ident: c23
  article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms
  publication-title: Med. Phys.
– volume: 34
  start-page: 4399
  year: 2007
  ident: c34
  article-title: Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation
  publication-title: Med. Phys.
– volume: 40
  start-page: 111906
  year: 2013
  ident: c17
  article-title: Urinary bladder segmentation in CT urography (CTU) using CLASS
  publication-title: Med. Phys.
– volume: 179
  start-page: 862
  year: 2008
  ident: c8
  article-title: Multidetector computerized tomography urography as the primary imaging modality for detecting urinary tract neoplasms in patients with asymptomatic hematuria
  publication-title: J. Urol.
– volume: 77
  start-page: S74
  year: 2004
  ident: c6
  article-title: Multislice CT urography: State of the art
  publication-title: Br. J. Radiol.
– volume: 33
  start-page: 2323
  year: 2006
  ident: c36
  article-title: Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours
  publication-title: Med. Phys.
– volume: 245
  start-page: 798
  year: 2007
  ident: c7
  article-title: Hematuria: Portal venous phase multi detector row CT of the bladder–a prospective study
  publication-title: Radiology
– volume: 22
  start-page: 1555
  year: 1995
  ident: c19
  article-title: Computer-aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
  publication-title: Med. Phys.
– volume: 222
  start-page: 353
  year: 2002
  ident: c3
  article-title: Urinary tract abnormalities: Initial experience with multi-detector row CT urography
  publication-title: Radiology
– volume: 57
  start-page: 3945
  year: 2012
  ident: c14
  article-title: Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model
  publication-title: Phys. Med. Biol.
– volume: 52
  start-page: 981
  year: 2007
  ident: c24
  article-title: Computer-aided detection system for clustered microcalcifications: Comparison of performance on full-field digital mammograms and digitized screen-film mammograms
  publication-title: Phys. Med. Biol.
– volume: 217
  start-page: 436
  year: 2000
  ident: c21
  article-title: Selection of an optimal neural network architecture for computer-aided diagnosis—Comparison of automated optimization techniques
  publication-title: Radiology
– volume: 5369
  start-page: 199
  year: 2004
  ident: c10
  article-title: A new partial volume segmentation approach to extract bladder wall for computer aided detection in virtual cystoscopy
  publication-title: Proc. SPIE
– volume: 59
  start-page: 7457
  year: 2014
  ident: c20
  article-title: Digital breast tomosynthesis: Computer-aided detection of clustered microcalcifications on planar projection images
  publication-title: Phys. Med. Biol.
– volume: 28
  start-page: 1937
  year: 2001
  ident: c22
  article-title: Selection of an optimal neural network architecture for computer-aided detection of microcalcifications—Comparison of automated optimization techniques
  publication-title: Med. Phys.
– volume: 35
  start-page: 5340
  year: 2008
  end-page: 5350
  article-title: Automated regional registration and characterization of corresponding microcalcification clusters on temporal pairs of mammograms for interval change analysis
  publication-title: Med. Phys.
– volume: 77
  start-page: S74
  year: 2004
  end-page: S86
  article-title: Multislice CT urography: State of the art
  publication-title: Br. J. Radiol.
– volume: 225
  start-page: 237
  year: 2002
  article-title: Multidetector CT urography (MD‐CTU) for urothelial imaging
  publication-title: Radiology
– volume: 33
  start-page: 2323
  year: 2006
  end-page: 2337
  article-title: Computer‐aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours
  publication-title: Med. Phys.
– volume: 52
  start-page: 981
  year: 2007
  end-page: 1000
  article-title: Computer‐aided detection system for clustered microcalcifications: Comparison of performance on full‐field digital mammograms and digitized screen‐film mammograms
  publication-title: Phys. Med. Biol.
– volume: 42
  start-page: 4271
  year: 2015
  end-page: 4284
  article-title: Detection of urinary bladder mass in CT urography with SPAN
  publication-title: Med. Phys.
– volume: 28
  start-page: 1937
  year: 2001
  end-page: 1948
  article-title: Selection of an optimal neural network architecture for computer‐aided detection of microcalcifications—Comparison of automated optimization techniques
  publication-title: Med. Phys.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 5369
  start-page: 199
  year: 2004
  end-page: 206
  article-title: A new partial volume segmentation approach to extract bladder wall for computer aided detection in virtual cystoscopy
  publication-title: Proc. SPIE
– volume: 60
  start-page: 8457
  year: 2015
  end-page: 8479
  article-title: Computer‐ aided detection system for clustered microcalcifications in digital breast tomosynthesis using joint information from volumetric and planar projection images
  publication-title: Phys. Med. Biol.
– volume: 11
  start-page: 37
  year: 1912
  end-page: 50
  article-title: The distribution of the flora in the alpine zone
  publication-title: New Phytol.
– volume: 1
  start-page: 511
  year: 2001
  end-page: 518
– volume: 59
  start-page: 2767
  year: 2014
  end-page: 2785
  article-title: CT urography: Segmentation of urinary bladder using CLASS with local contour refinement
  publication-title: Phys. Med. Biol.
– volume: 179
  start-page: 862
  year: 2008
  end-page: 867
  article-title: Multidetector computerized tomography urography as the primary imaging modality for detecting urinary tract neoplasms in patients with asymptomatic hematuria
  publication-title: J. Urol.
– volume: 40
  start-page: 111906
  year: 2013
  article-title: Urinary bladder segmentation in CT urography (CTU) using CLASS
  publication-title: Med. Phys.
– volume: 16
  start-page: 720
  year: 2012
  end-page: 729
  article-title: An adaptive window‐setting scheme for segmentation of bladder tumor surface via MR cystography
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 57
  start-page: 3945
  year: 2012
  end-page: 3962
  article-title: Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient‐specific bladder model
  publication-title: Phys. Med. Biol.
– volume: 22
  start-page: 1555
  year: 1995
  end-page: 1567
  article-title: Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network
  publication-title: Med. Phys.
– year: 2010
– volume: 59
  start-page: 7457
  year: 2014
  end-page: 7477
  article-title: Digital breast tomosynthesis: Computer‐aided detection of clustered microcalcifications on planar projection images
  publication-title: Phys. Med. Biol.
– volume: I
  start-page: 900
  year: 2002
  end-page: 903
– volume: 33
  start-page: 2975
  year: 2006
  end-page: 2988
  article-title: Computer aided detection of clusters of microcalcifications on full field digital mammograms
  publication-title: Med. Phys.
– volume: 245
  start-page: 798
  year: 2007
  end-page: 805
  article-title: Hematuria: Portal venous phase multi detector row CT of the bladder–a prospective study
  publication-title: Radiology
– volume: 17
  start-page: 1192
  year: 2013
  end-page: 1205
  article-title: A unified EM approach to bladder wall segmentation with coupled level‐set constraints
  publication-title: Med. Image Anal.
– volume: 217
  start-page: 436
  year: 2000
  article-title: Selection of an optimal neural network architecture for computer‐aided diagnosis—Comparison of automated optimization techniques
  publication-title: Radiology
– volume: 222
  start-page: 353
  year: 2002
  end-page: 360
  article-title: Urinary tract abnormalities: Initial experience with multi‐detector row CT urography
  publication-title: Radiology
– volume: 29
  start-page: 903
  year: 2010
  end-page: 915
  article-title: A coupled level set framework for bladder wall segmentation with application to MR cystography
  publication-title: IEEE Trans. Med. Imaging
– article-title: Learning Multiple Layers of Features from Tiny Images
– volume: 185
  start-page: 1051
  year: 2005
  end-page: 1056
  article-title: Incidental extraurinary findings at MDCT urography in patients with hematuria: Prevalence and impact on imaging costs
  publication-title: Am. J. Roentgenol.
– volume: 25
  start-page: 41
  year: 2004
  end-page: 54
  article-title: Multidetector CT urography: Techniques, clinical applications, and pitfalls
  publication-title: Semin. Ultrasound CT MRI
– volume: 8315
  start-page: 83150J‐83151
  year: 2012
  end-page: 83150J‐83157
  article-title: Segmentation of urinary bladder in CT urography (CTU) using class
  publication-title: Proc. SPIE
– volume: 34
  start-page: 4399
  year: 2007
  end-page: 4408
  article-title: Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation
  publication-title: Med. Phys.
– year: 2012
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 7260
  start-page: 72603R‐72601
  year: 2009
  end-page: 72603R‐72607
  article-title: Automated segmentation of urinary bladder and detection of bladder lesions in multi‐detector row CT urography
  publication-title: Proc. SPIE
– ident: e_1_2_7_11_1
  doi: 10.1117/12.535913
– ident: e_1_2_7_20_1
  doi: 10.1118/1.597428
– ident: e_1_2_7_9_1
  doi: 10.1016/j.juro.2007.10.061
– ident: e_1_2_7_5_1
  doi: 10.2214/AJR.04.0218
– volume: 225
  start-page: 237
  year: 2002
  ident: e_1_2_7_6_1
  article-title: Multidetector CT urography (MD‐CTU) for urothelial imaging
  publication-title: Radiology
– ident: e_1_2_7_27_1
  doi: 10.1088/0031‐9155/60/21/8457
– ident: e_1_2_7_3_1
  doi: 10.1053/j.sult.2003.11.002
– ident: e_1_2_7_29_1
– ident: e_1_2_7_16_1
  doi: 10.1117/12.912847
– ident: e_1_2_7_33_1
  doi: 10.1109/ICIP.2002.1038171
– ident: e_1_2_7_4_1
  doi: 10.1148/radiol.2222010667
– ident: e_1_2_7_28_1
– ident: e_1_2_7_35_1
  doi: 10.1118/1.2794174
– start-page: 511
  volume-title: Rapid object detection using a boosted cascade of simple features
  year: 2001
  ident: e_1_2_7_32_1
– ident: e_1_2_7_15_1
  doi: 10.1088/0031‐9155/57/12/3945
– ident: e_1_2_7_30_1
  doi: 10.1007/s11263‐015‐0816‐y
– ident: e_1_2_7_12_1
  doi: 10.1109/tmi.2009.2039756
– ident: e_1_2_7_19_1
  doi: 10.1088/0031‐9155/59/11/2767
– ident: e_1_2_7_26_1
  doi: 10.1118/1.3002311
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1469‐8137.1912.tb05611.x
– ident: e_1_2_7_2_1
– ident: e_1_2_7_8_1
  doi: 10.1148/radiol.2452061060
– ident: e_1_2_7_25_1
  doi: 10.1088/0031‐9155/52/4/008
– volume-title: Presented at the Proceedings of the 27th International Conference on Machine Learning (ICML‐10)
  year: 2010
  ident: e_1_2_7_34_1
– ident: e_1_2_7_37_1
  doi: 10.1118/1.2207129
– ident: e_1_2_7_10_1
  doi: 10.1118/1.4922503
– ident: e_1_2_7_17_1
  doi: 10.1117/12.813864
– ident: e_1_2_7_18_1
  doi: 10.1118/1.4823792
– ident: e_1_2_7_22_1
  doi: 10.1148/radiology.217.2.r00nv09436
– ident: e_1_2_7_13_1
  doi: 10.1109/titb.2012.2200496
– ident: e_1_2_7_7_1
  doi: 10.1259/bjr/13478281
– ident: e_1_2_7_23_1
  doi: 10.1118/1.1395036
– ident: e_1_2_7_21_1
  doi: 10.1088/0031‐9155/59/23/7457
– ident: e_1_2_7_24_1
  doi: 10.1118/1.2211710
– ident: e_1_2_7_14_1
  doi: 10.1016/j.media.2013.08.002
– ident: e_1_2_7_31_1
– reference: 19175093 - Med Phys. 2008 Dec;35(12):5340-50
– reference: 11818599 - Radiology. 2002 Feb;222(2):353-60
– reference: 16898434 - Med Phys. 2006 Jul;33(7):2323-37
– reference: 22645274 - IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):720-9
– reference: 18072505 - Med Phys. 2007 Nov;34(11):4399-408
– reference: 26133625 - Med Phys. 2015 Jul;42(7):4271-84
– reference: 25393654 - Phys Med Biol. 2014 Dec 7;59(23):7457-77
– reference: 8551980 - Med Phys. 1995 Oct;22(10):1555-67
– reference: 17264365 - Phys Med Biol. 2007 Feb 21;52(4):981-1000
– reference: 15546844 - Br J Radiol. 2004;77 Spec No 1:S74-86
– reference: 24801066 - Phys Med Biol. 2014 Jun 7;59(11):2767-85
– reference: 26464355 - Phys Med Biol. 2015 Nov 7;60(21):8457-79
– reference: 15035531 - Semin Ultrasound CT MR. 2004 Feb;25(1):41-54
– reference: 20199924 - IEEE Trans Med Imaging. 2010 Mar;29(3):903-15
– reference: 16177432 - AJR Am J Roentgenol. 2005 Oct;185(4):1051-6
– reference: 24001932 - Med Image Anal. 2013 Dec;17(8):1192-205
– reference: 24320439 - Med Phys. 2013 Nov;40(11):111906
– reference: 18221955 - J Urol. 2008 Mar;179(3):862-7; discussion 867
– reference: 16964876 - Med Phys. 2006 Aug;33(8):2975-88
– reference: 17951346 - Radiology. 2007 Dec;245(3):798-805
– reference: 22643320 - Phys Med Biol. 2012 Jun 21;57(12):3945-62
– reference: 11585225 - Med Phys. 2001 Sep;28(9):1937-48
SSID ssj0006350
Score 2.5920258
Snippet Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection...
Purpose: The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer‐aided detection...
The authors are developing a computerized system for bladder segmentation in CT urography (CTU) as a critical component for computer-aided detection of bladder...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1882
SubjectTerms Anatomy
Artificial neural networks
Biological material, e.g. blood, urine; Haemocytometers
biological organs
bladder
cancer
Computed tomography
Computerised tomographs
computerised tomography
computer‐aided detection
CT urography
deep‐learning
Digital computing or data processing equipment or methods, specially adapted for specific applications
Humans
Image data processing or generation, in general
Image detection systems
Image Processing, Computer-Assisted - methods
image segmentation
level set
Likelihood Functions
Medical image contrast
medical image processing
Medical image segmentation
Medical magnetic resonance imaging
neural nets
Neural Networks (Computer)
pattern classification
QUANTITATIVE IMAGING AND IMAGE PROCESSING
Radiologists
Reference Standards
segmentation
Tomography, X-Ray Computed
Urinary Bladder - diagnostic imaging
Urography
Title Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets
URI http://dx.doi.org/10.1118/1.4944498
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4944498
https://www.ncbi.nlm.nih.gov/pubmed/27036584
https://www.proquest.com/docview/1777979167
https://pubmed.ncbi.nlm.nih.gov/PMC4808067
Volume 43
WOSCitedRecordID wos000373711000028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61Ka8Lj_Iyj2p5qOJiiO2xdy1OqBBxaKsKNVJu1tqeDZGCE9lJz_wEfiO_hB17YxS1ICQu9sGz68d8uzPrmfkW4LWigq3i0DeFPWBBgZ0HMfKZm04jWRSYtlD4WJ6eqskkPduB95tamI4fov_hxiOjna95gOvc7UIScOJ68BZTREzVLuyFFrc4gL2PX0bj434itra0q0BJkYMIsSMWss3f9Y23zdElH_NyquRNa5m6IPm2O9vao9Gd_3qTu3DbuaHiQ4ebe7BD1T7cOHGB9n243maGFs19qMZ1W7Ir8jlPUrVoaPrNFSxVYlaJo3Oxrh3xteA0-qkoiZY_v_9wO1JMBae2O4jbmzKFZntqE9CFrkox59Ql2_OqeQDj0afzo8--26TBL-zSUvlGyjxXGJkyz63zEyYG41SnZIx1tDAfxlb1kgwmhdW71qFBSnVIFOUxRlQG0UMYVIuKHoMoy6QY6pyMTmIkhSkpTXY5qbQsZYiFB282uso2SuCNNOZZt5JRWZC5L-nBy1502dF2XCX0YqPwzA4qjpToihbrJguklKm0nrP04FEHgL4bxhq7bR7ILWj0AkzYvX2lmn1tibuRSTy5z1c9iP72dFdIXSzq3xLZsjQeHLbQ-nM_2ckZn578q-BTuGWdwqTLTnoGg1W9pudwrbhYzZr6AHblRB24kfYLDCArYQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tXWC58Fhe4WkeQlwCTTKJE4kLWqgW0VYr1Ep7i5xkXCqVtEraPfMT-I38EjyJG1TtgpC4xIeMncfMeMaemc8AL2PK2Sr2XZ2bC-bkmXkQA5ex6RSSkQLdFAoP5Xgcn54mJ3vwblsL0-JDdBturBnNfM0KzhvSVss5c917gwkiJvEl2EcjRmEP9j98GUyH3UxsjGlbgpIgRxFCiyxkur_tOu_ao3NO5vlcyQNjmtoo-a4_2xikwY3_-5SbcN06ouJ9Kzm3YI_KQ7g6sqH2Q7jS5Ibm9W0op1VTtCuyBU9Tlahp9s2WLJViXoqjidhUFvpacCL9TBREq5_ff9gzKWaCk9utkJuHMohm0zQp6EKVhVhw8pIZeV3fgeng4-To2LXHNLi5WVzGrpYyy2IMdJFlxv3xI41hohLS2rhamPVDw3xJGqPccF4pXyMlyicKshADKrzgLvTKZUn3QRRFlPdVRlpFIVKMCcWKzIIyVrKQPuYOvN4yK91ygY_SWKTtWiZOvdT-SQeed6SrFrjjIqJnW46nRq04VqJKWm7q1JNSJtL4ztKBe60EdMP4DFpmHDcH5I5sdAQM2b17p5x_baC7kWE8ecwXnRT97e0uoDpbVr8p0lWhHXjVyNafx0lHJ9w8-FfCp3BwPBkN0-Gn8eeHcM24iFGbq_QIeutqQ4_hcn62ntfVE6twvwDU2C5p
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6VFgoXHi0F81weQr0YYnvttSUuqCUCkUYRaqTeVmt7NkRKN5Gd9MxP4DfyS5i1N0ZRC0LiYh88O37MzM6sZ-ZbgNcpFtYr9nxd0IEXGNA8yCPfYtMpjqQFumkUHojhMD07y0Zb8H7dC9PiQ3Q_3KxlNPO1NXBclNpZua1cD97yjHOepddgh8dZQma5c_y1Px50MzE507YFJeM2ixA7ZCEa_q4bvOmPLgWZl2slb5JrarPkm_Fs45D6d_7vVe7CbReIsg-t5tyDLTR7sHviUu17cKOpDS3qfTDjqmnaZfnMTlMVq3Fy7lqWDJsadnTKVpWDvma2kH7CSsTFz-8_3J4UE2aL252S000tiGZzakrQmTIlm9niJeK8rO_DuP_x9OiT77Zp8AtaXKa-FiLPUx7pMs8p_AkTTdJQGWpNoRbPezEJX6DmSUGSVyrUHDMVIkZ5zCMsg-gAts3c4ENgZZkUPZWjVknMMeUZpgppQZkqUYqQFx4croUl11KwW2nMZLuWSWUg3Zf04GVHumiBO64ierGWuCSzsrkSZXC-qmUghMgExc7CgwetBnRsQgtaRoGbB2JDNzoCC9m9ecVMvzXQ3dzCeFqerzot-tvTXUF1Ma9-U0hSIw_eNLr1Zz7yZGRPj_6V8Dnsjo77cvB5-OUx3KIIMWlLlZ7A9rJa4VO4Xlwsp3X1zNnbLx4ULeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Urinary+bladder+segmentation+in+CT+urography+using+deep-learning+convolutional+neural+network+and+level+sets&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Cha%2C+Kenny+H&rft.au=Hadjiiski%2C+Lubomir&rft.au=Samala%2C+Ravi+K&rft.au=Chan%2C+Heang-Ping&rft.date=2016-04-01&rft.eissn=2473-4209&rft.volume=43&rft.issue=4&rft.spage=1882&rft_id=info:doi/10.1118%2F1.4944498&rft_id=info%3Apmid%2F27036584&rft.externalDocID=27036584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon