Emerging Role of cAMP/AMPK Signaling

The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochond...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cells (Basel, Switzerland) Ročník 11; číslo 2; s. 308
Hlavní autoři: Aslam, Muhammad, Ladilov, Yury
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 17.01.2022
MDPI
Témata:
ISSN:2073-4409, 2073-4409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
AbstractList The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
The 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.The 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.
Author Ladilov, Yury
Aslam, Muhammad
AuthorAffiliation 1 Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany; muhammad.aslam@physiologie.med.uni-giessen.de
4 Heart Center Brandenburg, Department of Cardiovascular Surgery, University Hospital Brandenburg, Medical School Theodor Fontane, Ladeburger Straße 17, 16321 Bernau bei Berlin, Germany
3 DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany
2 Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany
AuthorAffiliation_xml – name: 2 Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany
– name: 3 DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany
– name: 4 Heart Center Brandenburg, Department of Cardiovascular Surgery, University Hospital Brandenburg, Medical School Theodor Fontane, Ladeburger Straße 17, 16321 Bernau bei Berlin, Germany
– name: 1 Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany; muhammad.aslam@physiologie.med.uni-giessen.de
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0002-8529-4217
  surname: Aslam
  fullname: Aslam, Muhammad
– sequence: 2
  givenname: Yury
  orcidid: 0000-0002-9836-8801
  surname: Ladilov
  fullname: Ladilov, Yury
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35053423$$D View this record in MEDLINE/PubMed
BookMark eNptkd1rFDEQwINUbK199FUO9MGXtZOPzeZehFKqFiuKH89hNpmsOfY2NdkT_O_N9VrpFQMhYfKbX4aZp-xgShMx9pzDGymXcOpoHAvnIECCecSOBHSyUQqWB_fuh-yklBXUZbjm0D5hh7KFViohj9irizXlIU7D4msaaZHCwp19-nJa98fFtzhMONa3Z-xxwLHQye15zH68u_h-_qG5-vz-8vzsqnGt6uaGvASHS-xUjw4oaGiVcJwADTqte00mCAWeOtlKHUig8kTCd0ujWl9jx-xy5_UJV_Y6xzXmPzZhtDeBlAeLeY5uJBvQO8H74ADrJ-B7cn0QvTDAtTTaVdfbnet606_JO5rmjOOedP9lij_tkH5b03WqGqvg9a0gp18bKrNdx7JtOE6UNsUKLYQwBrSu6MsH6Cptcu3dDcVF12owlXpxv6J_pdwNowJyB7icSskUrIszzjFtC4yj5WC3U7d7U69ZzYOsO_H_-b8v-Kxu
CitedBy_id crossref_primary_10_3390_ani14040532
crossref_primary_10_1016_j_lfs_2023_122122
crossref_primary_10_1128_spectrum_00052_24
crossref_primary_10_3389_fendo_2024_1416433
crossref_primary_10_3389_fphys_2023_1266718
crossref_primary_10_1111_jcmm_17934
crossref_primary_10_3389_fvets_2025_1563498
crossref_primary_10_1039_D5FO01278C
crossref_primary_10_3390_ijerph192215344
crossref_primary_10_1016_j_jconrel_2024_04_026
crossref_primary_10_3389_fimmu_2023_1163288
crossref_primary_10_1016_j_dscb_2025_100244
crossref_primary_10_1002_ptr_7735
crossref_primary_10_1126_scisignal_adr3177
crossref_primary_10_3389_fvets_2024_1442244
crossref_primary_10_3390_ijms26062770
crossref_primary_10_1159_000541569
crossref_primary_10_1039_D3MD00727H
crossref_primary_10_3390_cells12020205
crossref_primary_10_1002_ptr_70030
crossref_primary_10_1016_j_peptides_2025_171349
crossref_primary_10_3390_cells12020206
crossref_primary_10_1016_j_jid_2024_10_597
crossref_primary_10_3390_cells11081281
crossref_primary_10_3389_fimmu_2025_1534263
crossref_primary_10_1007_s10517_023_05800_7
crossref_primary_10_1016_j_biopha_2023_115736
crossref_primary_10_1007_s10787_024_01603_y
crossref_primary_10_3390_biomedicines10061316
crossref_primary_10_3390_ph15070795
crossref_primary_10_1016_j_obmed_2024_100577
crossref_primary_10_1016_j_cellsig_2024_111311
crossref_primary_10_3390_cells12081157
crossref_primary_10_3390_ph17060813
crossref_primary_10_1155_2024_7524314
crossref_primary_10_1038_s41392_024_01931_z
crossref_primary_10_3390_jcm12113715
crossref_primary_10_1016_j_jafr_2025_102301
crossref_primary_10_1080_01616412_2025_2486523
crossref_primary_10_1096_fj_202301273RR
crossref_primary_10_1016_j_lfs_2024_122901
crossref_primary_10_1016_j_fitote_2023_105778
crossref_primary_10_1093_pnasnexus_pgae505
crossref_primary_10_1007_s12035_025_05001_5
crossref_primary_10_31083_j_jin2205134
crossref_primary_10_1002_ptr_8403
crossref_primary_10_1016_j_expneurol_2025_115288
crossref_primary_10_1080_14740338_2025_2505543
crossref_primary_10_3390_brainsci15050480
crossref_primary_10_1186_s13020_024_01048_z
crossref_primary_10_1016_j_gene_2024_148873
crossref_primary_10_1016_j_cytogfr_2024_07_006
crossref_primary_10_1134_S1062359024701292
crossref_primary_10_1007_s00210_024_03295_1
crossref_primary_10_1016_j_phymed_2024_155985
crossref_primary_10_1186_s10020_024_00782_2
crossref_primary_10_3390_ijms25179441
crossref_primary_10_3390_ijms241311223
crossref_primary_10_1016_j_fbio_2024_104176
crossref_primary_10_1016_j_intimp_2024_113301
crossref_primary_10_7717_peerj_15164
crossref_primary_10_1016_j_biopha_2024_117523
crossref_primary_10_3390_foods11182774
crossref_primary_10_3390_ijms25084491
crossref_primary_10_1186_s12864_025_12030_w
crossref_primary_10_1007_s10482_023_01810_7
crossref_primary_10_1016_j_bcp_2025_117028
crossref_primary_10_3390_ijms25116237
crossref_primary_10_1038_s12276_024_01297_w
crossref_primary_10_1152_ajpgi_00394_2024
crossref_primary_10_1016_j_gene_2025_149734
crossref_primary_10_1016_j_biopha_2023_116092
crossref_primary_10_1007_s10522_023_10040_3
crossref_primary_10_1007_s12672_024_01662_1
crossref_primary_10_1016_j_fct_2025_115568
crossref_primary_10_3390_cimb47040284
crossref_primary_10_1038_s41467_024_48295_0
crossref_primary_10_1016_j_biopha_2022_114066
crossref_primary_10_1007_s11010_023_04861_6
crossref_primary_10_1016_j_jep_2025_120105
crossref_primary_10_3390_biom13060879
crossref_primary_10_1007_s00210_025_04393_4
crossref_primary_10_1016_j_jep_2025_119593
crossref_primary_10_1002_cam4_70135
crossref_primary_10_1016_j_tice_2025_102884
crossref_primary_10_1007_s12012_024_09900_2
crossref_primary_10_1007_s12088_023_01070_z
crossref_primary_10_1002_mdc3_14129
crossref_primary_10_1186_s12967_023_04772_6
crossref_primary_10_1007_s10517_024_06158_0
crossref_primary_10_1016_j_lfs_2023_121806
crossref_primary_10_1016_j_fbio_2025_106260
crossref_primary_10_2147_DDDT_S485729
crossref_primary_10_1186_s13052_025_01853_8
crossref_primary_10_3390_cells11061010
crossref_primary_10_1016_j_fct_2024_114759
crossref_primary_10_1002_jcp_31390
crossref_primary_10_1002_jat_4867
crossref_primary_10_1111_cts_70214
crossref_primary_10_1097_HJH_0000000000003981
crossref_primary_10_1016_j_bcp_2025_117056
crossref_primary_10_1111_cts_13740
crossref_primary_10_1038_s41467_024_50312_1
crossref_primary_10_1016_j_ejphar_2023_175579
crossref_primary_10_1016_j_foodchem_2025_143677
crossref_primary_10_1080_10942912_2025_2452445
crossref_primary_10_1152_ajpendo_00524_2024
crossref_primary_10_1007_s12033_025_01451_3
crossref_primary_10_3389_fphar_2022_1000315
crossref_primary_10_1007_s00210_023_02767_0
crossref_primary_10_1186_s13578_023_01038_y
crossref_primary_10_3390_antiox12020221
crossref_primary_10_3390_pharmaceutics16091221
crossref_primary_10_1038_s41418_025_01564_x
crossref_primary_10_3390_cells11243961
crossref_primary_10_1038_s44318_024_00300_4
crossref_primary_10_1016_j_reprotox_2022_10_001
crossref_primary_10_1186_s40360_023_00698_3
crossref_primary_10_3390_ijms25010362
crossref_primary_10_26599_FMH_2026_9420108
crossref_primary_10_3390_nu15224729
crossref_primary_10_1111_epi_18587
crossref_primary_10_1111_jcpt_13727
crossref_primary_10_3892_mmr_2025_13664
crossref_primary_10_1016_j_jpet_2025_103664
crossref_primary_10_1007_s13555_025_01365_7
crossref_primary_10_1016_j_npep_2024_102450
crossref_primary_10_1038_s41598_024_72387_y
crossref_primary_10_1007_s12035_023_03505_6
crossref_primary_10_1016_j_cbd_2025_101417
crossref_primary_10_1186_s12872_025_04821_6
crossref_primary_10_3390_life14060656
crossref_primary_10_1016_j_cellsig_2022_110323
crossref_primary_10_3390_nu14061308
Cites_doi 10.1007/s00125-017-4232-4
10.1016/j.cub.2003.10.031
10.1073/pnas.0705070104
10.1016/j.tibs.2011.06.004
10.1017/S0007114521000490
10.1002/j.1460-2075.1995.tb07191.x
10.1111/bph.15497
10.1093/cvr/cvr306
10.1074/jbc.M116.719666
10.1084/jem.20150354
10.2337/diabetes.53.1.5
10.1042/BJ20131344
10.1073/pnas.1018376108
10.18632/oncotarget.10056
10.1016/j.cmet.2013.06.017
10.1074/jbc.M805078200
10.1016/j.ebiom.2017.03.019
10.1038/nbt.1598
10.1002/2211-5463.12895
10.1016/j.cell.2012.01.017
10.1152/ajpcell.00584.2004
10.1530/JOE-16-0649
10.3892/ijmm.2020.4824
10.1073/pnas.1009705107
10.1146/annurev-nutr-071812-161148
10.1016/j.molcel.2011.12.005
10.1126/scisignal.2000202
10.1042/bj3560525
10.1016/j.cmet.2013.08.019
10.1016/j.phrs.2020.105030
10.1007/s00109-011-0748-0
10.1016/j.cmet.2008.11.008
10.1128/MCB.00383-06
10.1042/BJ20061520
10.1016/j.biopha.2019.109537
10.1038/emboj.2009.339
10.1016/j.yjmcc.2012.01.016
10.1016/j.cmet.2012.05.010
10.1016/j.jhep.2010.09.032
10.1016/j.jvs.2014.10.103
10.1111/febs.13698
10.1016/j.brainresbull.2016.02.011
10.1152/ajpendo.00445.2013
10.1074/jbc.M112.403279
10.1038/ncomms10856
10.1210/er.2007-0031
10.1016/j.molmed.2019.01.006
10.1155/2016/3094642
10.1016/j.cellsig.2009.01.015
10.1146/annurev.immunol.021908.132620
10.1152/ajpendo.00065.2020
10.1038/nrm.2017.95
10.1152/ajpendo.90975.2008
10.1038/ijo.2008.124
10.1074/jbc.M900925200
10.1042/BST20190245
10.3892/mmr.2021.12330
10.1038/ncomms4017
10.1016/j.brainres.2016.11.016
10.1126/science.289.5479.625
10.3389/fendo.2019.00769
10.1042/BJ20091372
10.1074/jbc.M212659200
10.3390/jcdd5010002
10.1371/journal.pone.0192322
10.1093/cvr/cvt137
10.1093/abbs/gmab099
10.1007/s11064-020-03152-6
10.1038/nature07813
10.1152/ajpendo.00400.2015
10.1016/j.cmet.2005.06.005
10.3390/ijms19113534
10.1038/srep40445
10.1101/cshperspect.a001651
10.1042/bj3450673
10.1074/jbc.M113.510073
10.1038/s41467-017-00357-2
10.1074/jbc.271.2.611
10.1038/s41598-017-08899-7
10.1111/acel.12446
10.1172/JCI19874
10.1016/j.cmet.2009.01.012
10.1161/JAHA.115.001956
10.1098/rsfs.2020.0034
10.4161/auto.26336
10.1126/science.aab4138
10.1073/pnas.2107898118
10.1248/bpb.b17-00724
10.3390/cells10020473
10.1038/ncomms8926
10.1016/j.ebiom.2017.04.027
10.1093/emboj/21.10.2383
10.1074/jbc.M606357200
10.1016/j.bbrc.2017.05.041
10.1038/s41573-019-0033-4
10.1096/fj.02-0598fje
10.1007/s00018-019-03152-y
10.1074/jbc.M606676200
10.1167/iovs.61.11.33
10.1038/nrm3311
10.1530/REP-08-0535
10.3389/fphar.2015.00203
10.1074/jbc.M212475200
10.18632/aging.101559
10.1016/j.febslet.2010.11.047
10.1159/000480006
10.1016/j.yjmcc.2011.08.016
10.1165/rcmb.2008-0168OC
10.1038/nature06161
10.1016/0014-5793(95)01368-7
10.18632/oncotarget.7404
10.1042/BJ20112026
10.1007/s12035-017-0473-y
10.1016/j.cmet.2005.05.009
10.1111/febs.15863
10.1038/s41401-021-00623-6
10.1124/pharmrev.120.000086
10.1074/jbc.M308484200
10.1016/j.tcb.2004.07.006
10.1159/000166277
10.18632/aging.102934
10.1111/bph.14651
10.1038/s41598-019-39556-w
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.3390/cells11020308
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2073-4409
ExternalDocumentID oai_doaj_org_article_fadc21bfc0a5420dbecbf2b28016386c
PMC8774420
35053423
10_3390_cells11020308
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: German Centre for Cardiovascular Research
  grantid: B/81X2200203
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EBD
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
CGR
CUY
CVF
ECM
EIF
NPM
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c547t-ed30ca9a74bac0ef60542c1e0a8ac66b6e8f240de73536fe2a4dee2d79845d353
IEDL.DBID M7P
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4409
IngestDate Fri Oct 03 12:42:57 EDT 2025
Tue Nov 04 01:57:07 EST 2025
Fri Sep 05 07:09:11 EDT 2025
Fri Jul 25 11:53:17 EDT 2025
Thu Jan 02 22:54:39 EST 2025
Sat Nov 29 07:12:18 EST 2025
Tue Nov 18 21:27:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords mitophagy
autophagy
PKA
adenylyl cyclase
AMPK
cAMP
EPAC
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c547t-ed30ca9a74bac0ef60542c1e0a8ac66b6e8f240de73536fe2a4dee2d79845d353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8529-4217
0000-0002-9836-8801
OpenAccessLink https://www.proquest.com/docview/2621275608?pq-origsite=%requestingapplication%
PMID 35053423
PQID 2621275608
PQPubID 2032536
ParticipantIDs doaj_primary_oai_doaj_org_article_fadc21bfc0a5420dbecbf2b28016386c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8774420
proquest_miscellaneous_2622288066
proquest_journals_2621275608
pubmed_primary_35053423
crossref_citationtrail_10_3390_cells11020308
crossref_primary_10_3390_cells11020308
PublicationCentury 2000
PublicationDate 20220117
PublicationDateYYYYMMDD 2022-01-17
PublicationDate_xml – month: 1
  year: 2022
  text: 20220117
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cells (Basel, Switzerland)
PublicationTitleAlternate Cells
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jayarajan (ref_64) 2019; 76
Kari (ref_63) 2019; 10
Hardie (ref_43) 2011; 36
Collins (ref_62) 2000; 345
Dagon (ref_54) 2012; 16
Djouder (ref_55) 2010; 29
ref_12
Sadana (ref_14) 2009; 17
Scott (ref_41) 2004; 113
Gowans (ref_46) 2013; 18
Watson (ref_7) 2015; 212
Salehi (ref_102) 2008; 29
Bultot (ref_37) 2012; 443
Fogarty (ref_50) 2010; 426
McBride (ref_36) 2009; 9
Mounier (ref_94) 2013; 18
Wall (ref_98) 2009; 2
Sanders (ref_45) 2007; 403
Oakhill (ref_39) 2010; 107
Chen (ref_120) 2020; 12
Xu (ref_110) 2017; 7
Ford (ref_122) 2017; 19
ref_23
Gerbino (ref_73) 2018; 500
Suter (ref_44) 2006; 281
Chao (ref_24) 2019; 47
Xiao (ref_42) 2007; 449
Holz (ref_108) 2004; 53
Salazar (ref_19) 2009; 9
Diaz (ref_22) 2016; 7
Feehan (ref_89) 2019; 25
Wei (ref_107) 2016; 310
Rossetti (ref_15) 2021; 11
Yang (ref_84) 2017; 1657
ref_72
Jiang (ref_111) 2020; 61
Liang (ref_40) 2015; 6
Tavares (ref_92) 2020; 159
Ross (ref_29) 2016; 283
Galkina (ref_90) 2009; 27
Flacke (ref_21) 2013; 288
Wang (ref_117) 2011; 585
Lv (ref_78) 2017; 234
Kopietz (ref_53) 2020; 319
Neumann (ref_96) 1995; 14
Davies (ref_47) 1995; 377
Canto (ref_80) 2009; 458
Han (ref_121) 2016; 15
Jager (ref_70) 2007; 104
Kim (ref_30) 2012; 52
Wan (ref_82) 2016; 121
Scheibner (ref_99) 2009; 40
Kamthong (ref_97) 2001; 356
Kumar (ref_9) 2009; 284
Han (ref_105) 2019; 120
Salminen (ref_93) 2011; 89
Giannakou (ref_116) 2004; 14
Baillie (ref_25) 2019; 18
Mika (ref_10) 2012; 52
Burgin (ref_75) 2010; 28
Chen (ref_100) 2017; 42
Chagtoo (ref_20) 2018; 55
Joshi (ref_91) 2015; 4
Appukuttan (ref_6) 2012; 93
Zaccolo (ref_4) 2021; 73
Hamidie (ref_74) 2021; 126
Sung (ref_124) 2020; 10
Zvibel (ref_77) 2011; 54
Ferretti (ref_66) 2016; 7
Tseng (ref_88) 2016; 63
Ma (ref_109) 2017; 60
Johanns (ref_68) 2016; 7
Lawrence (ref_95) 2009; 1
Park (ref_60) 2012; 148
Chen (ref_61) 2013; 9
Gao (ref_83) 2020; 45
Toyama (ref_71) 2016; 351
Carling (ref_35) 2008; 32
Park (ref_123) 2017; 18
Hawley (ref_49) 2005; 2
Xiao (ref_38) 2013; 4
Woods (ref_33) 2003; 13
Zhang (ref_85) 2013; 305
Chen (ref_1) 2000; 289
Wang (ref_87) 2021; 42
Chen (ref_67) 2009; 138
Boularan (ref_3) 2015; 6
Stahmann (ref_51) 2006; 26
Zhang (ref_11) 2019; 176
Gil (ref_114) 2014; 90
Yin (ref_57) 2003; 278
Hawley (ref_52) 2014; 459
Chung (ref_81) 2017; 7
Wang (ref_79) 2018; 10
Dominy (ref_118) 2011; 44
Zippin (ref_16) 2013; 288
Zhang (ref_119) 2021; 118
Wang (ref_76) 2018; 41
Fu (ref_59) 2011; 108
Osler (ref_69) 2008; 283
Godbole (ref_5) 2017; 8
Langley (ref_115) 2002; 21
ref_32
He (ref_112) 2016; 291
Rodriguez (ref_48) 2021; 288
Ostrom (ref_13) 2003; 278
Woods (ref_34) 2005; 2
ref_106
Stapleton (ref_28) 1996; 271
Herzig (ref_31) 2018; 19
Omar (ref_58) 2009; 21
Zippin (ref_2) 2003; 17
Hurley (ref_65) 2006; 281
Hardie (ref_26) 2012; 13
Hardie (ref_27) 2014; 34
Hu (ref_101) 2021; 24
Appukuttan (ref_8) 2013; 99
Ferretti (ref_56) 2019; 9
Li (ref_113) 2021; 47
Wang (ref_104) 2021; 53
Geng (ref_18) 2005; 288
Wang (ref_86) 2009; 297
Litvin (ref_17) 2003; 278
Lee (ref_103) 2016; 2016
References_xml – volume: 60
  start-page: 1126
  year: 2017
  ident: ref_109
  article-title: CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4232-4
– volume: 13
  start-page: 2004
  year: 2003
  ident: ref_33
  article-title: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2003.10.031
– volume: 104
  start-page: 12017
  year: 2007
  ident: ref_70
  article-title: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0705070104
– volume: 36
  start-page: 470
  year: 2011
  ident: ref_43
  article-title: AMP-activated protein kinase: Also regulated by ADP?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2011.06.004
– volume: 126
  start-page: 1642
  year: 2021
  ident: ref_74
  article-title: Curcumin induces mitochondrial biogenesis by increasing cyclic AMP levels via phosphodiesterase 4A inhibition in skeletal muscle
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114521000490
– volume: 14
  start-page: 1991
  year: 1995
  ident: ref_96
  article-title: RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1995.tb07191.x
– ident: ref_106
  doi: 10.1111/bph.15497
– volume: 93
  start-page: 340
  year: 2012
  ident: ref_6
  article-title: Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvr306
– volume: 291
  start-page: 10562
  year: 2016
  ident: ref_112
  article-title: Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.719666
– volume: 212
  start-page: 1021
  year: 2015
  ident: ref_7
  article-title: Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20150354
– volume: 53
  start-page: 5
  year: 2004
  ident: ref_108
  article-title: Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.1.5
– volume: 459
  start-page: 275
  year: 2014
  ident: ref_52
  article-title: Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20131344
– volume: 108
  start-page: 1403
  year: 2011
  ident: ref_59
  article-title: Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018376108
– volume: 7
  start-page: 45597
  year: 2016
  ident: ref_22
  article-title: The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10056
– volume: 18
  start-page: 251
  year: 2013
  ident: ref_94
  article-title: AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.06.017
– volume: 283
  start-page: 35724
  year: 2008
  ident: ref_69
  article-title: Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M805078200
– volume: 18
  start-page: 128
  year: 2017
  ident: ref_123
  article-title: Specific Sirt1 Activator-mediated Improvement in Glucose Homeostasis Requires Sirt1-Independent Activation of AMPK
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.03.019
– volume: 28
  start-page: 63
  year: 2010
  ident: ref_75
  article-title: Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1598
– volume: 10
  start-page: 1316
  year: 2020
  ident: ref_124
  article-title: SRT1720-induced activation of SIRT1 alleviates vascular smooth muscle cell senescence through PKA-dependent phosphorylation of AMPKalpha at Ser485
  publication-title: FEBS Open Bio
  doi: 10.1002/2211-5463.12895
– volume: 148
  start-page: 421
  year: 2012
  ident: ref_60
  article-title: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.017
– volume: 288
  start-page: C1305
  year: 2005
  ident: ref_18
  article-title: Cloning and characterization of the human soluble adenylyl cyclase
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00584.2004
– volume: 234
  start-page: 73
  year: 2017
  ident: ref_78
  article-title: Glucagon-induced extracellular cAMP regulates hepatic lipid metabolism
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-16-0649
– volume: 47
  start-page: 561
  year: 2021
  ident: ref_113
  article-title: miR1423p targets AC9 to regulate sciatic nerve injuryinduced neuropathic pain by regulating the cAMP/AMPK signalling pathway
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2020.4824
– volume: 107
  start-page: 19237
  year: 2010
  ident: ref_39
  article-title: β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1009705107
– volume: 34
  start-page: 31
  year: 2014
  ident: ref_27
  article-title: AMP-activated protein kinase: Maintaining energy homeostasis at the cellular and whole-body levels
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-071812-161148
– volume: 44
  start-page: 851
  year: 2011
  ident: ref_118
  article-title: The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.12.005
– volume: 90
  start-page: 29
  year: 2014
  ident: ref_114
  article-title: The calcium/CaMKKalpha/beta and the cAMP/PKA pathways are essential upstream regulators of AMPK activity in boar spermatozoa
  publication-title: Biol. Reprod.
– volume: 2
  start-page: ra28
  year: 2009
  ident: ref_98
  article-title: Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2000202
– volume: 356
  start-page: 525
  year: 2001
  ident: ref_97
  article-title: Inhibitor of nuclear factor-kappaB induction by cAMP antagonizes interleukin-1-induced human macrophage-colony-stimulating-factor expression
  publication-title: Biochem. J.
  doi: 10.1042/bj3560525
– volume: 18
  start-page: 556
  year: 2013
  ident: ref_46
  article-title: AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.08.019
– volume: 159
  start-page: 105030
  year: 2020
  ident: ref_92
  article-title: Blame the signaling: Role of cAMP for the resolution of inflammation
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.105030
– volume: 89
  start-page: 667
  year: 2011
  ident: ref_93
  article-title: AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: Impact on healthspan and lifespan
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-011-0748-0
– volume: 9
  start-page: 23
  year: 2009
  ident: ref_36
  article-title: The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.11.008
– volume: 26
  start-page: 5933
  year: 2006
  ident: ref_51
  article-title: Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00383-06
– volume: 403
  start-page: 139
  year: 2007
  ident: ref_45
  article-title: Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade
  publication-title: Biochem. J.
  doi: 10.1042/BJ20061520
– volume: 120
  start-page: 109537
  year: 2019
  ident: ref_105
  article-title: Liraglutide improves vascular dysfunction by regulating a cAMP-independent PKA-AMPK pathway in perivascular adipose tissue in obese mice
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109537
– volume: 29
  start-page: 469
  year: 2010
  ident: ref_55
  article-title: PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.339
– volume: 52
  start-page: 1066
  year: 2012
  ident: ref_30
  article-title: AMPK isoform expression in the normal and failing hearts
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2012.01.016
– volume: 16
  start-page: 104
  year: 2012
  ident: ref_54
  article-title: p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.05.010
– volume: 54
  start-page: 1214
  year: 2011
  ident: ref_77
  article-title: Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2010.09.032
– volume: 63
  start-page: 1051
  year: 2016
  ident: ref_88
  article-title: Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2014.10.103
– volume: 283
  start-page: 2987
  year: 2016
  ident: ref_29
  article-title: AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours
  publication-title: FEBS J.
  doi: 10.1111/febs.13698
– volume: 121
  start-page: 255
  year: 2016
  ident: ref_82
  article-title: Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2016.02.011
– volume: 305
  start-page: E1436
  year: 2013
  ident: ref_85
  article-title: Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00445.2013
– volume: 288
  start-page: 3126
  year: 2013
  ident: ref_21
  article-title: Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.403279
– volume: 7
  start-page: 10856
  year: 2016
  ident: ref_68
  article-title: AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10856
– volume: 29
  start-page: 367
  year: 2008
  ident: ref_102
  article-title: Targeting beta-cell mass in type 2 diabetes: Promise and limitations of new drugs based on incretins
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2007-0031
– volume: 25
  start-page: 198
  year: 2019
  ident: ref_89
  article-title: Is Resolution the End of Inflammation?
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2019.01.006
– volume: 2016
  start-page: 3094642
  year: 2016
  ident: ref_103
  article-title: Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control
  publication-title: Mediators Inflamm.
  doi: 10.1155/2016/3094642
– volume: 21
  start-page: 760
  year: 2009
  ident: ref_58
  article-title: Regulation of AMP-activated protein kinase by cAMP in adipocytes: Roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis
  publication-title: Cell Signal.
  doi: 10.1016/j.cellsig.2009.01.015
– volume: 27
  start-page: 165
  year: 2009
  ident: ref_90
  article-title: Immune and inflammatory mechanisms of atherosclerosis
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.021908.132620
– volume: 319
  start-page: E459
  year: 2020
  ident: ref_53
  article-title: Inhibition of AMPK activity in response to insulin in adipocytes: Involvement of AMPK pS485, PDEs, and cellular energy levels
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00065.2020
– volume: 19
  start-page: 121
  year: 2018
  ident: ref_31
  article-title: AMPK: Guardian of metabolism and mitochondrial homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.95
– volume: 297
  start-page: E384
  year: 2009
  ident: ref_86
  article-title: Cardioprotective effect of adiponectin is partially mediated by its AMPK-independent antinitrative action
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.90975.2008
– volume: 32
  start-page: S55
  year: 2008
  ident: ref_35
  article-title: The regulation of AMP-activated protein kinase by upstream kinases
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2008.124
– volume: 284
  start-page: 14760
  year: 2009
  ident: ref_9
  article-title: Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M900925200
– volume: 47
  start-page: 1383
  year: 2019
  ident: ref_24
  article-title: Imaging cAMP nanodomains in the heart
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20190245
– volume: 24
  start-page: 689
  year: 2021
  ident: ref_101
  article-title: miR3515p aggravates lipopolysaccharideinduced acute lung injury via inhibiting AMPK
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2021.12330
– volume: 4
  start-page: 3017
  year: 2013
  ident: ref_38
  article-title: Structural basis of AMPK regulation by small molecule activators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4017
– volume: 1657
  start-page: 176
  year: 2017
  ident: ref_84
  article-title: C1q/tumor necrosis factor-related protein 3 inhibits oxidative stress during intracerebral hemorrhage via PKA signaling
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.11.016
– volume: 289
  start-page: 625
  year: 2000
  ident: ref_1
  article-title: Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor
  publication-title: Science
  doi: 10.1126/science.289.5479.625
– volume: 10
  start-page: 769
  year: 2019
  ident: ref_63
  article-title: PKA Activates AMPK Through LKB1 Signaling in Follicular Thyroid Cancer
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2019.00769
– volume: 426
  start-page: 109
  year: 2010
  ident: ref_50
  article-title: Calmodulin-dependent protein kinase kinase-beta activates AMPK without forming a stable complex: Synergistic effects of Ca2+ and AMP
  publication-title: Biochem. J.
  doi: 10.1042/BJ20091372
– volume: 278
  start-page: 24461
  year: 2003
  ident: ref_13
  article-title: Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M212659200
– ident: ref_12
  doi: 10.3390/jcdd5010002
– ident: ref_23
  doi: 10.1371/journal.pone.0192322
– volume: 99
  start-page: 734
  year: 2013
  ident: ref_8
  article-title: Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvt137
– volume: 53
  start-page: 1189
  year: 2021
  ident: ref_104
  article-title: Glucagon-like peptide-1 attenuates cardiac hypertrophy via the AngII/AT1R/ACE2 and AMPK/mTOR/p70S6K pathways
  publication-title: Acta Biochim. Biophys. Sin.
  doi: 10.1093/abbs/gmab099
– volume: 45
  start-page: 3045
  year: 2020
  ident: ref_83
  article-title: CTRP3 Activates the AMPK/SIRT1-PGC-1alpha Pathway to Protect Mitochondrial Biogenesis and Functions in Cerebral Ischemic Stroke
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-020-03152-6
– volume: 458
  start-page: 1056
  year: 2009
  ident: ref_80
  article-title: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
  publication-title: Nature
  doi: 10.1038/nature07813
– volume: 310
  start-page: E947
  year: 2016
  ident: ref_107
  article-title: Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00400.2015
– volume: 2
  start-page: 21
  year: 2005
  ident: ref_34
  article-title: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.06.005
– ident: ref_32
  doi: 10.3390/ijms19113534
– volume: 7
  start-page: 40445
  year: 2017
  ident: ref_81
  article-title: White to beige conversion in PDE3B KO adipose tissue through activation of AMPK signaling and mitochondrial function
  publication-title: Sci. Rep.
  doi: 10.1038/srep40445
– volume: 1
  start-page: a001651
  year: 2009
  ident: ref_95
  article-title: The nuclear factor NF-kappaB pathway in inflammation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a001651
– volume: 345
  start-page: 673
  year: 2000
  ident: ref_62
  article-title: LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo
  publication-title: Biochem. J.
  doi: 10.1042/bj3450673
– volume: 288
  start-page: 33283
  year: 2013
  ident: ref_16
  article-title: CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.510073
– volume: 8
  start-page: 443
  year: 2017
  ident: ref_5
  article-title: Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00357-2
– volume: 271
  start-page: 611
  year: 1996
  ident: ref_28
  article-title: Mammalian AMP-activated protein kinase subfamily
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.2.611
– volume: 7
  start-page: 8253
  year: 2017
  ident: ref_110
  article-title: Coenzyme Q10 Improves Lipid Metabolism and Ameliorates Obesity by Regulating CaMKII-Mediated PDE4 Inhibition
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08899-7
– volume: 15
  start-page: 416
  year: 2016
  ident: ref_121
  article-title: AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation
  publication-title: Aging Cell
  doi: 10.1111/acel.12446
– volume: 113
  start-page: 274
  year: 2004
  ident: ref_41
  article-title: CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI19874
– volume: 9
  start-page: 265
  year: 2009
  ident: ref_19
  article-title: Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.01.012
– volume: 4
  start-page: e001956
  year: 2015
  ident: ref_91
  article-title: Systemic Atherosclerotic Inflammation Following Acute Myocardial Infarction: Myocardial Infarction Begets Myocardial Infarction
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.115.001956
– volume: 11
  start-page: 20200034
  year: 2021
  ident: ref_15
  article-title: Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2020.0034
– volume: 9
  start-page: 2033
  year: 2013
  ident: ref_61
  article-title: Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway
  publication-title: Autophagy
  doi: 10.4161/auto.26336
– volume: 351
  start-page: 275
  year: 2016
  ident: ref_71
  article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
  publication-title: Science
  doi: 10.1126/science.aab4138
– volume: 118
  start-page: e2107898118
  year: 2021
  ident: ref_119
  article-title: Cyclic nucleotide phosphodiesterase 1C contributes to abdominal aortic aneurysm
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2107898118
– volume: 41
  start-page: 985
  year: 2018
  ident: ref_76
  article-title: AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.b17-00724
– ident: ref_72
  doi: 10.3390/cells10020473
– volume: 6
  start-page: 7926
  year: 2015
  ident: ref_40
  article-title: Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8926
– volume: 19
  start-page: 16
  year: 2017
  ident: ref_122
  article-title: Are SIRT1 activators another indirect method to increase AMPK for beneficial effects on aging and the metabolic syndrome?
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.04.027
– volume: 21
  start-page: 2383
  year: 2002
  ident: ref_115
  article-title: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence
  publication-title: EMBO J.
  doi: 10.1093/emboj/21.10.2383
– volume: 281
  start-page: 32207
  year: 2006
  ident: ref_44
  article-title: Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606357200
– volume: 500
  start-page: 65
  year: 2018
  ident: ref_73
  article-title: Shaping mitochondrial dynamics: The role of cAMP signalling
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.05.041
– volume: 18
  start-page: 770
  year: 2019
  ident: ref_25
  article-title: Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0033-4
– volume: 17
  start-page: 82
  year: 2003
  ident: ref_2
  article-title: Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains
  publication-title: FASEB J.
  doi: 10.1096/fj.02-0598fje
– volume: 76
  start-page: 4945
  year: 2019
  ident: ref_64
  article-title: Regulation of AMPK activity by type 10 adenylyl cyclase: Contribution to the mitochondrial biology, cellular redox and energy homeostasis
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-019-03152-y
– volume: 281
  start-page: 36662
  year: 2006
  ident: ref_65
  article-title: Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606676200
– volume: 61
  start-page: 33
  year: 2020
  ident: ref_111
  article-title: Epac1 Requires AMPK Phosphorylation to Regulate HMGB1 in the Retinal Vasculature
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.61.11.33
– volume: 13
  start-page: 251
  year: 2012
  ident: ref_26
  article-title: AMPK: A nutrient and energy sensor that maintains energy homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3311
– volume: 138
  start-page: 759
  year: 2009
  ident: ref_67
  article-title: cAMP pulsing of denuded mouse oocytes increases meiotic resumption via activation of AMP-activated protein kinase
  publication-title: Reproduction
  doi: 10.1530/REP-08-0535
– volume: 6
  start-page: 203
  year: 2015
  ident: ref_3
  article-title: Cardiac cAMP: Production, hydrolysis, modulation and detection
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2015.00203
– volume: 278
  start-page: 15922
  year: 2003
  ident: ref_17
  article-title: Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M212475200
– volume: 10
  start-page: 2394
  year: 2018
  ident: ref_79
  article-title: Phosphodiesterase 4 inhibitor activates AMPK-SIRT6 pathway to prevent aging-related adipose deposition induced by metabolic disorder
  publication-title: Aging
  doi: 10.18632/aging.101559
– volume: 585
  start-page: 986
  year: 2011
  ident: ref_117
  article-title: SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.11.047
– volume: 42
  start-page: 2342
  year: 2017
  ident: ref_100
  article-title: Adiponectin Inhibits TNF-alpha-Activated PAI-1 Expression Via the cAMP-PKA-AMPK-NF-kappaB Axis in Human Umbilical Vein Endothelial Cells
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000480006
– volume: 52
  start-page: 323
  year: 2012
  ident: ref_10
  article-title: PDEs create local domains of cAMP signaling
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2011.08.016
– volume: 40
  start-page: 251
  year: 2009
  ident: ref_99
  article-title: The adenosine a2a receptor inhibits matrix-induced inflammation in a novel fashion
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2008-0168OC
– volume: 449
  start-page: 496
  year: 2007
  ident: ref_42
  article-title: Structural basis for AMP binding to mammalian AMP-activated protein kinase
  publication-title: Nature
  doi: 10.1038/nature06161
– volume: 377
  start-page: 421
  year: 1995
  ident: ref_47
  article-title: 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)01368-7
– volume: 7
  start-page: 17815
  year: 2016
  ident: ref_66
  article-title: AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7404
– volume: 443
  start-page: 193
  year: 2012
  ident: ref_37
  article-title: AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase
  publication-title: Biochem. J.
  doi: 10.1042/BJ20112026
– volume: 55
  start-page: 2471
  year: 2018
  ident: ref_20
  article-title: Inhibition of Intracellular Type 10 Adenylyl Cyclase Protects Cortical Neurons Against Reperfusion-Induced Mitochondrial Injury and Apoptosis
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-017-0473-y
– volume: 2
  start-page: 9
  year: 2005
  ident: ref_49
  article-title: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.05.009
– volume: 288
  start-page: 3746
  year: 2021
  ident: ref_48
  article-title: AMPK, metabolism, and vascular function
  publication-title: FEBS J.
  doi: 10.1111/febs.15863
– volume: 42
  start-page: 2033
  year: 2021
  ident: ref_87
  article-title: Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-021-00623-6
– volume: 73
  start-page: 278
  year: 2021
  ident: ref_4
  article-title: Subcellular Organization of the cAMP Signaling Pathway
  publication-title: Pharm. Rev.
  doi: 10.1124/pharmrev.120.000086
– volume: 278
  start-page: 43074
  year: 2003
  ident: ref_57
  article-title: Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308484200
– volume: 14
  start-page: 408
  year: 2004
  ident: ref_116
  article-title: The interaction between FOXO and SIRT1: Tipping the balance towards survival
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.07.006
– volume: 17
  start-page: 5
  year: 2009
  ident: ref_14
  article-title: Physiological roles for G protein-regulated adenylyl cyclase isoforms: Insights from knockout and overexpression studies
  publication-title: Neurosignals
  doi: 10.1159/000166277
– volume: 12
  start-page: 5651
  year: 2020
  ident: ref_120
  article-title: Intermedin1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1
  publication-title: Aging
  doi: 10.18632/aging.102934
– volume: 176
  start-page: 1780
  year: 2019
  ident: ref_11
  article-title: Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells
  publication-title: Br. J. Pharm.
  doi: 10.1111/bph.14651
– volume: 9
  start-page: 2815
  year: 2019
  ident: ref_56
  article-title: Metformin and glucose starvation decrease the migratory ability of hepatocellular carcinoma cells: Targeting AMPK activation to control migration
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39556-w
SSID ssj0000816105
Score 2.57861
SecondaryResourceType review_article
Snippet The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and...
The 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 308
SubjectTerms Adenosine
Adenylate cyclase
adenylyl cyclase
Aging
AMP-Activated Protein Kinases - metabolism
AMPK
Animals
Autophagy
Binding sites
cAMP
Cyclic AMP
Cyclic AMP - metabolism
Diabetes mellitus
Energy
Energy balance
Enzymes
EPAC
Epinephrine
Glucagon
Glucose metabolism
Homeostasis
Humans
Ischemia
Kinases
Lipid Metabolism
Localization
Mammalian cells
Metabolic disorders
Metabolism
Mitochondria
mitophagy
Models, Biological
Phosphatase
Phosphorylation
Physiology
PKA
Protein Biosynthesis
Protein kinase
Proteins
Regulation
Review
Sensors
Signal Transduction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EFLyIb-uLCosny6ZpmjRHFUUQZfEB3kqahy4sXdmH4L930tZlK4oXD72kA5nOJDPfhPQbgE5KuDSxYpEsDIkYVzIqMoNAziZGUZY4KepmE-LuLnt-lr25Vl_-TlhND1wbruuU0TQunCYqZZQYnLNwtKAYWXHpcO2jL6KeuWKqisEZIhmS1qSaCdb1XX8OPsZcRz1BSysJVVz9PwHM7_ck5xLP1RqsNogxPKs1XYcFW27Act1D8mMTOv5YyXcaCu-HAxsOXajPbntdfG7Ch_6Lx9nlyxY8XV0-XlxHTeuDSKdMTCJrEqKVVIIVShPrsOhgVMeWqExpzgtuM4e52FiRpAl3lipmrKVGyIylBse2YbEclnYXQixwlLTEIZDD6kSpLGUFJmVptRJoRxnA6Zctct3wgvv2FIMc6wNvurxlugBOZuJvNSHGb4Ln3rAzIc9jXQ2gd_PGu_lf3g3g4MstebO5xjnlFS0993Mcz17jtvDzq9IOp5UMpRibOA9gp_biTJMEUZ8nPgxAtPzbUrX9puy_VtTbGaJl1HPvP75tH1ao_5eCxFEsDmBxMpraQ1jS75P-eHRUredPfID6rg
  priority: 102
  providerName: Directory of Open Access Journals
Title Emerging Role of cAMP/AMPK Signaling
URI https://www.ncbi.nlm.nih.gov/pubmed/35053423
https://www.proquest.com/docview/2621275608
https://www.proquest.com/docview/2622288066
https://pubmed.ncbi.nlm.nih.gov/PMC8774420
https://doaj.org/article/fadc21bfc0a5420dbecbf2b28016386c
Volume 11
WOSCitedRecordID wos000757619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: M7P
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816105
  issn: 2073-4409
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsgpSxYloHcex4xNq0VYg1FVUQFpOkePHslKVlN0tEhd-O2MnGwgCLhySgz1SJvbY883E-QbgKCdcmlSxRNaGJIwrmdSFQSBnM6Moy5wUXbEJMZ8Xi4Us-4Tbpj9WudsTw0ZtWu1z5FPKAxc5J8Wryy-Jrxrlv672JTT24MCzJGTh6F455Fh8UQnEDx21ZobR_dRnwzfo8ainaRm5osDY_yeY-ftpyV_cz-nt_1X8DtzqgWd83FnKXbhmm3twoytF-e0-HPnslC9YFJ-3FzZuXayPz8opXu_i96ulh-vN8gF8PJ19eP0m6SsoJDpnYptYkxGtpBKsVppYh7ELozq1RBVKc15zWzh06caKLM-4s1QxYy01QhYsN9j2EPabtrGPIcY4SUlLHOJBDHKUKnJWo2-XVitBayojeLkbzEr39OK-ysVFhWGGH_tqNPYRvBjELztejb8JnviZGYQ8HXZoaNfLql9dlVNG07R2mih8QWLQMGuHWqH7xf2F6wgOd3NT9Wt0U_2cmAieD924uvzzVWPbqyBDKW5xnEfwqDODQZMMwaPnT4xAjAxkpOq4p1l9DgzeBYJu1PPJv9V6Cjep_9mCpEkqDmF_u76yz-C6_rpdbdYT2BOLYgIHJ7N5eT4JuYRJMH9__z7DnvLtWfnpB4l9DcU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3tBAgSAVTkTrOI4dHxAqj6rVtqsVFKm31PFjWalK2t0tqH-K38g4LwgCbj1wyCUeKZPMePzNxJ4PYCslXJpYsUgWhkSMKxkVmUEgZxOjKEucFA3ZhJhMsqMjOV2D791ZGL-tsouJdaA2lfY18hHldS9yTrI3p2eRZ43yf1c7Co3GLcb24humbMvXe-_Rvi8o3flw-G43alkFIp0ysYqsSYhWUglWKE2sQzzPqI4tUZnSnBfcZg6XOWNFkibcWaqYsZYaITOWmpolAkP-FYQRNKu3Ck77mo4nsUC80rTyTBJJRr76vsQVlvq2MIOlr2YI-BOs_X135i_L3c6t_-1D3YabLbAOt5uZcAfWbHkXrjVUmxf3YMtX3zwhU_ixOrFh5UK9fTAd4TUOP81nPh0pZ_fh86Wo-ADWy6q0GxBiHqikJQ7xLiZxSmUpKxC7SKuVoAWVAbzqjJfrtn26Z_E4yTGN8rbOB7YO4GUvftr0Dfmb4FvvCb2Qb_dd36gWs7yNHrlTRtO4cJoofEFicOIVDrVCeIHxk-sANjtfyNsYtMx_OkIAz_thjB7--aq01XktQymGcM4DeNi4Xa9JguDY94cMQAwccqDqcKScf6k7lGeYVKCej_6t1jO4vnt4sJ_v703Gj-EG9QdLSBzFYhPWV4tz-wSu6q-r-XLxtJ5mIRxftrv-AEk5ZkI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEuvKGBAkEqnIjWcRw7PiBUKCuqpasVD6m31PFjWalK2t0tqH-NX8c4LwgCbj1wyCUeKZN4_Pkbx54PYCclXJpYsUgWhkSMKxkVmUEiZxOjKEucFI3YhJhOs8NDOduA791ZGL-tssPEGqhNpf0a-YjyuhY5J9nItdsiZnvjVyenkVeQ8n9aOzmNJkQm9vwbpm-rl_t72NfPKB2__fTmXdQqDEQ6ZWIdWZMQraQSrFCaWIfcnlEdW6IypTkvuM0cTnnGiiRNuLNUMWMtNUJmLDW1YgTC_yXBeA0KB2LWr-94QQvkLk1ZzySRZORX4lc421JfImYwDdZqAX-iuL_v1Pxl6hvf-J8_2k243hLucLcZIbdgw5a34UojwXl-B3b8qpwXago_VMc2rFyodw9mI7wm4cfF3Kcp5fwufL4QF-_BZlmVdgtCzA-VtMQhD8bkTqksZQVyGmm1ErSgMoAXXUfmui2r7tU9jnNMr3y_54N-D-B5b37S1BP5m-FrHxW9kS8DXt-olvO8RZXcKaNpXDhNFL4gMTggC4deIe1AXOU6gO0uLvIWm1b5z6AI4GnfjKjin69KW53VNpQitHMewP0mBHtPEiTNvm5kAGIQnANXhy3l4ktduTzDZAP9fPBvt57AVYzS_P3-dPIQrlF_3oTEUSy2YXO9PLOP4LL-ul6slo_rERfC0UVH6w8ixW8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Role+of+cAMP%2FAMPK+Signaling&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Aslam%2C+Muhammad&rft.au=Ladilov%2C+Yury&rft.date=2022-01-17&rft.pub=MDPI+AG&rft.eissn=2073-4409&rft.volume=11&rft.issue=2&rft.spage=308&rft_id=info:doi/10.3390%2Fcells11020308&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon