Emerging Role of cAMP/AMPK Signaling
The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochond...
Saved in:
| Published in: | Cells (Basel, Switzerland) Vol. 11; no. 2; p. 308 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
17.01.2022
MDPI |
| Subjects: | |
| ISSN: | 2073-4409, 2073-4409 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects. |
|---|---|
| AbstractList | The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects. The 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.The 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects. |
| Author | Ladilov, Yury Aslam, Muhammad |
| AuthorAffiliation | 1 Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany; muhammad.aslam@physiologie.med.uni-giessen.de 4 Heart Center Brandenburg, Department of Cardiovascular Surgery, University Hospital Brandenburg, Medical School Theodor Fontane, Ladeburger Straße 17, 16321 Bernau bei Berlin, Germany 3 DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany 2 Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany |
| AuthorAffiliation_xml | – name: 2 Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany – name: 3 DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany – name: 4 Heart Center Brandenburg, Department of Cardiovascular Surgery, University Hospital Brandenburg, Medical School Theodor Fontane, Ladeburger Straße 17, 16321 Bernau bei Berlin, Germany – name: 1 Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany; muhammad.aslam@physiologie.med.uni-giessen.de |
| Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0002-8529-4217 surname: Aslam fullname: Aslam, Muhammad – sequence: 2 givenname: Yury orcidid: 0000-0002-9836-8801 surname: Ladilov fullname: Ladilov, Yury |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35053423$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkd1rFDEQwINUbK199FUO9MGXtZOPzeZehFKqFiuKH89hNpmsOfY2NdkT_O_N9VrpFQMhYfKbX4aZp-xgShMx9pzDGymXcOpoHAvnIECCecSOBHSyUQqWB_fuh-yklBXUZbjm0D5hh7KFViohj9irizXlIU7D4msaaZHCwp19-nJa98fFtzhMONa3Z-xxwLHQye15zH68u_h-_qG5-vz-8vzsqnGt6uaGvASHS-xUjw4oaGiVcJwADTqte00mCAWeOtlKHUig8kTCd0ujWl9jx-xy5_UJV_Y6xzXmPzZhtDeBlAeLeY5uJBvQO8H74ADrJ-B7cn0QvTDAtTTaVdfbnet606_JO5rmjOOedP9lij_tkH5b03WqGqvg9a0gp18bKrNdx7JtOE6UNsUKLYQwBrSu6MsH6Cptcu3dDcVF12owlXpxv6J_pdwNowJyB7icSskUrIszzjFtC4yj5WC3U7d7U69ZzYOsO_H_-b8v-Kxu |
| CitedBy_id | crossref_primary_10_3390_ani14040532 crossref_primary_10_1016_j_lfs_2023_122122 crossref_primary_10_1128_spectrum_00052_24 crossref_primary_10_3389_fendo_2024_1416433 crossref_primary_10_3389_fphys_2023_1266718 crossref_primary_10_1111_jcmm_17934 crossref_primary_10_3389_fvets_2025_1563498 crossref_primary_10_1039_D5FO01278C crossref_primary_10_3390_ijerph192215344 crossref_primary_10_1016_j_jconrel_2024_04_026 crossref_primary_10_3389_fimmu_2023_1163288 crossref_primary_10_1016_j_dscb_2025_100244 crossref_primary_10_1002_ptr_7735 crossref_primary_10_1126_scisignal_adr3177 crossref_primary_10_3389_fvets_2024_1442244 crossref_primary_10_3390_ijms26062770 crossref_primary_10_1159_000541569 crossref_primary_10_1039_D3MD00727H crossref_primary_10_3390_cells12020205 crossref_primary_10_1002_ptr_70030 crossref_primary_10_1016_j_peptides_2025_171349 crossref_primary_10_3390_cells12020206 crossref_primary_10_1016_j_jid_2024_10_597 crossref_primary_10_3390_cells11081281 crossref_primary_10_3389_fimmu_2025_1534263 crossref_primary_10_1007_s10517_023_05800_7 crossref_primary_10_1016_j_biopha_2023_115736 crossref_primary_10_1007_s10787_024_01603_y crossref_primary_10_3390_biomedicines10061316 crossref_primary_10_3390_ph15070795 crossref_primary_10_1016_j_obmed_2024_100577 crossref_primary_10_1016_j_cellsig_2024_111311 crossref_primary_10_3390_cells12081157 crossref_primary_10_3390_ph17060813 crossref_primary_10_1155_2024_7524314 crossref_primary_10_1038_s41392_024_01931_z crossref_primary_10_3390_jcm12113715 crossref_primary_10_1016_j_jafr_2025_102301 crossref_primary_10_1080_01616412_2025_2486523 crossref_primary_10_1096_fj_202301273RR crossref_primary_10_1016_j_lfs_2024_122901 crossref_primary_10_1016_j_fitote_2023_105778 crossref_primary_10_1093_pnasnexus_pgae505 crossref_primary_10_1007_s12035_025_05001_5 crossref_primary_10_31083_j_jin2205134 crossref_primary_10_1002_ptr_8403 crossref_primary_10_1016_j_expneurol_2025_115288 crossref_primary_10_1080_14740338_2025_2505543 crossref_primary_10_3390_brainsci15050480 crossref_primary_10_1186_s13020_024_01048_z crossref_primary_10_1016_j_gene_2024_148873 crossref_primary_10_1016_j_cytogfr_2024_07_006 crossref_primary_10_1134_S1062359024701292 crossref_primary_10_1007_s00210_024_03295_1 crossref_primary_10_1016_j_phymed_2024_155985 crossref_primary_10_1186_s10020_024_00782_2 crossref_primary_10_3390_ijms25179441 crossref_primary_10_3390_ijms241311223 crossref_primary_10_1016_j_fbio_2024_104176 crossref_primary_10_1016_j_intimp_2024_113301 crossref_primary_10_7717_peerj_15164 crossref_primary_10_1016_j_biopha_2024_117523 crossref_primary_10_3390_foods11182774 crossref_primary_10_3390_ijms25084491 crossref_primary_10_1186_s12864_025_12030_w crossref_primary_10_1007_s10482_023_01810_7 crossref_primary_10_1016_j_bcp_2025_117028 crossref_primary_10_3390_ijms25116237 crossref_primary_10_1038_s12276_024_01297_w crossref_primary_10_1152_ajpgi_00394_2024 crossref_primary_10_1016_j_gene_2025_149734 crossref_primary_10_1016_j_biopha_2023_116092 crossref_primary_10_1007_s10522_023_10040_3 crossref_primary_10_1007_s12672_024_01662_1 crossref_primary_10_1016_j_fct_2025_115568 crossref_primary_10_3390_cimb47040284 crossref_primary_10_1038_s41467_024_48295_0 crossref_primary_10_1016_j_biopha_2022_114066 crossref_primary_10_1007_s11010_023_04861_6 crossref_primary_10_1016_j_jep_2025_120105 crossref_primary_10_3390_biom13060879 crossref_primary_10_1007_s00210_025_04393_4 crossref_primary_10_1016_j_jep_2025_119593 crossref_primary_10_1002_cam4_70135 crossref_primary_10_1016_j_tice_2025_102884 crossref_primary_10_1007_s12012_024_09900_2 crossref_primary_10_1007_s12088_023_01070_z crossref_primary_10_1002_mdc3_14129 crossref_primary_10_1186_s12967_023_04772_6 crossref_primary_10_1007_s10517_024_06158_0 crossref_primary_10_1016_j_lfs_2023_121806 crossref_primary_10_1016_j_fbio_2025_106260 crossref_primary_10_2147_DDDT_S485729 crossref_primary_10_1186_s13052_025_01853_8 crossref_primary_10_3390_cells11061010 crossref_primary_10_1016_j_fct_2024_114759 crossref_primary_10_1002_jcp_31390 crossref_primary_10_1002_jat_4867 crossref_primary_10_1111_cts_70214 crossref_primary_10_1097_HJH_0000000000003981 crossref_primary_10_1016_j_bcp_2025_117056 crossref_primary_10_1111_cts_13740 crossref_primary_10_1038_s41467_024_50312_1 crossref_primary_10_1016_j_ejphar_2023_175579 crossref_primary_10_1016_j_foodchem_2025_143677 crossref_primary_10_1080_10942912_2025_2452445 crossref_primary_10_1152_ajpendo_00524_2024 crossref_primary_10_1007_s12033_025_01451_3 crossref_primary_10_3389_fphar_2022_1000315 crossref_primary_10_1007_s00210_023_02767_0 crossref_primary_10_1186_s13578_023_01038_y crossref_primary_10_3390_antiox12020221 crossref_primary_10_3390_pharmaceutics16091221 crossref_primary_10_1038_s41418_025_01564_x crossref_primary_10_3390_cells11243961 crossref_primary_10_1038_s44318_024_00300_4 crossref_primary_10_1016_j_reprotox_2022_10_001 crossref_primary_10_1186_s40360_023_00698_3 crossref_primary_10_3390_ijms25010362 crossref_primary_10_26599_FMH_2026_9420108 crossref_primary_10_3390_nu15224729 crossref_primary_10_1111_epi_18587 crossref_primary_10_1111_jcpt_13727 crossref_primary_10_3892_mmr_2025_13664 crossref_primary_10_1016_j_jpet_2025_103664 crossref_primary_10_1007_s13555_025_01365_7 crossref_primary_10_1016_j_npep_2024_102450 crossref_primary_10_1038_s41598_024_72387_y crossref_primary_10_1007_s12035_023_03505_6 crossref_primary_10_1016_j_cbd_2025_101417 crossref_primary_10_1186_s12872_025_04821_6 crossref_primary_10_3390_life14060656 crossref_primary_10_1016_j_cellsig_2022_110323 crossref_primary_10_3390_nu14061308 |
| Cites_doi | 10.1007/s00125-017-4232-4 10.1016/j.cub.2003.10.031 10.1073/pnas.0705070104 10.1016/j.tibs.2011.06.004 10.1017/S0007114521000490 10.1002/j.1460-2075.1995.tb07191.x 10.1111/bph.15497 10.1093/cvr/cvr306 10.1074/jbc.M116.719666 10.1084/jem.20150354 10.2337/diabetes.53.1.5 10.1042/BJ20131344 10.1073/pnas.1018376108 10.18632/oncotarget.10056 10.1016/j.cmet.2013.06.017 10.1074/jbc.M805078200 10.1016/j.ebiom.2017.03.019 10.1038/nbt.1598 10.1002/2211-5463.12895 10.1016/j.cell.2012.01.017 10.1152/ajpcell.00584.2004 10.1530/JOE-16-0649 10.3892/ijmm.2020.4824 10.1073/pnas.1009705107 10.1146/annurev-nutr-071812-161148 10.1016/j.molcel.2011.12.005 10.1126/scisignal.2000202 10.1042/bj3560525 10.1016/j.cmet.2013.08.019 10.1016/j.phrs.2020.105030 10.1007/s00109-011-0748-0 10.1016/j.cmet.2008.11.008 10.1128/MCB.00383-06 10.1042/BJ20061520 10.1016/j.biopha.2019.109537 10.1038/emboj.2009.339 10.1016/j.yjmcc.2012.01.016 10.1016/j.cmet.2012.05.010 10.1016/j.jhep.2010.09.032 10.1016/j.jvs.2014.10.103 10.1111/febs.13698 10.1016/j.brainresbull.2016.02.011 10.1152/ajpendo.00445.2013 10.1074/jbc.M112.403279 10.1038/ncomms10856 10.1210/er.2007-0031 10.1016/j.molmed.2019.01.006 10.1155/2016/3094642 10.1016/j.cellsig.2009.01.015 10.1146/annurev.immunol.021908.132620 10.1152/ajpendo.00065.2020 10.1038/nrm.2017.95 10.1152/ajpendo.90975.2008 10.1038/ijo.2008.124 10.1074/jbc.M900925200 10.1042/BST20190245 10.3892/mmr.2021.12330 10.1038/ncomms4017 10.1016/j.brainres.2016.11.016 10.1126/science.289.5479.625 10.3389/fendo.2019.00769 10.1042/BJ20091372 10.1074/jbc.M212659200 10.3390/jcdd5010002 10.1371/journal.pone.0192322 10.1093/cvr/cvt137 10.1093/abbs/gmab099 10.1007/s11064-020-03152-6 10.1038/nature07813 10.1152/ajpendo.00400.2015 10.1016/j.cmet.2005.06.005 10.3390/ijms19113534 10.1038/srep40445 10.1101/cshperspect.a001651 10.1042/bj3450673 10.1074/jbc.M113.510073 10.1038/s41467-017-00357-2 10.1074/jbc.271.2.611 10.1038/s41598-017-08899-7 10.1111/acel.12446 10.1172/JCI19874 10.1016/j.cmet.2009.01.012 10.1161/JAHA.115.001956 10.1098/rsfs.2020.0034 10.4161/auto.26336 10.1126/science.aab4138 10.1073/pnas.2107898118 10.1248/bpb.b17-00724 10.3390/cells10020473 10.1038/ncomms8926 10.1016/j.ebiom.2017.04.027 10.1093/emboj/21.10.2383 10.1074/jbc.M606357200 10.1016/j.bbrc.2017.05.041 10.1038/s41573-019-0033-4 10.1096/fj.02-0598fje 10.1007/s00018-019-03152-y 10.1074/jbc.M606676200 10.1167/iovs.61.11.33 10.1038/nrm3311 10.1530/REP-08-0535 10.3389/fphar.2015.00203 10.1074/jbc.M212475200 10.18632/aging.101559 10.1016/j.febslet.2010.11.047 10.1159/000480006 10.1016/j.yjmcc.2011.08.016 10.1165/rcmb.2008-0168OC 10.1038/nature06161 10.1016/0014-5793(95)01368-7 10.18632/oncotarget.7404 10.1042/BJ20112026 10.1007/s12035-017-0473-y 10.1016/j.cmet.2005.05.009 10.1111/febs.15863 10.1038/s41401-021-00623-6 10.1124/pharmrev.120.000086 10.1074/jbc.M308484200 10.1016/j.tcb.2004.07.006 10.1159/000166277 10.18632/aging.102934 10.1111/bph.14651 10.1038/s41598-019-39556-w |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM DOA |
| DOI | 10.3390/cells11020308 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2073-4409 |
| ExternalDocumentID | oai_doaj_org_article_fadc21bfc0a5420dbecbf2b28016386c PMC8774420 35053423 10_3390_cells11020308 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: German Centre for Cardiovascular Research grantid: B/81X2200203 |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ABDBF ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EBD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM CGR CUY CVF ECM EIF NPM 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c547t-ed30ca9a74bac0ef60542c1e0a8ac66b6e8f240de73536fe2a4dee2d79845d353 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4409 |
| IngestDate | Fri Oct 03 12:42:57 EDT 2025 Tue Nov 04 01:57:07 EST 2025 Fri Sep 05 07:09:11 EDT 2025 Fri Jul 25 11:53:17 EDT 2025 Thu Jan 02 22:54:39 EST 2025 Sat Nov 29 07:12:18 EST 2025 Tue Nov 18 21:27:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | mitophagy autophagy PKA adenylyl cyclase AMPK cAMP EPAC |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c547t-ed30ca9a74bac0ef60542c1e0a8ac66b6e8f240de73536fe2a4dee2d79845d353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8529-4217 0000-0002-9836-8801 |
| OpenAccessLink | https://doaj.org/article/fadc21bfc0a5420dbecbf2b28016386c |
| PMID | 35053423 |
| PQID | 2621275608 |
| PQPubID | 2032536 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fadc21bfc0a5420dbecbf2b28016386c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8774420 proquest_miscellaneous_2622288066 proquest_journals_2621275608 pubmed_primary_35053423 crossref_citationtrail_10_3390_cells11020308 crossref_primary_10_3390_cells11020308 |
| PublicationCentury | 2000 |
| PublicationDate | 20220117 |
| PublicationDateYYYYMMDD | 2022-01-17 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220117 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Cells (Basel, Switzerland) |
| PublicationTitleAlternate | Cells |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Jayarajan (ref_64) 2019; 76 Kari (ref_63) 2019; 10 Hardie (ref_43) 2011; 36 Collins (ref_62) 2000; 345 Dagon (ref_54) 2012; 16 Djouder (ref_55) 2010; 29 ref_12 Sadana (ref_14) 2009; 17 Scott (ref_41) 2004; 113 Gowans (ref_46) 2013; 18 Watson (ref_7) 2015; 212 Salehi (ref_102) 2008; 29 Bultot (ref_37) 2012; 443 Fogarty (ref_50) 2010; 426 McBride (ref_36) 2009; 9 Mounier (ref_94) 2013; 18 Wall (ref_98) 2009; 2 Sanders (ref_45) 2007; 403 Oakhill (ref_39) 2010; 107 Chen (ref_120) 2020; 12 Xu (ref_110) 2017; 7 Ford (ref_122) 2017; 19 ref_23 Gerbino (ref_73) 2018; 500 Suter (ref_44) 2006; 281 Chao (ref_24) 2019; 47 Xiao (ref_42) 2007; 449 Holz (ref_108) 2004; 53 Salazar (ref_19) 2009; 9 Diaz (ref_22) 2016; 7 Feehan (ref_89) 2019; 25 Wei (ref_107) 2016; 310 Rossetti (ref_15) 2021; 11 Yang (ref_84) 2017; 1657 ref_72 Jiang (ref_111) 2020; 61 Liang (ref_40) 2015; 6 Tavares (ref_92) 2020; 159 Ross (ref_29) 2016; 283 Galkina (ref_90) 2009; 27 Flacke (ref_21) 2013; 288 Wang (ref_117) 2011; 585 Lv (ref_78) 2017; 234 Kopietz (ref_53) 2020; 319 Neumann (ref_96) 1995; 14 Davies (ref_47) 1995; 377 Canto (ref_80) 2009; 458 Han (ref_121) 2016; 15 Jager (ref_70) 2007; 104 Kim (ref_30) 2012; 52 Wan (ref_82) 2016; 121 Scheibner (ref_99) 2009; 40 Kamthong (ref_97) 2001; 356 Kumar (ref_9) 2009; 284 Han (ref_105) 2019; 120 Salminen (ref_93) 2011; 89 Giannakou (ref_116) 2004; 14 Baillie (ref_25) 2019; 18 Mika (ref_10) 2012; 52 Burgin (ref_75) 2010; 28 Chen (ref_100) 2017; 42 Chagtoo (ref_20) 2018; 55 Joshi (ref_91) 2015; 4 Appukuttan (ref_6) 2012; 93 Zaccolo (ref_4) 2021; 73 Hamidie (ref_74) 2021; 126 Sung (ref_124) 2020; 10 Zvibel (ref_77) 2011; 54 Ferretti (ref_66) 2016; 7 Tseng (ref_88) 2016; 63 Ma (ref_109) 2017; 60 Johanns (ref_68) 2016; 7 Lawrence (ref_95) 2009; 1 Park (ref_60) 2012; 148 Chen (ref_61) 2013; 9 Gao (ref_83) 2020; 45 Toyama (ref_71) 2016; 351 Carling (ref_35) 2008; 32 Park (ref_123) 2017; 18 Hawley (ref_49) 2005; 2 Xiao (ref_38) 2013; 4 Woods (ref_33) 2003; 13 Zhang (ref_85) 2013; 305 Chen (ref_1) 2000; 289 Wang (ref_87) 2021; 42 Chen (ref_67) 2009; 138 Boularan (ref_3) 2015; 6 Stahmann (ref_51) 2006; 26 Zhang (ref_11) 2019; 176 Gil (ref_114) 2014; 90 Yin (ref_57) 2003; 278 Hawley (ref_52) 2014; 459 Chung (ref_81) 2017; 7 Wang (ref_79) 2018; 10 Dominy (ref_118) 2011; 44 Zippin (ref_16) 2013; 288 Zhang (ref_119) 2021; 118 Wang (ref_76) 2018; 41 Fu (ref_59) 2011; 108 Osler (ref_69) 2008; 283 Godbole (ref_5) 2017; 8 Langley (ref_115) 2002; 21 ref_32 He (ref_112) 2016; 291 Rodriguez (ref_48) 2021; 288 Ostrom (ref_13) 2003; 278 Woods (ref_34) 2005; 2 ref_106 Stapleton (ref_28) 1996; 271 Herzig (ref_31) 2018; 19 Omar (ref_58) 2009; 21 Zippin (ref_2) 2003; 17 Hurley (ref_65) 2006; 281 Hardie (ref_26) 2012; 13 Hardie (ref_27) 2014; 34 Hu (ref_101) 2021; 24 Appukuttan (ref_8) 2013; 99 Ferretti (ref_56) 2019; 9 Li (ref_113) 2021; 47 Wang (ref_104) 2021; 53 Geng (ref_18) 2005; 288 Wang (ref_86) 2009; 297 Litvin (ref_17) 2003; 278 Lee (ref_103) 2016; 2016 |
| References_xml | – volume: 60 start-page: 1126 year: 2017 ident: ref_109 article-title: CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats publication-title: Diabetologia doi: 10.1007/s00125-017-4232-4 – volume: 13 start-page: 2004 year: 2003 ident: ref_33 article-title: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.10.031 – volume: 104 start-page: 12017 year: 2007 ident: ref_70 article-title: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0705070104 – volume: 36 start-page: 470 year: 2011 ident: ref_43 article-title: AMP-activated protein kinase: Also regulated by ADP? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.06.004 – volume: 126 start-page: 1642 year: 2021 ident: ref_74 article-title: Curcumin induces mitochondrial biogenesis by increasing cyclic AMP levels via phosphodiesterase 4A inhibition in skeletal muscle publication-title: Br. J. Nutr. doi: 10.1017/S0007114521000490 – volume: 14 start-page: 1991 year: 1995 ident: ref_96 article-title: RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A publication-title: EMBO J. doi: 10.1002/j.1460-2075.1995.tb07191.x – ident: ref_106 doi: 10.1111/bph.15497 – volume: 93 start-page: 340 year: 2012 ident: ref_6 article-title: Type 10 adenylyl cyclase mediates mitochondrial Bax translocation and apoptosis of adult rat cardiomyocytes under simulated ischaemia/reperfusion publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvr306 – volume: 291 start-page: 10562 year: 2016 ident: ref_112 article-title: Activation of the cAMP-PKA pathway Antagonizes Metformin Suppression of Hepatic Glucose Production publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.719666 – volume: 212 start-page: 1021 year: 2015 ident: ref_7 article-title: Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration publication-title: J. Exp. Med. doi: 10.1084/jem.20150354 – volume: 53 start-page: 5 year: 2004 ident: ref_108 article-title: Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell publication-title: Diabetes doi: 10.2337/diabetes.53.1.5 – volume: 459 start-page: 275 year: 2014 ident: ref_52 article-title: Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells publication-title: Biochem. J. doi: 10.1042/BJ20131344 – volume: 108 start-page: 1403 year: 2011 ident: ref_59 article-title: Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1018376108 – volume: 7 start-page: 45597 year: 2016 ident: ref_22 article-title: The metabolic/pH sensor soluble adenylyl cyclase is a tumor suppressor protein publication-title: Oncotarget doi: 10.18632/oncotarget.10056 – volume: 18 start-page: 251 year: 2013 ident: ref_94 article-title: AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.06.017 – volume: 283 start-page: 35724 year: 2008 ident: ref_69 article-title: Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle publication-title: J. Biol. Chem. doi: 10.1074/jbc.M805078200 – volume: 18 start-page: 128 year: 2017 ident: ref_123 article-title: Specific Sirt1 Activator-mediated Improvement in Glucose Homeostasis Requires Sirt1-Independent Activation of AMPK publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.03.019 – volume: 28 start-page: 63 year: 2010 ident: ref_75 article-title: Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1598 – volume: 10 start-page: 1316 year: 2020 ident: ref_124 article-title: SRT1720-induced activation of SIRT1 alleviates vascular smooth muscle cell senescence through PKA-dependent phosphorylation of AMPKalpha at Ser485 publication-title: FEBS Open Bio doi: 10.1002/2211-5463.12895 – volume: 148 start-page: 421 year: 2012 ident: ref_60 article-title: Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases publication-title: Cell doi: 10.1016/j.cell.2012.01.017 – volume: 288 start-page: C1305 year: 2005 ident: ref_18 article-title: Cloning and characterization of the human soluble adenylyl cyclase publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00584.2004 – volume: 234 start-page: 73 year: 2017 ident: ref_78 article-title: Glucagon-induced extracellular cAMP regulates hepatic lipid metabolism publication-title: J. Endocrinol. doi: 10.1530/JOE-16-0649 – volume: 47 start-page: 561 year: 2021 ident: ref_113 article-title: miR1423p targets AC9 to regulate sciatic nerve injuryinduced neuropathic pain by regulating the cAMP/AMPK signalling pathway publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2020.4824 – volume: 107 start-page: 19237 year: 2010 ident: ref_39 article-title: β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1009705107 – volume: 34 start-page: 31 year: 2014 ident: ref_27 article-title: AMP-activated protein kinase: Maintaining energy homeostasis at the cellular and whole-body levels publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-071812-161148 – volume: 44 start-page: 851 year: 2011 ident: ref_118 article-title: The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+) publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.12.005 – volume: 90 start-page: 29 year: 2014 ident: ref_114 article-title: The calcium/CaMKKalpha/beta and the cAMP/PKA pathways are essential upstream regulators of AMPK activity in boar spermatozoa publication-title: Biol. Reprod. – volume: 2 start-page: ra28 year: 2009 ident: ref_98 article-title: Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105 publication-title: Sci. Signal. doi: 10.1126/scisignal.2000202 – volume: 356 start-page: 525 year: 2001 ident: ref_97 article-title: Inhibitor of nuclear factor-kappaB induction by cAMP antagonizes interleukin-1-induced human macrophage-colony-stimulating-factor expression publication-title: Biochem. J. doi: 10.1042/bj3560525 – volume: 18 start-page: 556 year: 2013 ident: ref_46 article-title: AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.08.019 – volume: 159 start-page: 105030 year: 2020 ident: ref_92 article-title: Blame the signaling: Role of cAMP for the resolution of inflammation publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.105030 – volume: 89 start-page: 667 year: 2011 ident: ref_93 article-title: AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: Impact on healthspan and lifespan publication-title: J. Mol. Med. doi: 10.1007/s00109-011-0748-0 – volume: 9 start-page: 23 year: 2009 ident: ref_36 article-title: The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.11.008 – volume: 26 start-page: 5933 year: 2006 ident: ref_51 article-title: Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00383-06 – volume: 403 start-page: 139 year: 2007 ident: ref_45 article-title: Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade publication-title: Biochem. J. doi: 10.1042/BJ20061520 – volume: 120 start-page: 109537 year: 2019 ident: ref_105 article-title: Liraglutide improves vascular dysfunction by regulating a cAMP-independent PKA-AMPK pathway in perivascular adipose tissue in obese mice publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109537 – volume: 29 start-page: 469 year: 2010 ident: ref_55 article-title: PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis publication-title: EMBO J. doi: 10.1038/emboj.2009.339 – volume: 52 start-page: 1066 year: 2012 ident: ref_30 article-title: AMPK isoform expression in the normal and failing hearts publication-title: J. Mol. Cell Cardiol. doi: 10.1016/j.yjmcc.2012.01.016 – volume: 16 start-page: 104 year: 2012 ident: ref_54 article-title: p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.05.010 – volume: 54 start-page: 1214 year: 2011 ident: ref_77 article-title: Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase publication-title: J. Hepatol. doi: 10.1016/j.jhep.2010.09.032 – volume: 63 start-page: 1051 year: 2016 ident: ref_88 article-title: Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2014.10.103 – volume: 283 start-page: 2987 year: 2016 ident: ref_29 article-title: AMP-activated protein kinase: A cellular energy sensor that comes in 12 flavours publication-title: FEBS J. doi: 10.1111/febs.13698 – volume: 121 start-page: 255 year: 2016 ident: ref_82 article-title: Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2016.02.011 – volume: 305 start-page: E1436 year: 2013 ident: ref_85 article-title: Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00445.2013 – volume: 288 start-page: 3126 year: 2013 ident: ref_21 article-title: Type 10 soluble adenylyl cyclase is overexpressed in prostate carcinoma and controls proliferation of prostate cancer cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.403279 – volume: 7 start-page: 10856 year: 2016 ident: ref_68 article-title: AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B publication-title: Nat. Commun. doi: 10.1038/ncomms10856 – volume: 29 start-page: 367 year: 2008 ident: ref_102 article-title: Targeting beta-cell mass in type 2 diabetes: Promise and limitations of new drugs based on incretins publication-title: Endocr. Rev. doi: 10.1210/er.2007-0031 – volume: 25 start-page: 198 year: 2019 ident: ref_89 article-title: Is Resolution the End of Inflammation? publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2019.01.006 – volume: 2016 start-page: 3094642 year: 2016 ident: ref_103 article-title: Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control publication-title: Mediators Inflamm. doi: 10.1155/2016/3094642 – volume: 21 start-page: 760 year: 2009 ident: ref_58 article-title: Regulation of AMP-activated protein kinase by cAMP in adipocytes: Roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis publication-title: Cell Signal. doi: 10.1016/j.cellsig.2009.01.015 – volume: 27 start-page: 165 year: 2009 ident: ref_90 article-title: Immune and inflammatory mechanisms of atherosclerosis publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.021908.132620 – volume: 319 start-page: E459 year: 2020 ident: ref_53 article-title: Inhibition of AMPK activity in response to insulin in adipocytes: Involvement of AMPK pS485, PDEs, and cellular energy levels publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00065.2020 – volume: 19 start-page: 121 year: 2018 ident: ref_31 article-title: AMPK: Guardian of metabolism and mitochondrial homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.95 – volume: 297 start-page: E384 year: 2009 ident: ref_86 article-title: Cardioprotective effect of adiponectin is partially mediated by its AMPK-independent antinitrative action publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.90975.2008 – volume: 32 start-page: S55 year: 2008 ident: ref_35 article-title: The regulation of AMP-activated protein kinase by upstream kinases publication-title: Int. J. Obes. doi: 10.1038/ijo.2008.124 – volume: 284 start-page: 14760 year: 2009 ident: ref_9 article-title: Soluble adenylyl cyclase controls mitochondria-dependent apoptosis in coronary endothelial cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M900925200 – volume: 47 start-page: 1383 year: 2019 ident: ref_24 article-title: Imaging cAMP nanodomains in the heart publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20190245 – volume: 24 start-page: 689 year: 2021 ident: ref_101 article-title: miR3515p aggravates lipopolysaccharideinduced acute lung injury via inhibiting AMPK publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2021.12330 – volume: 4 start-page: 3017 year: 2013 ident: ref_38 article-title: Structural basis of AMPK regulation by small molecule activators publication-title: Nat. Commun. doi: 10.1038/ncomms4017 – volume: 1657 start-page: 176 year: 2017 ident: ref_84 article-title: C1q/tumor necrosis factor-related protein 3 inhibits oxidative stress during intracerebral hemorrhage via PKA signaling publication-title: Brain Res. doi: 10.1016/j.brainres.2016.11.016 – volume: 289 start-page: 625 year: 2000 ident: ref_1 article-title: Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor publication-title: Science doi: 10.1126/science.289.5479.625 – volume: 10 start-page: 769 year: 2019 ident: ref_63 article-title: PKA Activates AMPK Through LKB1 Signaling in Follicular Thyroid Cancer publication-title: Front. Endocrinol. doi: 10.3389/fendo.2019.00769 – volume: 426 start-page: 109 year: 2010 ident: ref_50 article-title: Calmodulin-dependent protein kinase kinase-beta activates AMPK without forming a stable complex: Synergistic effects of Ca2+ and AMP publication-title: Biochem. J. doi: 10.1042/BJ20091372 – volume: 278 start-page: 24461 year: 2003 ident: ref_13 article-title: Angiotensin II enhances adenylyl cyclase signaling via Ca2+/calmodulin. Gq-Gs cross-talk regulates collagen production in cardiac fibroblasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212659200 – ident: ref_12 doi: 10.3390/jcdd5010002 – ident: ref_23 doi: 10.1371/journal.pone.0192322 – volume: 99 start-page: 734 year: 2013 ident: ref_8 article-title: Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt137 – volume: 53 start-page: 1189 year: 2021 ident: ref_104 article-title: Glucagon-like peptide-1 attenuates cardiac hypertrophy via the AngII/AT1R/ACE2 and AMPK/mTOR/p70S6K pathways publication-title: Acta Biochim. Biophys. Sin. doi: 10.1093/abbs/gmab099 – volume: 45 start-page: 3045 year: 2020 ident: ref_83 article-title: CTRP3 Activates the AMPK/SIRT1-PGC-1alpha Pathway to Protect Mitochondrial Biogenesis and Functions in Cerebral Ischemic Stroke publication-title: Neurochem. Res. doi: 10.1007/s11064-020-03152-6 – volume: 458 start-page: 1056 year: 2009 ident: ref_80 article-title: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity publication-title: Nature doi: 10.1038/nature07813 – volume: 310 start-page: E947 year: 2016 ident: ref_107 article-title: Exenatide exerts direct protective effects on endothelial cells through the AMPK/Akt/eNOS pathway in a GLP-1 receptor-dependent manner publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00400.2015 – volume: 2 start-page: 21 year: 2005 ident: ref_34 article-title: Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.06.005 – ident: ref_32 doi: 10.3390/ijms19113534 – volume: 7 start-page: 40445 year: 2017 ident: ref_81 article-title: White to beige conversion in PDE3B KO adipose tissue through activation of AMPK signaling and mitochondrial function publication-title: Sci. Rep. doi: 10.1038/srep40445 – volume: 1 start-page: a001651 year: 2009 ident: ref_95 article-title: The nuclear factor NF-kappaB pathway in inflammation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a001651 – volume: 345 start-page: 673 year: 2000 ident: ref_62 article-title: LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo publication-title: Biochem. J. doi: 10.1042/bj3450673 – volume: 288 start-page: 33283 year: 2013 ident: ref_16 article-title: CO2/HCO3(-)- and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.510073 – volume: 8 start-page: 443 year: 2017 ident: ref_5 article-title: Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription publication-title: Nat. Commun. doi: 10.1038/s41467-017-00357-2 – volume: 271 start-page: 611 year: 1996 ident: ref_28 article-title: Mammalian AMP-activated protein kinase subfamily publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.2.611 – volume: 7 start-page: 8253 year: 2017 ident: ref_110 article-title: Coenzyme Q10 Improves Lipid Metabolism and Ameliorates Obesity by Regulating CaMKII-Mediated PDE4 Inhibition publication-title: Sci. Rep. doi: 10.1038/s41598-017-08899-7 – volume: 15 start-page: 416 year: 2016 ident: ref_121 article-title: AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation publication-title: Aging Cell doi: 10.1111/acel.12446 – volume: 113 start-page: 274 year: 2004 ident: ref_41 article-title: CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations publication-title: J. Clin. Investig. doi: 10.1172/JCI19874 – volume: 9 start-page: 265 year: 2009 ident: ref_19 article-title: Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.01.012 – volume: 4 start-page: e001956 year: 2015 ident: ref_91 article-title: Systemic Atherosclerotic Inflammation Following Acute Myocardial Infarction: Myocardial Infarction Begets Myocardial Infarction publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.115.001956 – volume: 11 start-page: 20200034 year: 2021 ident: ref_15 article-title: Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase publication-title: Interface Focus doi: 10.1098/rsfs.2020.0034 – volume: 9 start-page: 2033 year: 2013 ident: ref_61 article-title: Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway publication-title: Autophagy doi: 10.4161/auto.26336 – volume: 351 start-page: 275 year: 2016 ident: ref_71 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science doi: 10.1126/science.aab4138 – volume: 118 start-page: e2107898118 year: 2021 ident: ref_119 article-title: Cyclic nucleotide phosphodiesterase 1C contributes to abdominal aortic aneurysm publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2107898118 – volume: 41 start-page: 985 year: 2018 ident: ref_76 article-title: AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.b17-00724 – ident: ref_72 doi: 10.3390/cells10020473 – volume: 6 start-page: 7926 year: 2015 ident: ref_40 article-title: Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance publication-title: Nat. Commun. doi: 10.1038/ncomms8926 – volume: 19 start-page: 16 year: 2017 ident: ref_122 article-title: Are SIRT1 activators another indirect method to increase AMPK for beneficial effects on aging and the metabolic syndrome? publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.04.027 – volume: 21 start-page: 2383 year: 2002 ident: ref_115 article-title: Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence publication-title: EMBO J. doi: 10.1093/emboj/21.10.2383 – volume: 281 start-page: 32207 year: 2006 ident: ref_44 article-title: Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606357200 – volume: 500 start-page: 65 year: 2018 ident: ref_73 article-title: Shaping mitochondrial dynamics: The role of cAMP signalling publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.05.041 – volume: 18 start-page: 770 year: 2019 ident: ref_25 article-title: Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0033-4 – volume: 17 start-page: 82 year: 2003 ident: ref_2 article-title: Compartmentalization of bicarbonate-sensitive adenylyl cyclase in distinct signaling microdomains publication-title: FASEB J. doi: 10.1096/fj.02-0598fje – volume: 76 start-page: 4945 year: 2019 ident: ref_64 article-title: Regulation of AMPK activity by type 10 adenylyl cyclase: Contribution to the mitochondrial biology, cellular redox and energy homeostasis publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-019-03152-y – volume: 281 start-page: 36662 year: 2006 ident: ref_65 article-title: Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606676200 – volume: 61 start-page: 33 year: 2020 ident: ref_111 article-title: Epac1 Requires AMPK Phosphorylation to Regulate HMGB1 in the Retinal Vasculature publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.61.11.33 – volume: 13 start-page: 251 year: 2012 ident: ref_26 article-title: AMPK: A nutrient and energy sensor that maintains energy homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3311 – volume: 138 start-page: 759 year: 2009 ident: ref_67 article-title: cAMP pulsing of denuded mouse oocytes increases meiotic resumption via activation of AMP-activated protein kinase publication-title: Reproduction doi: 10.1530/REP-08-0535 – volume: 6 start-page: 203 year: 2015 ident: ref_3 article-title: Cardiac cAMP: Production, hydrolysis, modulation and detection publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00203 – volume: 278 start-page: 15922 year: 2003 ident: ref_17 article-title: Kinetic properties of “soluble” adenylyl cyclase. Synergism between calcium and bicarbonate publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212475200 – volume: 10 start-page: 2394 year: 2018 ident: ref_79 article-title: Phosphodiesterase 4 inhibitor activates AMPK-SIRT6 pathway to prevent aging-related adipose deposition induced by metabolic disorder publication-title: Aging doi: 10.18632/aging.101559 – volume: 585 start-page: 986 year: 2011 ident: ref_117 article-title: SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.11.047 – volume: 42 start-page: 2342 year: 2017 ident: ref_100 article-title: Adiponectin Inhibits TNF-alpha-Activated PAI-1 Expression Via the cAMP-PKA-AMPK-NF-kappaB Axis in Human Umbilical Vein Endothelial Cells publication-title: Cell Physiol. Biochem. doi: 10.1159/000480006 – volume: 52 start-page: 323 year: 2012 ident: ref_10 article-title: PDEs create local domains of cAMP signaling publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2011.08.016 – volume: 40 start-page: 251 year: 2009 ident: ref_99 article-title: The adenosine a2a receptor inhibits matrix-induced inflammation in a novel fashion publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2008-0168OC – volume: 449 start-page: 496 year: 2007 ident: ref_42 article-title: Structural basis for AMP binding to mammalian AMP-activated protein kinase publication-title: Nature doi: 10.1038/nature06161 – volume: 377 start-page: 421 year: 1995 ident: ref_47 article-title: 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)01368-7 – volume: 7 start-page: 17815 year: 2016 ident: ref_66 article-title: AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation publication-title: Oncotarget doi: 10.18632/oncotarget.7404 – volume: 443 start-page: 193 year: 2012 ident: ref_37 article-title: AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase publication-title: Biochem. J. doi: 10.1042/BJ20112026 – volume: 55 start-page: 2471 year: 2018 ident: ref_20 article-title: Inhibition of Intracellular Type 10 Adenylyl Cyclase Protects Cortical Neurons Against Reperfusion-Induced Mitochondrial Injury and Apoptosis publication-title: Mol. Neurobiol. doi: 10.1007/s12035-017-0473-y – volume: 2 start-page: 9 year: 2005 ident: ref_49 article-title: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.05.009 – volume: 288 start-page: 3746 year: 2021 ident: ref_48 article-title: AMPK, metabolism, and vascular function publication-title: FEBS J. doi: 10.1111/febs.15863 – volume: 42 start-page: 2033 year: 2021 ident: ref_87 article-title: Caffeine promotes angiogenesis through modulating endothelial mitochondrial dynamics publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-021-00623-6 – volume: 73 start-page: 278 year: 2021 ident: ref_4 article-title: Subcellular Organization of the cAMP Signaling Pathway publication-title: Pharm. Rev. doi: 10.1124/pharmrev.120.000086 – volume: 278 start-page: 43074 year: 2003 ident: ref_57 article-title: Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308484200 – volume: 14 start-page: 408 year: 2004 ident: ref_116 article-title: The interaction between FOXO and SIRT1: Tipping the balance towards survival publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.07.006 – volume: 17 start-page: 5 year: 2009 ident: ref_14 article-title: Physiological roles for G protein-regulated adenylyl cyclase isoforms: Insights from knockout and overexpression studies publication-title: Neurosignals doi: 10.1159/000166277 – volume: 12 start-page: 5651 year: 2020 ident: ref_120 article-title: Intermedin1-53 attenuates aging-associated vascular calcification in rats by upregulating sirtuin 1 publication-title: Aging doi: 10.18632/aging.102934 – volume: 176 start-page: 1780 year: 2019 ident: ref_11 article-title: Cyclic nucleotide signalling compartmentation by PDEs in cultured vascular smooth muscle cells publication-title: Br. J. Pharm. doi: 10.1111/bph.14651 – volume: 9 start-page: 2815 year: 2019 ident: ref_56 article-title: Metformin and glucose starvation decrease the migratory ability of hepatocellular carcinoma cells: Targeting AMPK activation to control migration publication-title: Sci. Rep. doi: 10.1038/s41598-019-39556-w |
| SSID | ssj0000816105 |
| Score | 2.57861 |
| SecondaryResourceType | review_article |
| Snippet | The 5′-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and... The 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 308 |
| SubjectTerms | Adenosine Adenylate cyclase adenylyl cyclase Aging AMP-Activated Protein Kinases - metabolism AMPK Animals Autophagy Binding sites cAMP Cyclic AMP Cyclic AMP - metabolism Diabetes mellitus Energy Energy balance Enzymes EPAC Epinephrine Glucagon Glucose metabolism Homeostasis Humans Ischemia Kinases Lipid Metabolism Localization Mammalian cells Metabolic disorders Metabolism Mitochondria mitophagy Models, Biological Phosphatase Phosphorylation Physiology PKA Protein Biosynthesis Protein kinase Proteins Regulation Review Sensors Signal Transduction |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SpIVc-m7iJC0OhJ4qVpZtPU4hLQmF0rA0LeRmZD22C8FOdjeF_vuOZK9Tl7aXHHyRBnssjWZGY_n7AI4ykWkmS0m4Mpqg93NECVcT72slmaBFpnwkmxDn5_LyUk37gtuyP1a59onRUdvWhBr5hPGIRc6pPL6-IYE1Knxd7Sk0HsBWQEnI49G96VBjCaQSmD900Jo57u4noRq-xIjHAkzLKBRFxP6_pZl_npb8LfycPbmv4k_hcZ94piedpTyDDdc8h0cdFeXPF3AUqlOBsCj90l65tPWpOfk8neD1Kb2Yz0K63sxewrez068fPpKeQYGYshAr4mxOjVZaFLU21HncuxTMZI5qqQ3nNXfSY0i3TuRlzr1jurDOMSuULEqLba9gs2kbtwup4g4zK2WELl2hpJUiLxStOd5IU26yBN6tB7MyPbx4YLm4qnCbEca-Go19Am8H8esOV-Nfgu_DzAxCAQ47NrSLWdWvrspra1hWe0M1viC1aJi1ZzXD8Iv-hZsEDtZzU_VrdFndTUwCh0M3rq7wfN249jbKMIYujvMEdjozGDTJMXkM-IkJiJGBjFQd9zTz7xHBW2LSjXru_V-tfdhm4WcLmpFMHMDmanHrXsND82M1Xy7eRFP_BeAGB2A priority: 102 providerName: ProQuest |
| Title | Emerging Role of cAMP/AMPK Signaling |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35053423 https://www.proquest.com/docview/2621275608 https://www.proquest.com/docview/2622288066 https://pubmed.ncbi.nlm.nih.gov/PMC8774420 https://doaj.org/article/fadc21bfc0a5420dbecbf2b28016386c |
| Volume | 11 |
| WOSCitedRecordID | wos000757619600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: M7P dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816105 issn: 2073-4409 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7atIVcStP04TZdHAg51awsy3ock7KhIWQxaQLbk5HlUboQvCW7CfTS396R7Szr0tJLD_bBGqzxjDT6RsjfABykKrVc5zqRxtmEoh8mRmGVeF8ZzRUTqfFtsQk1nerZzBQbpb7CmbCOHrgz3Njb2vG08o7ZXHBWU5-V5xWnyEpDR7oQfQn1bCRTbQzWhGRY3pFqZpTXj8M--JLWOh4IWgaLUMvV_yeA-fs5yY2F5-QFPO8RY3zUaboDj7B5Cc-6GpI_duEgbCuFSkPxxeIG44WP3dF5MabrLP4yvw44u7l-BVcnk8tPn5O-9EHicqFWCdYZc9ZYJSrrGHpKOgR3KTKrrZOykqg9rcU1qizPpEduRY3Ia2W0yGt69hq2mkWDbyE2EgkSGadsjsLoWqtMGFZJepFl0qURfHywRel6XvBQnuKmpPwgmK4cmC6Cw7X4944Q42-Cx8Gwa6HAY90-IO-WvXfLf3k3gr0Ht5T95FqWXLa09DL0sb9upmkR-rcNLu5aGc4pNkkZwZvOi2tNMkJ9gfgwAjXw70DVYUsz_9ZSb2tCy6Tnu__xbe9hm4d_KViapGoPtla3d_gBnrr71Xx5O4LHaqZH8OR4Mi0uRu3oHoWDqUW4_5xQS3F6Xnz9BephAQw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBQQX3tBAgSAVTkTrOIkfB4TKo2q17WoFReotdRx7WalK2t0tqH-K38jYeUAQcOuBQy7JKJlkxp9nJvZ8AFsxjxUVmYiY1CpC9DOR5KaIrC2koJyksbSebIJPJuLoSE7X4Hu3F8Ytq-ww0QN1WWtXIx9R5nuRMyLenJ5FjjXK_V3tKDQatxibi2-Ysi1f771H-76gdOfD4bvdqGUViHSW8lVkyoRoJRVPC6WJsRjPp1THhiihNGMFM8LiNFcanmQJs4aqtDSGllyKNCs9SwRC_hUMI6jwSwWnfU3HkVhgvNK08kwSSUau-r7EGZa6tjCDqc8zBPwprP19deYv093Orf_tQ92Gm21gHW43I-EOrJnqLlxrqDYv7sGWq745QqbwY31iwtqGevtgOsJjHH6az1w6Us3uw-dLUfEBrFd1ZTYglMxg5Cg1V5lJpSgFT1JJCoY3UoTpOIBXnfFy3bZPdyweJzmmUc7W-cDWAbzsxU-bviF_E3zrPKEXcu2-_Yl6Mctb9MitKjWNC6uJwhckJQ68wtKCYniB-Ml0AJudL-QtBi3zn44QwPP-MqKHe76qTH3uZShFCGcsgIeN2_WaJBgcu_6QAfCBQw5UHV6p5l98h3KBSQXq-ejfaj2D67uHB_v5_t5k_BhuULexhMRRzDdhfbU4N0_gqv66mi8XT_0wC-H4st31B-JoZjc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEuvKGBAkEqnIjWcRI_DggVyopq6WrFQ-otdRx7WalK2t0tqH-NX8fYeUAQcOuBQy7JKJlkxp9nJvZ8ADsxjxUVmYiY1CpC9DOR5KaIrC2koJyksbSebIJPp-LwUM424Hu3F8Ytq-ww0QN1WWtXIx9R5nuRMyJGtl0WMdsbvzo5jRyDlPvT2tFpNC4yMeffMH1bvdzfQ1s_o3T89tObd1HLMBDpLOXryJQJ0UoqnhZKE2Mxtk-pjg1RQmnGCmaExSmvNDzJEmYNVWlpDC25FGlWesYIhP9LPGUeFA74rK_vOEILjF2atp5JIsnIVeJXONtS1yJmMA16toA_hbi_r9T8Zeob3_ifP9pNuN4G3OFuM0JuwYapbsOVhoLz_A7suKqcI2oKP9THJqxtqHcPZiM8JuHHxdylKdX8Lny-EBXvwWZVV2YLQskMRpRSc5WZVIpS8CSVpGB4I0WYjgN40Rky121bdcfucZxjeuXsng_sHsDzXvyk6SfyN8HXzit6IdcG3J-ol_O8RZXcqlLTuLCaKHxBUuKALCwtKIYdiKtMB7Dd-UXeYtMq_-kUATztLyOquOerytRnXoZShHbGArjfuGCvSYJBs-sbGQAfOOdA1eGVavHFdy4XmGygng_-rdYTuIpemr_fn04ewjXq9puQOIr5Nmyul2fmEVzWX9eL1fKxH3EhHF20t_4AuUdu9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Role+of+cAMP%2FAMPK+Signaling&rft.jtitle=Cells+%28Basel%2C+Switzerland%29&rft.au=Muhammad+Aslam&rft.au=Yury+Ladilov&rft.date=2022-01-17&rft.pub=MDPI+AG&rft.eissn=2073-4409&rft.volume=11&rft.issue=2&rft.spage=308&rft_id=info:doi/10.3390%2Fcells11020308&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fadc21bfc0a5420dbecbf2b28016386c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4409&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4409&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4409&client=summon |