Decomposing and Tracing Mutual Information by Quantifying Reachable Decision Regions

The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables about a target to being unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized, several alterna...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Vol. 25; no. 7; p. 1014
Main Authors: Mages, Tobias, Rohner, Christian
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 30.06.2023
MDPI
Subjects:
ISSN:1099-4300, 1099-4300
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables about a target to being unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized, several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion–exclusion principle or have resulted in negative partial information components. For constructing a measure, we interpret the achievable type I/II error pairs for predicting each state of a target variable (reachable decision regions) as notions of pointwise uncertainty. For this representation of uncertainty, we construct a distributive lattice with mutual information as consistent valuation and obtain an algebra for the constructed measure. The resulting definition satisfies the original axioms, an inclusion–exclusion principle and provides a non-negative decomposition for an arbitrary number of variables. We demonstrate practical applications of this approach by tracing the flow of information through Markov chains. This can be used to model and analyze the flow of information in communication networks or data processing systems.
AbstractList The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables about a target to being unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized, several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion–exclusion principle or have resulted in negative partial information components. For constructing a measure, we interpret the achievable type I/II error pairs for predicting each state of a target variable (reachable decision regions) as notions of pointwise uncertainty. For this representation of uncertainty, we construct a distributive lattice with mutual information as consistent valuation and obtain an algebra for the constructed measure. The resulting definition satisfies the original axioms, an inclusion–exclusion principle and provides a non-negative decomposition for an arbitrary number of variables. We demonstrate practical applications of this approach by tracing the flow of information through Markov chains. This can be used to model and analyze the flow of information in communication networks or data processing systems.
The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables about a target to being unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized, several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion-exclusion principle or have resulted in negative partial information components. For constructing a measure, we interpret the achievable type I/II error pairs for predicting each state of a target variable (reachable decision regions) as notions of pointwise uncertainty. For this representation of uncertainty, we construct a distributive lattice with mutual information as consistent valuation and obtain an algebra for the constructed measure. The resulting definition satisfies the original axioms, an inclusion-exclusion principle and provides a non-negative decomposition for an arbitrary number of variables. We demonstrate practical applications of this approach by tracing the flow of information through Markov chains. This can be used to model and analyze the flow of information in communication networks or data processing systems.The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables about a target to being unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized, several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion-exclusion principle or have resulted in negative partial information components. For constructing a measure, we interpret the achievable type I/II error pairs for predicting each state of a target variable (reachable decision regions) as notions of pointwise uncertainty. For this representation of uncertainty, we construct a distributive lattice with mutual information as consistent valuation and obtain an algebra for the constructed measure. The resulting definition satisfies the original axioms, an inclusion-exclusion principle and provides a non-negative decomposition for an arbitrary number of variables. We demonstrate practical applications of this approach by tracing the flow of information through Markov chains. This can be used to model and analyze the flow of information in communication networks or data processing systems.
The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables about a target to being unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized, several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion–exclusion principle or have resulted in negative partial information components. For constructing a measure, we interpret the achievable type I/II error pairs for predicting each state of a target variable (reachable decision regions) as notions of pointwise uncertainty. For this representation of uncertainty, we construct a distributive lattice with mutual information as consistent valuation and obtain an algebra for the constructed measure. The resulting definition satisfies the original axioms, an inclusion–exclusion principle and provides a non-negative decomposition for an arbitrary number of variables. We demonstrate practical applications of this approach by tracing the flow of information through Markov chains. This can be used to model and analyze the flow of information in communication networks or data processing systems.
Audience Academic
Author Mages, Tobias
Rohner, Christian
AuthorAffiliation Department of Information Technology, Uppsala University, 752 36 Uppsala, Sweden; christian.rohner@it.uu.se
AuthorAffiliation_xml – name: Department of Information Technology, Uppsala University, 752 36 Uppsala, Sweden; christian.rohner@it.uu.se
Author_xml – sequence: 1
  givenname: Tobias
  orcidid: 0000-0001-5524-0552
  surname: Mages
  fullname: Mages, Tobias
– sequence: 2
  givenname: Christian
  orcidid: 0000-0002-1527-734X
  surname: Rohner
  fullname: Rohner, Christian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37509961$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-509560$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNptkl1v2yAUhq2p0_qxXewPTJZ2s0pLewAbm6spavcRqdO0KtstOgGcEtmQgr0p_7446aKmmnwBgofncPB7mh0570yWvSVwwZiAS0NLqAiQ4kV2QkCIScEAjp7Mj7PTGFcAlFHCX2XHrCrTFicn2fzaKN-tfbRumaPT-TygGuffh37ANp-5xocOe-tdvtjkPwd0vW02I3FrUN3hojV5ctg4ErdmmYb4OnvZYBvNm8fxLPv15fP86tvk5sfX2dX0ZqLKgvcTpqAhKGrCasRFwyvORGO0pkhAF4QyXWANNUt1qCBMQyMU5agBiRLINDvLZjuv9riS62A7DBvp0crtgg9LiaG3qjVSESNSz8AXWhVlw4VRhlY1GFGXFdFFcn3cueJfsx4WB7Zr-3u6tQ2DTJKSQ8I_7fDEdkYr4_qA7cGpwx1n7-TS_5EEWFWzUiTDh0dD8PeDib3sbFSmbdEZP0RJ66LgNeF0LPb-GbryQ3DpaUeKQUkZkERd7KglpoZt-nGpsEqfNp1VKTGNTevTqhRQEKjHlt897WF_-X_pSMD5DlDBxxhMs0cIyDF5cp-8xF4-Y5Xtt7lJt7Dtf048APiX2O4
CitedBy_id crossref_primary_10_3390_e26050424
Cites_doi 10.1007/978-3-319-00395-5
10.3390/e19090494
10.3390/e16042161
10.1109/ISIT.2014.6875280
10.1016/j.patrec.2005.10.010
10.3390/e24030403
10.1002/andp.201700370
10.21105/joss.00738
10.1109/TIFS.2019.2954652
10.1103/PhysRevE.87.012130
10.1109/ISIT.2014.6875230
10.1007/s40300-019-00160-7
10.3390/e20040297
10.3390/e16041985
10.1088/1751-8121/abb723
10.1109/CDC45484.2021.9683569
10.3390/e19020071
10.3390/e20040307
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.3390/e25071014
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Collection (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed


Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - Free
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_c1e950906bdc45f69ece2780e98571d4
oai_DiVA_org_uu_509560
PMC10378359
A759041084
37509961
10_3390_e25071014
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: Swedish Civil Contingencies Agency
  grantid: MSB 2018-12526
– fundername: Swedish Civil Contingencies Agency (MSB)
  grantid: MSB 2018-12526
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ACNBI
ADTPV
AOWAS
C1A
CH8
D8T
DF2
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c546t-3c0f1a98138aabf67639fedd2a10d4123d4a8083eac2913d0f9c26ad0a1c9a3d3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001038563700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Mon Nov 10 04:31:11 EST 2025
Tue Nov 04 16:48:12 EST 2025
Tue Nov 04 02:06:16 EST 2025
Thu Oct 02 04:53:49 EDT 2025
Sun Jul 13 04:52:17 EDT 2025
Tue Nov 04 18:39:34 EST 2025
Thu Jan 02 22:33:40 EST 2025
Sat Nov 29 07:14:24 EST 2025
Tue Nov 18 22:01:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords synergy
redundancy
information flow analysis
partial information decomposition
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c546t-3c0f1a98138aabf67639fedd2a10d4123d4a8083eac2913d0f9c26ad0a1c9a3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5524-0552
0000-0002-1527-734X
OpenAccessLink https://doaj.org/article/c1e950906bdc45f69ece2780e98571d4
PMID 37509961
PQID 2843052301
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_c1e950906bdc45f69ece2780e98571d4
swepub_primary_oai_DiVA_org_uu_509560
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10378359
proquest_miscellaneous_2844681620
proquest_journals_2843052301
gale_infotracacademiconefile_A759041084
pubmed_primary_37509961
crossref_primary_10_3390_e25071014
crossref_citationtrail_10_3390_e25071014
PublicationCentury 2000
PublicationDate 20230630
PublicationDateYYYYMMDD 2023-06-30
PublicationDate_xml – month: 6
  year: 2023
  text: 20230630
  day: 30
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Knuth (ref_13) 2019; 531
Harder (ref_8) 2013; 87
Rosas (ref_4) 2020; 53
Bertschinger (ref_10) 2014; 16
Schechtman (ref_16) 2019; 77
ref_14
Rassouli (ref_3) 2020; 15
ref_12
ref_23
ref_11
ref_22
Griffith (ref_6) 2014; 16
Neyman (ref_17) 1933; 231
ref_21
ref_20
ref_1
Fawcett (ref_15) 2006; 27
ref_2
ref_19
ref_18
ref_9
James (ref_24) 2018; 3
ref_5
ref_7
References_xml – ident: ref_7
  doi: 10.1007/978-3-319-00395-5
– volume: 231
  start-page: 289
  year: 1933
  ident: ref_17
  article-title: IX. On the Problem of the Most Efficient Tests of Statistical Hypotheses
  publication-title: Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character
– ident: ref_2
  doi: 10.3390/e19090494
– ident: ref_9
– ident: ref_5
– volume: 16
  start-page: 2161
  year: 2014
  ident: ref_10
  article-title: Quantifying Unique Information
  publication-title: Entropy
  doi: 10.3390/e16042161
– ident: ref_12
  doi: 10.1109/ISIT.2014.6875280
– ident: ref_11
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_15
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref_21
  doi: 10.3390/e24030403
– volume: 531
  start-page: 1700370
  year: 2019
  ident: ref_13
  article-title: Lattices and Their Consistent Quantification
  publication-title: Ann. Der Phys.
  doi: 10.1002/andp.201700370
– volume: 3
  start-page: 738
  year: 2018
  ident: ref_24
  article-title: dit: A Python package for discrete information theory
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00738
– volume: 15
  start-page: 2012
  year: 2020
  ident: ref_3
  article-title: Data Disclosure Under Perfect Sample Privacy
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2954652
– volume: 87
  start-page: 012130
  year: 2013
  ident: ref_8
  article-title: Bivariate measure of redundant information
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.012130
– ident: ref_23
  doi: 10.1109/ISIT.2014.6875230
– volume: 77
  start-page: 171
  year: 2019
  ident: ref_16
  article-title: The relationship between Gini terminology and the ROC curve
  publication-title: Metron
  doi: 10.1007/s40300-019-00160-7
– ident: ref_14
– ident: ref_18
– ident: ref_20
  doi: 10.3390/e20040297
– volume: 16
  start-page: 1985
  year: 2014
  ident: ref_6
  article-title: Intersection Information Based on Common Randomness
  publication-title: Entropy
  doi: 10.3390/e16041985
– volume: 53
  start-page: 485001
  year: 2020
  ident: ref_4
  article-title: An operational information decomposition via synergistic disclosure
  publication-title: J. Phys. Math. Theor.
  doi: 10.1088/1751-8121/abb723
– ident: ref_19
  doi: 10.1109/CDC45484.2021.9683569
– ident: ref_22
  doi: 10.3390/e19020071
– ident: ref_1
  doi: 10.3390/e20040307
SSID ssj0023216
Score 2.3201144
Snippet The idea of a partial information decomposition (PID) gained significant attention for attributing the components of mutual information from multiple variables...
SourceID doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1014
SubjectTerms Algebra
Axioms
Communication networks
Computer Science with specialization in Computer Communication
Data processing
Datavetenskap med inriktning mot datorkommunikation
Decomposition
Information flow
information flow analysis
Information management
Markov chains
Markov processes
partial information decomposition
redundancy
synergy
Tracing
Uncertainty
Valuation
Variables
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODSgngtLSggEFyi-pE49gktLBUXKh4F9WY5tkNXqpJ2d4PEv2fG8QYCiAu3KJlEduZpe-YbQp7aYAsJYX1ei8rmReA-r4MWOUJnCeFACoKLzSaq42N1eqrfpw23dUqr3NrEaKh953CP_BDMqIhbmOzlxWWOXaPwdDW10LhKriFKAoupe5_GBZfgTA5oQgKW9oeBY_BDWTHxQRGq_0-D_ItH-j1bcoIpGv3Q0d7_zuAm2U0RaDYfROYWuRLa2-RkETC5vMOdg8y2PgMf5vD6XY8FJlmqWkIuZvX37ENvMckIS6Syj5iPiQVY2SL164FbmOW8vkM-H705ef02Tw0XclcWcpMLRxtmtWJCWVs3EmyPboL33DLqC_BxvrAKYjb4LtdMeNpox6X11DKnrfDiLtlpuzbcJxkIBuc-NEJbRBoNVqga_KKubSnQRszIiy0LjEto5NgU49zAqgS5ZUZuzciTkfRigOD4G9Er5ONIgKjZ8Ua3-mqSEhrHgoYAicrau6JspA4u8ErRoFVZMQ8feY5SYFC3YTDOphIFmBKiZJl5VWpaMKqA8mDLY5OUfm1-MnhGHo-PQV3xDMa2oesjTSEVkxz-wL1BrsYxC4zetIS31UTiJpOaPmmXZxESHKs9IZbWM_JsEM7JO4vll3n8EX1vSkSepA_-Pf59coOD-gx5kQdkZ7Pqw0Ny3X3bLNerR1HJfgC9fjIn
  priority: 102
  providerName: ProQuest
Title Decomposing and Tracing Mutual Information by Quantifying Reachable Decision Regions
URI https://www.ncbi.nlm.nih.gov/pubmed/37509961
https://www.proquest.com/docview/2843052301
https://www.proquest.com/docview/2844681620
https://pubmed.ncbi.nlm.nih.gov/PMC10378359
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-509560
https://doaj.org/article/c1e950906bdc45f69ece2780e98571d4
Volume 25
WOSCitedRecordID wos001038563700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals - Free
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZg4cAFgXiFXaqAQHCJ1o_EsY9d2hUctirLgsrJcmxHVELpatsgceG3M-Ok0QaQuHCJongS2eOZzEwy8w0hL22wuQS3PqtEabM8cJ9VQYsMobOEcCAFwcVmE-VioVYrvbzW6gtzwjp44I5xx44FDUaNysq7vKilDi7wUtGgVVEyH5FAaan3wVQfagnOZIcjJCCoPw4c3R7K8pH1iSD9f76Kr9mi3_MkR2ii0QKd3iN3e9cxnXZTvk9uhOYBuZgFzArfYMif2sanYHwcnp-1WBmS9uVGyP60-pF-aC1mB2FtU3qOiZRYOZXO-kY7cAnTk7cPyafT-cXbd1nfKSFzRS53mXC0ZlYrJpS1VS3hpaHr4D23jPocjJPPrQJnC57LNROe1tpxaT21zGkrvHhEDppNE56QFHaUcx9qoS1ChAYrVAUGTVe2EKjcCXmz56BxPYw4drP4ZiCcQGabgdkJeTGQXnbYGX8jOsFtGAgQ7jpeACEwvRCYfwlBQl7jJhpUSpiMs31tASwJ4a3MtCw0zRlVQHm032fTa-vWgIkW8fM4S8jzYRj0DH-e2CZs2kiTS8UkBw487sRimLNAt0tLuFuNBGa0qPFIs_4asbyxTBOcYJ2QV51sje6ZrT9PIyPa1hQIGUmf_g92HZI7HHSkS3s8Ige7qzY8I7fd9916ezUhN8uVmpBbJ_PF8nwS9WqCKbEf8fhzDiPL92fLL78A35AqeQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKQYILi9gGCgREBZeoXrL5gNDAULVqO2IZqt6MYzvtSCgpMxNQ_xS_kfecBQKIWw_cosSJbOd7i-33vkfIU-10lIBbH-Yi1WHkuA1zJ0WI1FlCGECBM77YRDqdZkdH8u0a-d7lwmBYZacTvaK2lcE98i1Qo8JvYbKXp19CrBqFp6tdCY0GFnvu7Bss2ZYvdifwfzc5334ze70TtlUFQhNHySoUhhZMy4yJTOu8SEDAZOGs5ZpRG4Eit5HOwDEBjcQlE5YW0vBEW6qZkVpYAd-9QC6CG8GlDxX80C_wBGdJw14khKRbjqOzRVk0sHm-NMCfBuAXC_h7dOaAw9Tbve1r_9uMXSdXWw87GDcicYOsufImmU0cBs9XuDMS6NIGYKMNXh_UmEATtFlZiNIgPwve1RqDqDAFLHiP8aaYYBZM2npEcAujuJe3yMdzGchtsl5WpbtLAgA-59YVQmpkUnVaZDnYfZnrWKAOHJHn3S9XpmVbx6IfnxWsuhAdqkfHiDzpm542FCN_a_QKcdM3QFZwf6NaHKtWySjDnAQHkCa5NVFcJNIZx9OMOpnFKbPwkWeIOoW6CzpjdJuCAUNCFjA1TmNJI0YzaLnRYUq1Sm2pfgJqRB73j0Ed4RmTLl1V-zZRkrGEwwzcaXDc91mgdyoTeDsbIHwwqOGTcn7iKc8xmxXWCnJENhthGLwzmR-O_UTUtYqRWZPe-3f_H5HLO7ODfbW_O927T65wEN0mBnSDrK8WtXtALpmvq_ly8dALeEA-nbd8_ADxxZAm
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFiEuPMRroUBAVHCJ1o-8fEBoYVmxKl0tqKD2ZBzbaVdCSdndgPrX-HXM5AUBxK0HblEyiWznm_HYnvmGkCfa6SACt95PRaz9wHHrp04KH6mzhDCAAmeqYhPxfJ4cHsrFFvne5sJgWGVrEytDbQuDe-QjMKOi2sJko6wJi1hMpi9Ov_hYQQpPWttyGjVE9tzZN1i-rZ_PJvCvdzmfvj549cZvKgz4JgyijS8MzZiWCROJ1mkWgbLJzFnLNaM2AKNuA52AkwLWiUsmLM2k4ZG2VDMjtbACvnuBbINLHvAB2V7M9hdH3XJPcBbVXEZCSDpyHF0vyoLeDFgVCvhzOvhlPvw9VrPHaFrNgtOr__P4XSNXGt_bG9fKcp1sufwGOZg4DKsvcM_E07n1YPY2eL1fYmqN1-RrIX699Mx7V2oMr8LkMO89RqJi6pk3aSoVwS2M717fJB_OpSO3yCAvcneHeKASnFuXCamRY9VpkaTgEchUhwKt45A8a3-_Mg0PO5YD-axgPYZIUR1ShuRxJ3pak4_8TeglYqgTQL7w6kaxOlaN-VGGOQmuIY1Sa4Iwi6QzjscJdTIJY2bhI08RgQqtGjTG6CY5A7qE_GBqHIeSBowmILnT4ks15m6tfoJrSB51j8FQ4emTzl1RVjJBlLCIwwjcrjHdtVmg3yojeDvpob3Xqf6TfHlSkaFjniusIuSQ7NaK0Xtnsvw4rgaiLFWInJv07r_b_5BcArVQb2fzvXvkMgctroNDd8hgsyrdfXLRfN0s16sHjbZ75NN5K8gP9XmaXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposing+and+Tracing+Mutual+Information+by+Quantifying+Reachable+Decision+Regions&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Mages%2C+Tobias&rft.au=Rohner%2C+Christian&rft.date=2023-06-30&rft.eissn=1099-4300&rft.volume=25&rft.issue=7&rft_id=info:doi/10.3390%2Fe25071014&rft_id=info%3Apmid%2F37509961&rft.externalDocID=37509961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon