Efficient collective swimming by harnessing vortices through deep reinforcement learning

Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 23; p. 5849
Main Authors: Verma, Siddhartha, Novati, Guido, Koumoutsakos, Petros
Format: Journal Article
Language:English
Published: United States 05.06.2018
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.
AbstractList Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.
Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.
Author Koumoutsakos, Petros
Verma, Siddhartha
Novati, Guido
Author_xml – sequence: 1
  givenname: Siddhartha
  orcidid: 0000-0002-8941-0633
  surname: Verma
  fullname: Verma, Siddhartha
  organization: Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
– sequence: 2
  givenname: Guido
  surname: Novati
  fullname: Novati, Guido
  organization: Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
– sequence: 3
  givenname: Petros
  orcidid: 0000-0001-8337-2122
  surname: Koumoutsakos
  fullname: Koumoutsakos, Petros
  email: petros@ethz.ch
  organization: Computational Science and Engineering Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland petros@ethz.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29784820$$D View this record in MEDLINE/PubMed
BookMark eNpN0DtPwzAUBWALFdEHzGwoI0vK9SNxMqKqBaRKLB3YIse5bo0SJ9hJUf89qSgS0z1H-nSGOycT1zok5J7CkoLkT51TYUkzgJxxSpMrMqOQ0zgVOUz-5SmZh_AJI0syuCFTlstMZAxm5GNtjNUWXR_ptq5R9_aIUfi2TWPdPipP0UF5hyGc27H1vdUYov7g22F_iCrELvJonWm9xua8UuPoR3xLro2qA95d7oLsNuvd6jXevr-8rZ63sU5E0scGOEt1qROZirJkIsnTCnmKmPBKccCUK0FzikJKqABNJsoMTMVNKoViFVuQx9_ZzrdfA4a-aGzQWNfKYTuEgoFgUsiM0ZE-XOhQNlgVnbeN8qfi7xnsBzEnZPE
CitedBy_id crossref_primary_10_1017_jfm_2025_10392
crossref_primary_10_1038_s42256_024_00859_x
crossref_primary_10_1007_s42241_021_0070_4
crossref_primary_10_1017_jfm_2024_343
crossref_primary_10_1088_1402_4896_acb859
crossref_primary_10_1088_2632_2153_abdaf8
crossref_primary_10_1137_24M164392X
crossref_primary_10_1126_scirobotics_abd9285
crossref_primary_10_1002_gamm_202100007
crossref_primary_10_1002_VIW_20200113
crossref_primary_10_1038_s41598_023_44268_3
crossref_primary_10_3390_biomimetics9010033
crossref_primary_10_3390_app9081652
crossref_primary_10_1177_0954406220915216
crossref_primary_10_1016_j_jcp_2023_111983
crossref_primary_10_1016_j_cma_2025_117910
crossref_primary_10_1109_LRA_2021_3059629
crossref_primary_10_1103_PhysRevX_9_041024
crossref_primary_10_1017_jfm_2024_333
crossref_primary_10_1038_s41598_019_57143_x
crossref_primary_10_1039_D3SC05661A
crossref_primary_10_1007_s42241_025_0103_5
crossref_primary_10_1016_j_apor_2024_104119
crossref_primary_10_1080_14685248_2020_1797059
crossref_primary_10_1016_j_cja_2021_07_027
crossref_primary_10_7554_eLife_90352
crossref_primary_10_1038_s41598_021_04456_5
crossref_primary_10_1017_jfm_2019_62
crossref_primary_10_3389_fmars_2022_918104
crossref_primary_10_3390_biomimetics5020013
crossref_primary_10_1038_s41467_022_35427_7
crossref_primary_10_1371_journal_pone_0215265
crossref_primary_10_1016_j_oceaneng_2024_117822
crossref_primary_10_1140_epje_s10189_023_00271_0
crossref_primary_10_1049_iet_csr_2019_0040
crossref_primary_10_1007_s42241_020_0027_z
crossref_primary_10_1038_s41598_019_44556_x
crossref_primary_10_3390_fluids6060204
crossref_primary_10_1017_jfm_2024_77
crossref_primary_10_1017_jfm_2021_918
crossref_primary_10_1126_scirobotics_abb9764
crossref_primary_10_1007_s42241_020_0026_0
crossref_primary_10_1103_PhysRevFluids_7_L061101
crossref_primary_10_1017_jfm_2023_637
crossref_primary_10_7554_eLife_96129
crossref_primary_10_1093_icb_icab071
crossref_primary_10_1088_1748_3190_ad936d
crossref_primary_10_1002_fld_5025
crossref_primary_10_1088_1367_2630_adfd05
crossref_primary_10_1007_s00442_021_04942_7
crossref_primary_10_1007_s00366_024_02093_w
crossref_primary_10_1016_j_euromechflu_2022_02_008
crossref_primary_10_1109_LCSYS_2020_2980669
crossref_primary_10_1177_14680874231184002
crossref_primary_10_1017_jfm_2024_69
crossref_primary_10_3390_fluids6070233
crossref_primary_10_1016_j_oceaneng_2021_110357
crossref_primary_10_1063_5_0253696
crossref_primary_10_1140_epje_s10189_022_00259_2
crossref_primary_10_1088_1748_3190_ac9fb5
crossref_primary_10_1016_j_jcp_2022_111271
crossref_primary_10_1038_s41467_022_28957_7
crossref_primary_10_1088_1748_3190_ac9bb4
crossref_primary_10_1038_s42005_023_01366_y
crossref_primary_10_1017_jfm_2025_10470
crossref_primary_10_1103_PhysRevFluids_6_050504
crossref_primary_10_1103_PhysRevFluids_6_050505
crossref_primary_10_1016_j_oceaneng_2023_115263
crossref_primary_10_1186_s10033_022_00791_4
crossref_primary_10_1039_D2SC01278B
crossref_primary_10_1017_jfm_2020_1028
crossref_primary_10_1088_1742_6596_2753_1_012024
crossref_primary_10_1016_j_nantod_2022_101505
crossref_primary_10_1038_s42256_020_00272_0
crossref_primary_10_1016_j_oceaneng_2024_119236
crossref_primary_10_3390_act13120488
crossref_primary_10_1007_s11012_024_01830_1
crossref_primary_10_1017_jfm_2023_76
crossref_primary_10_1088_1748_3190_abdd9c
crossref_primary_10_1103_gy7m_4ysj
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1007_s10409_021_01143_6
crossref_primary_10_2514_1_J064790
crossref_primary_10_1002_anie_202209970
crossref_primary_10_3389_fphy_2022_870273
crossref_primary_10_1017_jfm_2021_551
crossref_primary_10_1063_5_0184690
crossref_primary_10_1103_PhysRevFluids_10_043104
crossref_primary_10_1038_s41598_023_36399_4
crossref_primary_10_1017_jfm_2025_10215
crossref_primary_10_1140_epje_s10189_023_00285_8
crossref_primary_10_1016_j_oceaneng_2024_118363
crossref_primary_10_1038_s41598_021_81124_8
crossref_primary_10_1017_jfm_2022_476
crossref_primary_10_1016_j_jcp_2021_110317
crossref_primary_10_1002_ange_202209970
crossref_primary_10_3390_biomimetics8020168
crossref_primary_10_1242_jeb_244983
crossref_primary_10_1038_s41467_021_21331_z
crossref_primary_10_1016_j_ijheatfluidflow_2023_109199
crossref_primary_10_1016_j_cbpc_2023_109812
crossref_primary_10_1063_5_0201965
crossref_primary_10_1038_s41598_023_36305_y
crossref_primary_10_1371_journal_pone_0250837
crossref_primary_10_1103_gt7n_8jtk
crossref_primary_10_1016_j_aquatox_2023_106773
crossref_primary_10_1111_jfb_15931
crossref_primary_10_1016_j_ifacsc_2023_100226
crossref_primary_10_1016_j_compbiomed_2024_108383
crossref_primary_10_1039_D4SM01274G
crossref_primary_10_1016_j_oceaneng_2022_110574
crossref_primary_10_1017_jfm_2024_503
crossref_primary_10_1063_5_0228610
crossref_primary_10_1073_pnas_2004939117
crossref_primary_10_1016_j_cma_2025_118030
crossref_primary_10_1145_3730848
crossref_primary_10_1109_TIE_2022_3174306
crossref_primary_10_1038_s44172_022_00046_z
crossref_primary_10_1016_j_ijheatfluidflow_2023_109139
crossref_primary_10_1109_MRA_2023_3348303
crossref_primary_10_1038_s41598_023_34007_z
crossref_primary_10_1007_s42791_024_00067_z
crossref_primary_10_1016_j_renene_2021_04_053
crossref_primary_10_1080_10618562_2023_2171021
crossref_primary_10_1007_s10494_024_00619_2
crossref_primary_10_1007_s11538_022_01027_1
crossref_primary_10_1016_j_knosys_2023_110401
crossref_primary_10_1016_j_oceaneng_2021_109191
crossref_primary_10_1109_TNNLS_2020_3016906
crossref_primary_10_3389_fphy_2020_00200
crossref_primary_10_1038_s41467_021_27015_y
crossref_primary_10_1017_jfm_2023_1096
crossref_primary_10_1063_5_0237682
crossref_primary_10_1145_3687904
crossref_primary_10_1017_jfm_2023_147
crossref_primary_10_1017_dce_2023_28
crossref_primary_10_1007_s10494_024_00609_4
crossref_primary_10_1016_j_isci_2025_112056
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125561
crossref_primary_10_3390_fluids6020073
crossref_primary_10_1016_j_aquaeng_2024_102511
crossref_primary_10_3390_biomimetics8070510
crossref_primary_10_1017_jfm_2023_28
crossref_primary_10_1088_1748_3190_ae0632
crossref_primary_10_1017_jfm_2022_315
crossref_primary_10_1007_s11071_023_08285_1
crossref_primary_10_3390_make3030029
crossref_primary_10_1038_s41598_021_92965_8
crossref_primary_10_1209_0295_5075_acc88c
crossref_primary_10_1016_j_egyai_2025_100567
crossref_primary_10_3390_app9173573
crossref_primary_10_1016_j_addma_2021_102033
crossref_primary_10_1016_j_cja_2024_03_019
crossref_primary_10_1088_1748_3190_ad1b2e
crossref_primary_10_1016_j_cma_2023_116204
crossref_primary_10_1051_jnwpu_20224030576
crossref_primary_10_1140_epje_s10189_025_00511_5
crossref_primary_10_1016_j_oceaneng_2022_113258
crossref_primary_10_1088_1748_3190_abc294
crossref_primary_10_1016_j_oceaneng_2023_113670
crossref_primary_10_1111_jfb_14641
crossref_primary_10_1093_icb_icae044
crossref_primary_10_1017_jfm_2025_10303
crossref_primary_10_1016_j_buildenv_2024_111357
crossref_primary_10_1103_PhysRevE_104_014210
crossref_primary_10_1134_S0032945223070068
crossref_primary_10_1038_s42256_020_0146_9
crossref_primary_10_1007_s10641_025_01693_9
crossref_primary_10_1039_D3SC06343G
crossref_primary_10_1063_5_0273201
crossref_primary_10_1146_annurev_control_030123_015238
crossref_primary_10_7554_eLife_81392
crossref_primary_10_1007_s00162_022_00604_3
crossref_primary_10_1007_s10228_021_00822_5
crossref_primary_10_1063_5_0218482
crossref_primary_10_1063_5_0273348
crossref_primary_10_1016_j_jmapro_2024_05_001
crossref_primary_10_1103_PhysRevLett_134_044001
crossref_primary_10_1017_jfm_2021_978
crossref_primary_10_1103_PhysRevApplied_23_044058
crossref_primary_10_1016_j_jtbi_2024_111821
crossref_primary_10_1088_1748_3190_abb521
crossref_primary_10_1016_j_ijheatfluidflow_2025_110050
crossref_primary_10_1093_icb_icab133
crossref_primary_10_1016_j_advengsoft_2025_104014
crossref_primary_10_1109_TMECH_2020_3041506
crossref_primary_10_3390_fluids7020056
crossref_primary_10_7554_eLife_96129_3
crossref_primary_10_1007_s00162_020_00520_4
crossref_primary_10_1016_j_oceaneng_2023_113811
crossref_primary_10_1177_14680874211019345
crossref_primary_10_1038_s42003_019_0612_2
crossref_primary_10_1007_s42241_018_0100_z
crossref_primary_10_1016_j_oceaneng_2024_118089
crossref_primary_10_3389_frobt_2022_825889
crossref_primary_10_1038_s41467_025_58125_6
crossref_primary_10_1002_aisy_202100183
crossref_primary_10_1088_1742_6596_2882_1_012065
crossref_primary_10_1016_j_jcp_2021_110741
crossref_primary_10_1088_1748_3190_adebce
crossref_primary_10_1146_annurev_fluid_010719_060214
crossref_primary_10_1146_annurev_fluid_010719_060228
crossref_primary_10_3390_fluids9090216
crossref_primary_10_1002_advs_202410229
crossref_primary_10_1063_5_0097241
crossref_primary_10_1109_ACCESS_2021_3129709
crossref_primary_10_1109_TASE_2023_3315549
crossref_primary_10_1103_646f_dt2k
crossref_primary_10_3389_fphy_2023_1279883
crossref_primary_10_1145_3696189
crossref_primary_10_1038_s42005_022_00935_x
crossref_primary_10_3390_fluids7010041
crossref_primary_10_7554_eLife_90352_3
crossref_primary_10_1016_j_jcp_2023_112018
crossref_primary_10_1016_j_renene_2022_09_090
crossref_primary_10_1177_09544062221079693
crossref_primary_10_1038_s41467_020_19086_0
crossref_primary_10_1088_1748_3190_ad1335
crossref_primary_10_1088_1748_3190_ac165e
crossref_primary_10_1089_zeb_2019_1851
crossref_primary_10_1016_j_ast_2023_108737
crossref_primary_10_1080_24705357_2020_1869916
crossref_primary_10_1073_pnas_2019683118
crossref_primary_10_1038_s41598_022_16181_8
crossref_primary_10_1007_s42241_020_0077_2
crossref_primary_10_1007_s10409_024_23664_x
crossref_primary_10_1016_j_oceaneng_2024_118538
crossref_primary_10_1016_j_jfluidstructs_2024_104175
crossref_primary_10_3390_pr11061861
crossref_primary_10_1017_jfm_2021_1045
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1800923115
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 29784820
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ID FETCH-LOGICAL-c545t-f0326cbc5764bb24596de36ee53da30e63a4191e4770d0ef84b80fd3f674a2d2
IEDL.DBID 7X8
ISICitedReferencesCount 328
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434114900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 10:24:08 EDT 2025
Wed Feb 19 02:02:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords energy harvesting
deep reinforcement learning
autonomous navigation
recurrent neural networks
fish schooling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-f0326cbc5764bb24596de36ee53da30e63a4191e4770d0ef84b80fd3f674a2d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8337-2122
0000-0002-8941-0633
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6003313
PMID 29784820
PQID 2042747821
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2042747821
pubmed_primary_29784820
PublicationCentury 2000
PublicationDate 2018-06-05
PublicationDateYYYYMMDD 2018-06-05
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
SSID ssj0009580
Score 2.6864727
Snippet Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 5849
SubjectTerms Animals
Behavior, Animal - physiology
Biomechanical Phenomena
Computer Simulation
Fishes - physiology
Learning - physiology
Models, Biological
Reinforcement, Psychology
Spatial Navigation - physiology
Swimming - physiology
Title Efficient collective swimming by harnessing vortices through deep reinforcement learning
URI https://www.ncbi.nlm.nih.gov/pubmed/29784820
https://www.proquest.com/docview/2042747821
Volume 115
WOSCitedRecordID wos000434114900031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5bN8yUgMMAScxEmcCSHUioWqQ4dslR2foUOT0JQi_j3nxBUsSEgsljLYiuzz3bs76z1CrnyjDCTSdhgNDgp8TwJwzwgDiGZFEgSyEZtIhkORZenIFdxq96xy5RMbR63L3NbIMUnnNoESgX9fvXlWNcp2V52ExjrphAhlrFUnmfhBuitaNoLU92KeshW1TxLeVYWsb31hKYcs38zv-LKJM4Od__7hLtl2CJM-tCbRJWtQ7JGuu8M1vXZE0zf7JOs3_BEYdqg1h9b10fpjOpthQKPqk77KuXWF9mtZ2gVxAafsQzVARefQMK_mTZGROgmKlwMyHvTHj0-eU1rwckRQC88wRHG5yjH54EoFPEpjDWEMEIVahgziUHJM7IAnCdMMjOBKMKNDEydcBjo4JBtFWcAxocqYnIEUeRporriRaexDFAumfWYiE_XI5WrzJmjItjshCyjf68n39vXIUXsCk6pl3JgEmOtyxConf5h9SrYQ1IjmOVd0RjoGrzGck818uZjW84vGQnAcjp6_AM8EyHs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+collective+swimming+by+harnessing+vortices+through+deep+reinforcement+learning&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Verma%2C+Siddhartha&rft.au=Novati%2C+Guido&rft.au=Koumoutsakos%2C+Petros&rft.date=2018-06-05&rft.eissn=1091-6490&rft.volume=115&rft.issue=23&rft.spage=5849&rft_id=info:doi/10.1073%2Fpnas.1800923115&rft_id=info%3Apmid%2F29784820&rft_id=info%3Apmid%2F29784820&rft.externalDocID=29784820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon