Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects

Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibioti...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 51; p. 12896
Main Authors: Klugman, Keith P, Black, Steven
Format: Journal Article
Language:English
Published: United States 18.12.2018
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance.
AbstractList Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance.
Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance.Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are specifically targeted by the vaccine and also via a secondary effect through a reduction in febrile illnesses that often lead to the use of antibiotics. We review here the impact of pneumococcal conjugate vaccines (PCVs) on the prevalence of antibiotic-resistant disease and antibiotic usage as an example of the direct effect of vaccines on antibiotic resistance and the impact of influenza vaccination on antibiotic usage as an example of a secondary effect. A prelicensure study of a PCV in Africa demonstrated 67% fewer penicillin-resistant invasive disease episodes in the PCV group compared with controls. Similar studies in the United States and Europe demonstrated reductions in antibiotic use consistent with the vaccines' impact on the risk of otitis media infections in children. Postlicensure reductions in the circulation of antibiotic-resistant strains targeted by the vaccines have been dramatic, with virtual elimination of these strains in children following vaccine introduction. In terms of a secondary effect, following influenza vaccination reductions of 13-50% have been observed in the use of antibiotics by individuals receiving influenza vaccine compared with controls. With the demonstrated effectiveness of vaccination programs in impacting the risk of antibiotic-resistant infections and the increasing threat to public health that these infections represent, more attention needs to be given to development and utilization of vaccines to address antibiotic resistance.
Author Black, Steven
Klugman, Keith P
Author_xml – sequence: 1
  givenname: Keith P
  surname: Klugman
  fullname: Klugman, Keith P
  organization: Pneumonia Program Strategy Team, Bill and Melinda Gates Foundation, Seattle, WA 98102
– sequence: 2
  givenname: Steven
  surname: Black
  fullname: Black, Steven
  email: stevblack@gmail.com
  organization: Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45999 stevblack@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30559195$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAQhoOsuB969iY5eqkmadNuvMnix8KCHvQmlHQykcg2rU0q-u_Nsit4mneeeRiGmZOJ7zwScs7ZFWdVft17Ha54JThTknN5RGYp8awsFJv8y1MyD-GDsWQt2QmZ5kxKxZWckbd122uItLMUv12Izr_TLw3gPAbqPB3QjLCD2kfXuC46SCwkU3vAG_o8uFYPP2lsaEDovNl1aC1CDKfk2OptwLNDXZDX-7uX1WO2eXpYr243GchCxsyUSvOygapUqrICjbQGl8ZKkFAY2WisBKJtsKyshtwykzMuOGq5FAkpsSCX-7390H2OGGLdugC43WqP3RhqwZNZVCoXSb04qGPToqn7_f3130fEL03BZzw
CitedBy_id crossref_primary_10_1093_cid_ciaa1308
crossref_primary_10_1186_s12917_025_04479_4
crossref_primary_10_1186_s12879_025_11082_3
crossref_primary_10_3390_antibiotics10050471
crossref_primary_10_1007_s00210_025_04165_0
crossref_primary_10_1099_mgen_0_000851
crossref_primary_10_1016_j_ijpharm_2021_120306
crossref_primary_10_1080_21645515_2024_2396707
crossref_primary_10_1016_j_meegid_2024_105606
crossref_primary_10_1016_S0140_6736_24_00878_X
crossref_primary_10_1016_j_chembiol_2023_11_003
crossref_primary_10_1017_S0950268822000371
crossref_primary_10_1136_bmjgh_2020_002348
crossref_primary_10_1007_s40272_021_00468_w
crossref_primary_10_1186_s12913_023_10174_7
crossref_primary_10_1186_s13756_023_01272_6
crossref_primary_10_1007_s11033_024_09870_2
crossref_primary_10_1002_vetr_2786
crossref_primary_10_1093_cid_ciaa269
crossref_primary_10_1099_mgen_0_000622
crossref_primary_10_1099_mgen_0_000506
crossref_primary_10_3390_pharmaceutics16040455
crossref_primary_10_1038_s41586_019_1656_7
crossref_primary_10_1017_S0950268821001254
crossref_primary_10_3389_fmicb_2020_01249
crossref_primary_10_1038_s41586_020_2238_4
crossref_primary_10_1080_00963402_2019_1680053
crossref_primary_10_3390_vaccines12080852
crossref_primary_10_1073_pnas_2004933118
crossref_primary_10_3390_microbiolres14030094
crossref_primary_10_1371_journal_pone_0219097
crossref_primary_10_1136_bmjgh_2020_004898
crossref_primary_10_1007_s11356_024_32853_6
crossref_primary_10_1128_IAI_00219_20
crossref_primary_10_1073_pnas_1717157115
crossref_primary_10_1093_ofid_ofad098
crossref_primary_10_4103_ijmm_IJMM_19_223
crossref_primary_10_3390_vaccines9111232
crossref_primary_10_1093_cid_ciab062
crossref_primary_10_1093_femsre_fuaa067
crossref_primary_10_1099_mgen_0_001444
crossref_primary_10_1016_j_vaccine_2020_09_048
crossref_primary_10_1016_S0987_7983_24_00156_7
crossref_primary_10_1093_infdis_jiad420
crossref_primary_10_1371_journal_pone_0269916
crossref_primary_10_1038_s41579_020_00506_3
crossref_primary_10_2217_fmb_2022_0052
crossref_primary_10_1080_14760584_2022_2021880
crossref_primary_10_1007_s10096_024_04968_8
crossref_primary_10_1073_pnas_2013515118
crossref_primary_10_3934_publichealth_2021045
crossref_primary_10_1099_mgen_0_000645
crossref_primary_10_3390_vaccines13090923
crossref_primary_10_1016_j_vaccine_2019_12_038
crossref_primary_10_3390_vaccines11091412
crossref_primary_10_22207_JPAM_19_2_01
crossref_primary_10_3389_fmars_2022_938742
crossref_primary_10_1111_1751_7915_14310
crossref_primary_10_1080_07853890_2020_1782460
crossref_primary_10_1093_ofid_ofac039
crossref_primary_10_3390_vaccines9050420
crossref_primary_10_1186_s12879_023_08453_z
crossref_primary_10_1093_ofid_ofab063
crossref_primary_10_3390_vaccines10040554
crossref_primary_10_1016_j_apm_2024_06_042
crossref_primary_10_1093_cid_ciac811
crossref_primary_10_1080_14760584_2023_2256394
crossref_primary_10_1016_j_micpath_2020_104114
crossref_primary_10_1186_s12879_025_11080_5
crossref_primary_10_7774_cevr_2021_10_2_81
crossref_primary_10_1016_j_ijid_2023_08_002
crossref_primary_10_1016_j_ejim_2021_10_005
crossref_primary_10_1093_ofid_ofac420
crossref_primary_10_1093_cid_ciz517
crossref_primary_10_3390_microorganisms10010127
crossref_primary_10_1016_j_vaccine_2022_04_009
crossref_primary_10_4315_JFP_21_033
crossref_primary_10_1080_21645515_2022_2145069
crossref_primary_10_1038_s41598_024_54250_2
crossref_primary_10_1007_s10719_023_10100_3
crossref_primary_10_2147_IJGM_S409476
crossref_primary_10_3389_fimmu_2025_1652460
crossref_primary_10_1016_j_vaccine_2020_09_051
crossref_primary_10_1093_cid_ciab276
crossref_primary_10_1016_j_eimce_2025_03_007
crossref_primary_10_1080_21645515_2023_2215149
crossref_primary_10_1016_j_molstruc_2025_143640
crossref_primary_10_7554_eLife_64139
crossref_primary_10_1080_21645515_2022_2151291
crossref_primary_10_1186_s12916_021_02049_7
crossref_primary_10_1007_s00103_019_03066_x
crossref_primary_10_1093_ofid_ofae307
crossref_primary_10_1016_j_emcon_2024_100440
crossref_primary_10_3390_vaccines8030505
crossref_primary_10_1093_cid_ciz484
crossref_primary_10_1186_s12929_019_0591_0
crossref_primary_10_2147_IDR_S531874
crossref_primary_10_3390_pharmacy8010044
crossref_primary_10_4102_jsava_v90i0_1765
crossref_primary_10_1038_s41467_021_23049_4
crossref_primary_10_1016_j_vaccine_2020_02_054
crossref_primary_10_1099_mgen_0_000831
crossref_primary_10_1016_S0140_6736_21_02724_0
crossref_primary_10_1093_cid_ciad562
crossref_primary_10_1016_j_diagmicrobio_2020_115282
crossref_primary_10_1186_s13073_021_00901_2
crossref_primary_10_3390_vaccines10122100
crossref_primary_10_1016_j_eimc_2025_01_002
crossref_primary_10_2478_am_2022_022
crossref_primary_10_3389_fmicb_2022_965572
crossref_primary_10_1038_s41541_020_00232_0
crossref_primary_10_2147_IDR_S544665
crossref_primary_10_1093_ofid_ofaa587
crossref_primary_10_3390_ijerph20116025
crossref_primary_10_1002_adma_202211717
crossref_primary_10_1371_journal_pone_0297041
crossref_primary_10_1080_21645515_2021_1942712
crossref_primary_10_1016_j_vaccine_2025_127455
crossref_primary_10_1007_s11033_025_10678_x
crossref_primary_10_1126_scitranslmed_aaz8690
crossref_primary_10_3390_antibiotics12020274
crossref_primary_10_1186_s13756_022_01173_0
crossref_primary_10_3390_antibiotics12040780
crossref_primary_10_3390_antibiotics11020200
crossref_primary_10_1007_s00134_019_05862_0
crossref_primary_10_1016_j_ijid_2022_01_022
crossref_primary_10_3390_vaccines8020293
crossref_primary_10_1016_j_smim_2020_101423
crossref_primary_10_1016_j_vaccine_2020_06_040
crossref_primary_10_36290_vnl_2021_032
crossref_primary_10_7759_cureus_82064
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1721095115
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 30559195
Genre Journal Article
Review
GeographicLocations South Africa
GeographicLocations_xml – name: South Africa
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c545t-d69a16bc76997f2ed5fde8df5c5c4d5bae72eefbe67fac3f0d30121ea58267f92
IEDL.DBID 7X8
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453529800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Sun Nov 09 11:51:49 EST 2025
Mon Jul 21 06:07:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords influenza vaccine
antibiotic resistance
vaccines
pneumococcal vaccine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-d69a16bc76997f2ed5fde8df5c5c4d5bae72eefbe67fac3f0d30121ea58267f92
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.pnas.org/doi/10.1073/pnas.1721095115
PMID 30559195
PQID 2158247932
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2158247932
pubmed_primary_30559195
PublicationCentury 2000
PublicationDate 2018-12-18
PublicationDateYYYYMMDD 2018-12-18
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
SSID ssj0009580
Score 2.6281955
SecondaryResourceType review_article
Snippet Vaccines impact antibiotic-resistant infections in two ways: through a direct reduction in the organisms and strains carrying resistant genes that are...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 12896
SubjectTerms Bacterial Infections - epidemiology
Bacterial Infections - prevention & control
Drug Resistance, Bacterial - drug effects
Humans
Influenza Vaccines - therapeutic use
Pneumococcal Infections - epidemiology
Pneumococcal Infections - prevention & control
Pneumococcal Vaccines - therapeutic use
South Africa - epidemiology
Title Impact of existing vaccines in reducing antibiotic resistance: Primary and secondary effects
URI https://www.ncbi.nlm.nih.gov/pubmed/30559195
https://www.proquest.com/docview/2158247932
Volume 115
WOSCitedRecordID wos000453529800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPeoi7faWtFxFxUdBlDwp7EEoeE-ilXbfr_n5n2i56EQQvhU5oaJJJ8s0jXxi7kFLj0ihBGBWCCK0DkSpPiyQ0zmhQ2umaXf85Ho2SySQdtw63qk2rXK6J9UJtS0M-8j5uTYlPbiD_dvoh6NYoiq62V2issk6AUIa0Op4kP0h3k4aNIPWEDNPBktonDvrTQlXXZP4QxPCi3_Flvc8Mt_77h9tss0WY_K5RiS5bgWKHdds5XPHLlmj6ape9P9VHJHnpOBFiUgI0XyhDofaK5wWfEa0rCbH3c52XWCHKKkKcWNUNHzdMFVhseUWGtaW3NkNkj70NH17vH0V724IwiKLmwkocJKlNLNM0dj7YyFlIrItMZEIbaQWxD-A0yNgpE7iBDYgPDhS2GkWpv8_WirKAQ8aldG4AiI3AV6FyPtp4lGGVakXHYHXcY-fLHsxQmylEoQooP6vsuw977KAZhmzaNCYjbjKsJDr6w9fHbAORTUJ5J15ywjoO5zKcsnWzmOfV7KxWE3yOxi9fi8nKpw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+existing+vaccines+in+reducing+antibiotic+resistance%3A+Primary+and+secondary+effects&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Klugman%2C+Keith+P&rft.au=Black%2C+Steven&rft.date=2018-12-18&rft.eissn=1091-6490&rft.volume=115&rft.issue=51&rft.spage=12896&rft_id=info:doi/10.1073%2Fpnas.1721095115&rft_id=info%3Apmid%2F30559195&rft_id=info%3Apmid%2F30559195&rft.externalDocID=30559195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon