Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice
Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM-/-) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lym- phoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved...
Gespeichert in:
| Veröffentlicht in: | Protein & cell Jg. 5; H. 1; S. 80 - 89 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Beijing
Higher Education Press
2014
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1674-800X, 1674-8018, 1674-8018 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM-/-) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lym- phoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM-/- HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM-/- mice. Instead, ATM and Gadd45a double knockout (ATM-/- Gadd45a-/-) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM-/- HSCs in HSC transplantation experiments. Fur- ther experiments revealed that the aggravated defect of ATM-/- Gadd45a-/- HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signal- ing pathway. Additionally, ATM-/- Gadd45a-/- mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM-/- mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which sub- sequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM-/- HSCs. |
|---|---|
| Bibliographie: | Gadd45a, ATM, hematopoietic stem cellsDNA damage Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM-/-) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lym- phoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM-/- HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM-/- mice. Instead, ATM and Gadd45a double knockout (ATM-/- Gadd45a-/-) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM-/- HSCs in HSC transplantation experiments. Fur- ther experiments revealed that the aggravated defect of ATM-/- Gadd45a-/- HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signal- ing pathway. Additionally, ATM-/- Gadd45a-/- mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM-/- mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which sub- sequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM-/- HSCs. 11-5886/Q Gadd45a Document accepted on :2013-12-25 ATM Document received on :2013-12-19 hematopoietic stem cells DNA damage SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-800X 1674-8018 1674-8018 |
| DOI: | 10.1007/s13238-013-0017-9 |