Evolution algorithm with adaptive genetic operator and dynamic scoring mechanism for large-scale sparse many-objective optimization
Large-scale sparse multi-objective optimization problems are prevalent in numerous real-world scenarios, such as neural network training, sparse regression, pattern mining and critical node detection, where Pareto optimal solutions exhibit sparse characteristics. Ordinary large-scale multi-objective...
Saved in:
| Published in: | Scientific reports Vol. 15; no. 1; pp. 9267 - 34 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
18.03.2025
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Large-scale sparse multi-objective optimization problems are prevalent in numerous real-world scenarios, such as neural network training, sparse regression, pattern mining and critical node detection, where Pareto optimal solutions exhibit sparse characteristics. Ordinary large-scale multi-objective optimization algorithms implement undifferentiated update operations on all decision variables, which reduces search efficiency, so the Pareto solutions obtained by the algorithms fail to meet the sparsity requirements. SparseEA is capable of generating sparse solutions and calculating scores for each decision variable, which serves as a basis for crossover and mutation in subsequent evolutionary process. However, the scores remain unchanged in iterative process, which restricts the sparse optimization ability of the algorithm. To solve the problem, this paper proposes an evolution algorithm with the adaptive genetic operator and dynamic scoring mechanism for large-scale sparse many-objective optimization (SparseEA-AGDS). Within the evolutionary algorithm for large-scale Sparse (SparseEA) framework, the proposed adaptive genetic operator and dynamic scoring mechanism adaptively adjust the probability of cross-mutation operations based on the fluctuating non-dominated layer levels of individuals, concurrently updating the scores of decision variables to encourage superior individuals to gain additional genetic opportunities. Moreover, to augment the algorithm’s capability to handle many-objective problems, a reference point-based environmental selection strategy is incorporated. Comparative experimental results demonstrate that the SparseEA-AGDS algorithm outperforms five other algorithms in terms of convergence and diversity on the SMOP benchmark problem set with many-objective and also yields superior sparse Pareto optimal solutions. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-025-91245-z |