Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy

To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiag...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 13; no. 1; pp. 5368 - 9
Main Authors: Habib, Al-Rahim, Xu, Yixi, Bock, Kris, Mohanty, Shrestha, Sederholm, Tina, Weeks, William B., Dodhia, Rahul, Ferres, Juan Lavista, Perry, Chris, Sacks, Raymond, Singh, Narinder
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.04.2023
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiago, Chile, and (c) Ohio, USA. Diagnostic categories consisted of (i) normal or (ii) abnormal. Deep learning methods were used to develop models to evaluate internal and external performance, using area under the curve (AUC) estimates. A pooled assessment was performed by combining all cohorts together with fivefold cross validation. AI-otoscopy algorithms achieved high internal performance (mean AUC: 0.95, 95%CI: 0.80–1.00). However, performance was reduced when tested on external otoscopic images not used for training (mean AUC: 0.76, 95%CI: 0.61–0.91). Overall, external performance was significantly lower than internal performance (mean difference in AUC: −0.19, p ≤ 0.04). Combining cohorts achieved a substantial pooled performance (AUC: 0.96, standard error: 0.01). Internally applied algorithms for otoscopy performed well to identify middle ear disease from otoscopy images. However, external performance was reduced when applied to new test cohorts. Further efforts are required to explore data augmentation and pre-processing techniques that might improve external performance and develop a robust, generalizable algorithm for real-world clinical applications.
AbstractList Abstract To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiago, Chile, and (c) Ohio, USA. Diagnostic categories consisted of (i) normal or (ii) abnormal. Deep learning methods were used to develop models to evaluate internal and external performance, using area under the curve (AUC) estimates. A pooled assessment was performed by combining all cohorts together with fivefold cross validation. AI-otoscopy algorithms achieved high internal performance (mean AUC: 0.95, 95%CI: 0.80–1.00). However, performance was reduced when tested on external otoscopic images not used for training (mean AUC: 0.76, 95%CI: 0.61–0.91). Overall, external performance was significantly lower than internal performance (mean difference in AUC: −0.19, p ≤ 0.04). Combining cohorts achieved a substantial pooled performance (AUC: 0.96, standard error: 0.01). Internally applied algorithms for otoscopy performed well to identify middle ear disease from otoscopy images. However, external performance was reduced when applied to new test cohorts. Further efforts are required to explore data augmentation and pre-processing techniques that might improve external performance and develop a robust, generalizable algorithm for real-world clinical applications.
To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiago, Chile, and (c) Ohio, USA. Diagnostic categories consisted of (i) normal or (ii) abnormal. Deep learning methods were used to develop models to evaluate internal and external performance, using area under the curve (AUC) estimates. A pooled assessment was performed by combining all cohorts together with fivefold cross validation. AI-otoscopy algorithms achieved high internal performance (mean AUC: 0.95, 95%CI: 0.80–1.00). However, performance was reduced when tested on external otoscopic images not used for training (mean AUC: 0.76, 95%CI: 0.61–0.91). Overall, external performance was significantly lower than internal performance (mean difference in AUC: −0.19, p ≤ 0.04). Combining cohorts achieved a substantial pooled performance (AUC: 0.96, standard error: 0.01). Internally applied algorithms for otoscopy performed well to identify middle ear disease from otoscopy images. However, external performance was reduced when applied to new test cohorts. Further efforts are required to explore data augmentation and pre-processing techniques that might improve external performance and develop a robust, generalizable algorithm for real-world clinical applications.
To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiago, Chile, and (c) Ohio, USA. Diagnostic categories consisted of (i) normal or (ii) abnormal. Deep learning methods were used to develop models to evaluate internal and external performance, using area under the curve (AUC) estimates. A pooled assessment was performed by combining all cohorts together with fivefold cross validation. AI-otoscopy algorithms achieved high internal performance (mean AUC: 0.95, 95%CI: 0.80-1.00). However, performance was reduced when tested on external otoscopic images not used for training (mean AUC: 0.76, 95%CI: 0.61-0.91). Overall, external performance was significantly lower than internal performance (mean difference in AUC: -0.19, p ≤ 0.04). Combining cohorts achieved a substantial pooled performance (AUC: 0.96, standard error: 0.01). Internally applied algorithms for otoscopy performed well to identify middle ear disease from otoscopy images. However, external performance was reduced when applied to new test cohorts. Further efforts are required to explore data augmentation and pre-processing techniques that might improve external performance and develop a robust, generalizable algorithm for real-world clinical applications.To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiago, Chile, and (c) Ohio, USA. Diagnostic categories consisted of (i) normal or (ii) abnormal. Deep learning methods were used to develop models to evaluate internal and external performance, using area under the curve (AUC) estimates. A pooled assessment was performed by combining all cohorts together with fivefold cross validation. AI-otoscopy algorithms achieved high internal performance (mean AUC: 0.95, 95%CI: 0.80-1.00). However, performance was reduced when tested on external otoscopic images not used for training (mean AUC: 0.76, 95%CI: 0.61-0.91). Overall, external performance was significantly lower than internal performance (mean difference in AUC: -0.19, p ≤ 0.04). Combining cohorts achieved a substantial pooled performance (AUC: 0.96, standard error: 0.01). Internally applied algorithms for otoscopy performed well to identify middle ear disease from otoscopy images. However, external performance was reduced when applied to new test cohorts. Further efforts are required to explore data augmentation and pre-processing techniques that might improve external performance and develop a robust, generalizable algorithm for real-world clinical applications.
To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic images, between internal to external performance. 1842 otoscopic images were collected from three independent sources: (a) Van, Turkey, (b) Santiago, Chile, and (c) Ohio, USA. Diagnostic categories consisted of (i) normal or (ii) abnormal. Deep learning methods were used to develop models to evaluate internal and external performance, using area under the curve (AUC) estimates. A pooled assessment was performed by combining all cohorts together with fivefold cross validation. AI-otoscopy algorithms achieved high internal performance (mean AUC: 0.95, 95%CI: 0.80-1.00). However, performance was reduced when tested on external otoscopic images not used for training (mean AUC: 0.76, 95%CI: 0.61-0.91). Overall, external performance was significantly lower than internal performance (mean difference in AUC: -0.19, p ≤ 0.04). Combining cohorts achieved a substantial pooled performance (AUC: 0.96, standard error: 0.01). Internally applied algorithms for otoscopy performed well to identify middle ear disease from otoscopy images. However, external performance was reduced when applied to new test cohorts. Further efforts are required to explore data augmentation and pre-processing techniques that might improve external performance and develop a robust, generalizable algorithm for real-world clinical applications.
ArticleNumber 5368
Author Xu, Yixi
Mohanty, Shrestha
Ferres, Juan Lavista
Habib, Al-Rahim
Dodhia, Rahul
Perry, Chris
Singh, Narinder
Sederholm, Tina
Bock, Kris
Weeks, William B.
Sacks, Raymond
Author_xml – sequence: 1
  givenname: Al-Rahim
  surname: Habib
  fullname: Habib, Al-Rahim
  email: al-rahim.habib@sydney.edu.au
  organization: Faculty of Medicine and Health, University of Sydney, Department of Otolaryngology, Head and Neck Surgery, Westmead Hospital
– sequence: 2
  givenname: Yixi
  surname: Xu
  fullname: Xu, Yixi
  organization: AI for Good Lab, Microsoft
– sequence: 3
  givenname: Kris
  surname: Bock
  fullname: Bock, Kris
  organization: Azure FastTrack Engineering
– sequence: 4
  givenname: Shrestha
  surname: Mohanty
  fullname: Mohanty, Shrestha
  organization: Microsoft
– sequence: 5
  givenname: Tina
  surname: Sederholm
  fullname: Sederholm, Tina
  organization: AI for Good Lab, Microsoft
– sequence: 6
  givenname: William B.
  surname: Weeks
  fullname: Weeks, William B.
  organization: AI for Good Lab, Microsoft
– sequence: 7
  givenname: Rahul
  surname: Dodhia
  fullname: Dodhia, Rahul
  organization: AI for Good Lab, Microsoft
– sequence: 8
  givenname: Juan Lavista
  surname: Ferres
  fullname: Ferres, Juan Lavista
  organization: AI for Good Lab, Microsoft
– sequence: 9
  givenname: Chris
  surname: Perry
  fullname: Perry, Chris
  organization: University of Queensland Medical School
– sequence: 10
  givenname: Raymond
  surname: Sacks
  fullname: Sacks, Raymond
  organization: Faculty of Medicine and Health, University of Sydney
– sequence: 11
  givenname: Narinder
  surname: Singh
  fullname: Singh, Narinder
  organization: Faculty of Medicine and Health, University of Sydney, Department of Otolaryngology, Head and Neck Surgery, Westmead Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37005441$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQXaEiWkr_AAdkiQuXBX9tdn1CqCpQqRIXOFsTe3bjyLGD7a3Uih-Pk5TS9lBfPON573m-XjdHIQZsmreMfmRUDJ-yZJ0aWspFK5jirKUvmhNOZddywfnRA_u4Oct5TevpuJJMvWqORV8dKdlJ8-fiGvwMxYWJlBWSCQMm8O4Wls67ckPiSCzilniEFHYot4EJifGQsxudqdQYCPgpJldWm0xKrISCppCNs9YjqURiXUbISOa8k4glZhO3N2-alyP4jGd392nz6-vFz_Pv7dWPb5fnX65a00lW2rETqBSvDlBmoRqMdsYqIUbWq47LGgfDGF8qC6YXjCowYhiBDlbxhRKnzeVB10ZY622qJaQbHcHp_UNMk4ZUnPGoWT-g6kBaQC7BCtUxi71cjqZ2jvW8an0-aG3n5QatwVBqvx6JPo4Et9JTvNaM0kU_sL4qfLhTSPH3jLnojcsGvYeAcc6a90ouhkWtokLfP4Gu45xC7dUOJQbZs3157x6mdJ_LvylXAD8ATIo5JxzvIYzq3Tbpwzbpuk16v02aVtLwhGRc2U-7luX881RxoOb6T5gw_U_7GdZf5nDftg
CitedBy_id crossref_primary_10_1002_wjo2_70019
crossref_primary_10_1007_s11042_024_18631_z
crossref_primary_10_1016_j_jag_2023_103569
crossref_primary_10_1007_s12070_024_04885_4
crossref_primary_10_1109_ACCESS_2025_3597769
crossref_primary_10_1007_s00521_025_10990_4
crossref_primary_10_1016_j_compbiomed_2025_110092
crossref_primary_10_1109_ACCESS_2024_3428700
crossref_primary_10_1177_00368504251365411
crossref_primary_10_3390_jcm12226973
crossref_primary_10_1007_s12285_024_00507_8
Cites_doi 10.1117/12.2582009.full
10.1016/j.ebiom.2016.02.017
10.1136/bmjopen-2016-012799
10.1101/2021.08.05.21261672
10.1017/S0022215118001275
10.3390/diagnostics12061318
10.3390/jcm10153198
10.1017/S0022215120000717
10.1016/j.ijporl.2004.10.013
10.1542/peds.2020-034546
10.1117/12.2581902.full
10.3389/fdgth.2021.810427
10.1186/s12992-019-0531-5
10.1016/j.neunet.2020.03.023
10.1007/s10462-021-10121-0
10.1109/IDAP.2019.8875973
10.1371/journal.pone.0229226
10.1101/515007v2.full
10.1038/s41591-020-1034-x
10.1109/UBMK.2019.8907070
10.1371/journal.pone.0232776
10.1111/j.1365-2273.1995.tb00014.x
10.1097/MAO.0000000000003484
10.1016/j.irbm.2021.01.001
10.7717/peerj-cs.405
10.1111/coa.13925
10.21205/deufmd.2020226625
10.2196/33049
10.1016/j.ajem.2021.04.030
10.1002/lary.29253
10.1016/j.bbe.2019.11.001
10.1007/s00521-021-06810-0
10.1093/ckj/sfaa188
10.1016/S0031-3203(96)00142-2
10.1109/TKDE.2005.50
10.1016/j.bspc.2017.07.015
10.1177/1357633X20987783
10.1136/bmjgh-2018-000798
10.2196/25759
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-31921-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central (subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_178e95a4dae24ad3951de74bfc419172
PMC10067817
37005441
10_1038_s41598_023_31921_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Microsoft AI for Humanitarian Action Fund Grant
– fundername: Avant Foundation
  funderid: http://dx.doi.org/10.13039/501100020021
– fundername: Garnett Passe and Rodney Williams Memorial Foundation
  funderid: http://dx.doi.org/10.13039/501100003354
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-f53e992c54a01da2c5105cd933f17952453eac112b9dac73109ac38fa08d92693
IEDL.DBID DOA
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000984099000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:50:45 EDT 2025
Tue Nov 04 02:07:07 EST 2025
Thu Sep 04 18:27:55 EDT 2025
Tue Oct 07 07:56:36 EDT 2025
Thu Jan 02 22:52:15 EST 2025
Sat Nov 29 06:33:49 EST 2025
Tue Nov 18 21:34:50 EST 2025
Fri Feb 21 02:39:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-f53e992c54a01da2c5105cd933f17952453eac112b9dac73109ac38fa08d92693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/178e95a4dae24ad3951de74bfc419172
PMID 37005441
PQID 2793847169
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_178e95a4dae24ad3951de74bfc419172
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10067817
proquest_miscellaneous_2794686109
proquest_journals_2793847169
pubmed_primary_37005441
crossref_primary_10_1038_s41598_023_31921_0
crossref_citationtrail_10_1038_s41598_023_31921_0
springer_journals_10_1038_s41598_023_31921_0
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ZhangJLiCYinYZhangJGrzegorzekMApplications of artificial neural networks in microorganism image analysis: A comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformerArtif. Intell. Rev.20221158
WahlBCossy-GantnerAGermannSSchwalbeNRArtificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings?BMJ Glob Health (Internet)201834e00079810.1136/bmjgh-2018-000798
GraydonKWaterworthCMillerHGunasekeraHGlobal burden of hearing impairment and ear diseaseJ. Laryngol. Otol.2019133118251:STN:280:DC%2BB3c7itV2jtA%3D%3D10.1017/S002221511800127530047343
LivingstoneDTalaiASChauJForkertNDBuilding an otoscopic screening prototype tool using deep learningJ. Otolaryngol. Head Neck Surg.2019486615
ViscainoMMaassJCDelanoPHTorrenteMStottCAuatCheeinFComputer-aided diagnosis of external and middle ear conditions: A machine learning approachPLoS One [Internet].20201531181:CAS:528:DC%2BB3cXmtlCqtbo%3D10.1371/journal.pone.0229226
HabibARKajbafzadehMHasanZWongEGunasekeraHPerryCArtificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysisClin. Otolaryngol.202247340141310.1111/coa.13925352533789310803
LiuXCruz RiveraSMoherDCalvertMDennistonAKSpirit-aiTCONSORT-AI extensionNat Med.202026136413741:CAS:528:DC%2BB3cXhvVyqu7%2FO10.1038/s41591-020-1034-x329082837598943
Shield, B. Evaluation of the Social and Economic Costs of Hearing Impairment: A Report for Hear-It [Internet]. https://www.hear-it.org/sites/default/files/multimedia/documents/Hear_It_Report_October_2006.pdf. Accessed 28 Aug 2022 (2006).
BasaranEComertZCelikYConvolutional neural network approach for automatic tympanic membrane detection and classificationBiomed. Signal Process Control2020561114
ChenHLiCLiXRahamanMMHuWLiYIL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approachComput. Biol. Med.202211431:CAS:528:DC%2BB38XisFKntrzE
KhanMAKwonSChooJHongSMKangSHParkIHAutomatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networksNeural Netw. [Internet].202012638439410.1016/j.neunet.2020.03.02332311656
AleneziEMAJajkoKReidALocatelli-SmithATaoKFMBrightTThe reliability of video otoscopy recordings and still images in the asynchronous diagnosis of middle-ear diseaseInt. J. Audiol.202161921
KleinmanKPsoterKJNyhanASolomonBSKimJMCanaresTEvaluation of digital otoscopy in pediatric patients: A prospective randomized controlled clinical trialAm. J. Emerg. Med.202114615015510.1016/j.ajem.2021.04.030
HabibARWongESacksRSinghNArtificial intelligence to detect tympanic membrane perforationsJ. Laryngol. Otol.2020134431131510.1017/S002221512000071732238202
Wang, W., Tamhane, A., Santos, C., Rzasa, J.R., Clark, J.H., Canares, T.L. et al. Pediatric Otoscopy Video Screening with Shift Contrastive Anomaly Detection. http://arxiv.org/abs/2110.13254. Accessed 25 Oct 2021 (2021).
AleneziEMAJajkoKReidALocatelli-SmithAMcMahenCSETaoKFMClinician-rated quality of video otoscopy recordings and still images for the asynchronous assessment of middle-ear diseaseJ. Telemed. Telecare2021261357633X20987783
Simonyan, K., & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. http://arxiv.org/abs/1409.1556. Accessed 4 Sep 2014 (2014).
BinolHNiaziMKKEssigGShahJMattinglyJKHarrisMSDigital otoscopy videos versus composite images: A reader study to compare the accuracy of ENT physiciansLaryngoscope20211315E1668E167610.1002/lary.2925333170529
LeeJYChoiSHChungJWAutomated classification of the tympanic membrane using a convolutional neural networkAppl. Sci. (Switzerland).2019991827
HuangJLingCXUsing AUC and accuracy in evaluating learning algorithmsIEEE Trans. Knowl. Data Eng.20051732993101:CAS:528:DC%2BD2MXjslCgurg%3D10.1109/TKDE.2005.50
Chen, H., Li, C., Wang, G., Li, X., Rahaman, M., Sun, H. et al. GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Detection. http://arxiv.org/abs/2104.14528. Accessed 29 Apr 2021 (2021).
PichicheroMEPooleMDComparison of performance by otolaryngologists, pediatricians, and general practioners on an otoendoscopic diagnostic video examinationInt. J. Pediatr. Otorhinolaryngol.200569336136610.1016/j.ijporl.2004.10.01315733595
CohenJFKorevaarDAAltmanDGBrunsDEGatsonisCAHooftLSTARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaborationBMJ Open201661111710.1136/bmjopen-2016-012799
CamalanSNiaziMKKMoberlyACTeknosTEssigGElmaraghyCOtoMatch: Content-based eardrum image retrieval using deep learningPLoS One [Internet].20201551161:CAS:528:DC%2BB3cXpslWltrs%3D10.1371/journal.pone.0232776
SundgaardJVHarteJBrayPLaugesenSKamideYTanakaCDeep metric learning for otitis media classificationMed. Image Anal.2021171
BinolHMoberlyACNiaziMKKEssigGShahJElmaraghyCSelectStitch: Automated frame segmentation and stitching to create composite images from otoscope video clipsAppl. Sci. (Switzerland)20201017113
Binol, H., Niazi, M.K.K., Elmaraghy, C., Moberly, A.C., & Gurcan, M.N. Automated video summarization and label assignment for otoscopy videos using deep learning and natural language processing. in Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications [Internet] (Park, B.J., Deserno, T.M. Eds.). 28. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11601/2582009/Automated-video-summarization-and-label-assignment-for-otoscopy-videos-using/https://doi.org/10.1117/12.2582009.full. Accessed 17 Mar 2021 (SPIE, 2021).
AlhudhaifACömertZPolatKOtitis media detection using tympanic membrane images with a novel multi-class machine learning algorithmPeerJ Comput. Sci.2021710.7717/peerj-cs.405338170487959604
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K.Q. Densely Connected Convolutional Networks. http://arxiv.org/abs/1608.06993. Accessed 24 Aug 2016 (2016).
FutomaJSimonsMPanchTDoshi-VelezFCeliLAThe myth of generalisability in clinical research and machine learning in health careLancet202012e489e492
World Health Organization. Childhood Hearing Loss—Act Now, Here’s How! [Internet]. Geneva; 2016. https://apps.who.int/iris/handle/10665/204507. Accessed 28 Aug 2022 (2016).
CrowsonMGHartnickCJDiercksGRGallagherTQFracchiaMSSetlurJMachine learning for accurate intraoperative pediatric middle ear effusion diagnosisPediatrics2021147410.1542/peds.2020-03454633731369
BradleyAPThe use of the area under the ROC curve in the evaluation of machine learning algorithmsPatter Recognit.1997307114511591997PatRe..30.1145B10.1016/S0031-3203(96)00142-2
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. http://arxiv.org/abs/1512.03385. Accessed 10 Dec 2015 (2015).
WormaldPJBrowningGGRobinsonKIs otoscopy reliable? A structured teaching method to improve otoscopic accuracy in traineesClin. Otolaryngol. Allied Sci.199520163671:STN:280:DyaK2MzgvVOktw%3D%3D10.1111/j.1365-2273.1995.tb00014.x7788938
LivingstoneDChauJOtoscopic diagnosis using computer vision: An automated machine learning approachLaryngoscope20191316
SandströmJMyburghHLaurentCSwanepoelDWLundbergTA machine learning approach to screen for otitis media using digital otoscope images labelled by an expert panelDiagnostics2022126131810.3390/diagnostics12061318357411289222011
YinJNgiamKYTeoHHRole of artificial intelligence applications in real-life clinical practice: Systematic reviewJ. Med. Internet Res. (JMIR Publications Inc.)2021232575910.2196/25759
Seok, J., Song, J.J., Koo, J.W., Kin, H.C., & Choi, B.Y. The semantic segmentation approach for normal and pathologic tympanic membrane using deep learning (internet). BioRxiv. https://doi.org/10.1101/515007v2.full. Accessed 3 Mar 2019 (2019).
HabibARCrosslandGPatelHWongEKongKGunasekeraHAn artificial intelligence computer-vision algorithm to triage otoscopic images from Australian Aboriginal and Torres Strait Islander childrenOtol. Neurotol.202243448148810.1097/MAO.000000000000348435239622
MyburghHCvan ZijlWHSwanepoelDWHellströmSLaurentCOtitis media diagnosis for developing countries using tympanic membrane image-analysisEBioMedicine [Internet]2016515616010.1016/j.ebiom.2016.02.01727077122
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T. et al. An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale. arXiv [Internet]. 11929. http://arxiv.org/abs/2010.11929 (2020).
LiuWLiCRahamanMMJiangTSunHWuXIs the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformersComput. Biol. Med.20221141
UçarMAkyolKAtilaUçarEClassification of different tympanic membrane conditions using fused deep hypercolumn features and bidirectional LSTMIrbm (Internet)2021111110.1016/j.irbm.2021.01.001
PichicheroMEAssessing diagnostic accuracy and tympanocentesis skills of South African physicians in management of otitis media [7]S. Afr. Med. J.200292213713811894649
BinolHKhalidMNiaziKElmaraghyCMoberlyACGurcanMNOtoXNet—Automated identification of eardrum diseases from otoscope videos: A deep learning study for video-representing imagesmedRxiv (Internet)202110.1101/2021.08.05.21261672
ByunHYuSOhJBaeJYoonMSLeeSHAn assistive role of a machine learning network in diagnosis of middle ear diseasesJ. Clin. Med.20211015319810.3390/jcm10153198343619828347824
Basaran, E., Sengur, A., Comert, Z., Budak, U., Celik, Y., & Velappan, S. Normal and acute tympanic membrane diagnosis based on gray level co-occurrence matrix and artificial neural networks. in 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. 5–10 (2019).
ChaDPaeCLeeSANaGHurYKLeeHYDifferential biases and variabilities of deep learning-based artificial intelligence and human experts in clinical diagnosis: Retrospective cohort and survey studyJMIR Med.
Z Wu (31921_CR35) 2020; 131
D Livingstone (31921_CR20) 2019; 48
H Binol (31921_CR25) 2021
J Huang (31921_CR59) 2005; 17
H Alami (31921_CR63) 2020; 16
E Başaran (31921_CR24) 2022; 34
E Basaran (31921_CR52) 2020; 56
W Liu (31921_CR36) 2022; 1
31921_CR19
MA Khan (31921_CR11) 2020; 126
AR Habib (31921_CR38) 2022; 43
PJ Wormald (31921_CR10) 1995; 20
H Binol (31921_CR28) 2021; 131
HC Myburgh (31921_CR23) 2016; 5
31921_CR56
J Zhang (31921_CR13) 2022; 1
B Wahl (31921_CR62) 2018; 3
31921_CR54
31921_CR53
H Byun (31921_CR16) 2021; 10
JV Sundgaard (31921_CR33) 2021; 1
CL Ramspek (31921_CR50) 2021; 14
31921_CR5
31921_CR4
31921_CR26
31921_CR29
AP Bradley (31921_CR58) 1997; 30
K Graydon (31921_CR12) 2019; 133
ME Pichichero (31921_CR8) 2005; 69
J Futoma (31921_CR57) 2020; 1
A Alhudhaif (31921_CR32) 2021; 7
EMA Alenezi (31921_CR61) 2021; 26
X Li (31921_CR37) 2022; 55
K Kleinman (31921_CR7) 2021; 1
AR Habib (31921_CR17) 2020; 134
Z Cömert (31921_CR34) 2020; 40
31921_CR3
31921_CR2
31921_CR1
M Uçar (31921_CR31) 2021; 1
D Cha (31921_CR6) 2021; 9
AR Habib (31921_CR39) 2022; 47
J Sandström (31921_CR14) 2022; 12
M Viscaino (31921_CR18) 2020; 15
JF Cohen (31921_CR42) 2016; 6
JY Lee (31921_CR55) 2019; 9
31921_CR30
X Liu (31921_CR43) 2020; 26
E Başaran (31921_CR44) 2020; 22
J Yin (31921_CR51) 2021; 23
EMA Alenezi (31921_CR60) 2021; 61
ME Pichichero (31921_CR9) 2002; 92
MG Crowson (31921_CR15) 2021; 147
S Camalan (31921_CR45) 2020; 15
H Binol (31921_CR27) 2020; 10
31921_CR49
31921_CR48
D Livingstone (31921_CR21) 2019; 13
HC Myburgh (31921_CR22) 2018; 39
31921_CR47
31921_CR46
31921_CR41
H Chen (31921_CR40) 2022; 1
References_xml – reference: HabibARWongESacksRSinghNArtificial intelligence to detect tympanic membrane perforationsJ. Laryngol. Otol.2020134431131510.1017/S002221512000071732238202
– reference: AleneziEMAJajkoKReidALocatelli-SmithATaoKFMBrightTThe reliability of video otoscopy recordings and still images in the asynchronous diagnosis of middle-ear diseaseInt. J. Audiol.202161921
– reference: MyburghHCvan ZijlWHSwanepoelDWHellströmSLaurentCOtitis media diagnosis for developing countries using tympanic membrane image-analysisEBioMedicine [Internet]2016515616010.1016/j.ebiom.2016.02.01727077122
– reference: CamalanSNiaziMKKMoberlyACTeknosTEssigGElmaraghyCOtoMatch: Content-based eardrum image retrieval using deep learningPLoS One [Internet].20201551161:CAS:528:DC%2BB3cXpslWltrs%3D10.1371/journal.pone.0232776
– reference: AlhudhaifACömertZPolatKOtitis media detection using tympanic membrane images with a novel multi-class machine learning algorithmPeerJ Comput. Sci.2021710.7717/peerj-cs.405338170487959604
– reference: SundgaardJVHarteJBrayPLaugesenSKamideYTanakaCDeep metric learning for otitis media classificationMed. Image Anal.2021171
– reference: Deloitte Access Economics. The Social and Economic Costs of Hearing Loss in Australia [Internet]. https://apo.org.au/node/102776. Accessed 28 Aug 2022 (2017)
– reference: SandströmJMyburghHLaurentCSwanepoelDWLundbergTA machine learning approach to screen for otitis media using digital otoscope images labelled by an expert panelDiagnostics2022126131810.3390/diagnostics12061318357411289222011
– reference: LiXLiCRahamanMMSunHLiXWuJA comprehensive review of computer-aided whole-slide image analysis: From datasets to feature extraction, segmentation, classification and detection approachesArtif. Intell. Rev.20225564809487810.1007/s10462-021-10121-0
– reference: LeeJYChoiSHChungJWAutomated classification of the tympanic membrane using a convolutional neural networkAppl. Sci. (Switzerland).2019991827
– reference: Basaran, E., Comert, Z., Sengur, A., Budak, U., Celik, Y., & Togacar, M. Chronic tympanic membrane diagnosis based on deep convolutional neural network. in UBMK 2019—Proceedings, 4th International Conference on Computer Science and Engineering. 635–638 (2019).
– reference: YinJNgiamKYTeoHHRole of artificial intelligence applications in real-life clinical practice: Systematic reviewJ. Med. Internet Res. (JMIR Publications Inc.)2021232575910.2196/25759
– reference: RamspekCLJagerKJDekkerFWZoccaliCvan DiepenMExternal validation of prognostic models: What, why, how, when and where?Clin. Kidney J. (Oxford University Press)202114495810.1093/ckj/sfaa188
– reference: Wang, W., Tamhane, A., Santos, C., Rzasa, J.R., Clark, J.H., Canares, T.L. et al. Pediatric Otoscopy Video Screening with Shift Contrastive Anomaly Detection. http://arxiv.org/abs/2110.13254. Accessed 25 Oct 2021 (2021).
– reference: Shield, B. Evaluation of the Social and Economic Costs of Hearing Impairment: A Report for Hear-It [Internet]. https://www.hear-it.org/sites/default/files/multimedia/documents/Hear_It_Report_October_2006.pdf. Accessed 28 Aug 2022 (2006).
– reference: LiuXCruz RiveraSMoherDCalvertMDennistonAKSpirit-aiTCONSORT-AI extensionNat Med.202026136413741:CAS:528:DC%2BB3cXhvVyqu7%2FO10.1038/s41591-020-1034-x329082837598943
– reference: ViscainoMMaassJCDelanoPHTorrenteMStottCAuatCheeinFComputer-aided diagnosis of external and middle ear conditions: A machine learning approachPLoS One [Internet].20201531181:CAS:528:DC%2BB3cXmtlCqtbo%3D10.1371/journal.pone.0229226
– reference: CömertZFusing fine-tuned deep features for recognizing different tympanic membranesBiocybern. Biomed. Eng. (Internet)2020401405110.1016/j.bbe.2019.11.001
– reference: ChenHLiCLiXRahamanMMHuWLiYIL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approachComput. Biol. Med.202211431:CAS:528:DC%2BB38XisFKntrzE
– reference: World Health Organisation. World Report on Hearing [Internet]. Geneva; 2021. https://www.who.int/publications/i/item/world-report-on-hearing. Accessed 28 Aug 2022 (2021).
– reference: PichicheroMEAssessing diagnostic accuracy and tympanocentesis skills of South African physicians in management of otitis media [7]S. Afr. Med. J.200292213713811894649
– reference: Chen, H., Li, C., Wang, G., Li, X., Rahaman, M., Sun, H. et al. GasHis-Transformer: A Multi-scale Visual Transformer Approach for Gastric Histopathological Image Detection. http://arxiv.org/abs/2104.14528. Accessed 29 Apr 2021 (2021).
– reference: Goshtasbi, K. Machine Learning Models to Predict Diagnosis and Surgical Outcomes in Otolaryngology [Internet]. https://escholarship.org/uc/item/1tr0c2p0 (University of California Irvine, 2020).
– reference: Binol, H., Niazi, M.K.K., Elmaraghy, C., Moberly, A.C., & Gurcan, M.N. Automated video summarization and label assignment for otoscopy videos using deep learning and natural language processing. in Medical Imaging 2021: Imaging Informatics for Healthcare, Research, and Applications [Internet] (Park, B.J., Deserno, T.M. Eds.). 28. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11601/2582009/Automated-video-summarization-and-label-assignment-for-otoscopy-videos-using/https://doi.org/10.1117/12.2582009.full. Accessed 17 Mar 2021 (SPIE, 2021).
– reference: He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. http://arxiv.org/abs/1512.03385. Accessed 10 Dec 2015 (2015).
– reference: KhanMAKwonSChooJHongSMKangSHParkIHAutomatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networksNeural Netw. [Internet].202012638439410.1016/j.neunet.2020.03.02332311656
– reference: Simonyan, K., & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. http://arxiv.org/abs/1409.1556. Accessed 4 Sep 2014 (2014).
– reference: WahlBCossy-GantnerAGermannSSchwalbeNRArtificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings?BMJ Glob Health (Internet)201834e00079810.1136/bmjgh-2018-000798
– reference: HabibARKajbafzadehMHasanZWongEGunasekeraHPerryCArtificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysisClin. Otolaryngol.202247340141310.1111/coa.13925352533789310803
– reference: ChaDPaeCLeeSANaGHurYKLeeHYDifferential biases and variabilities of deep learning-based artificial intelligence and human experts in clinical diagnosis: Retrospective cohort and survey studyJMIR Med. Inform.20219123304910.2196/33049
– reference: Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K.Q. Densely Connected Convolutional Networks. http://arxiv.org/abs/1608.06993. Accessed 24 Aug 2016 (2016).
– reference: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T. et al. An Image is Worth 16 x 16 Words: Transformers for Image Recognition at Scale. arXiv [Internet]. 11929. http://arxiv.org/abs/2010.11929 (2020).
– reference: UçarMAkyolKAtilaUçarEClassification of different tympanic membrane conditions using fused deep hypercolumn features and bidirectional LSTMIrbm (Internet)2021111110.1016/j.irbm.2021.01.001
– reference: FutomaJSimonsMPanchTDoshi-VelezFCeliLAThe myth of generalisability in clinical research and machine learning in health careLancet202012e489e492
– reference: BaşaranECömertZCelikYVelappanSTogacarMDetermination of tympanic membrane region in the middle ear otoscope images with convolutional neural network based YOLO methodDeu Muhendislik Fakultesi Fen ve Muhendislik.2020226691992810.21205/deufmd.2020226625
– reference: LivingstoneDChauJOtoscopic diagnosis using computer vision: An automated machine learning approachLaryngoscope20191316
– reference: HuangJLingCXUsing AUC and accuracy in evaluating learning algorithmsIEEE Trans. Knowl. Data Eng.20051732993101:CAS:528:DC%2BD2MXjslCgurg%3D10.1109/TKDE.2005.50
– reference: Wang, W., Tamhane, A., Rzasa, J., Clark, J., Canares, T., & Unberath, M. Otoscopy video screening with deep anomaly detection. in (Drukker, K., Mazurowski, M.A. eds.) Medical Imaging 2021: Computer-Aided Diagnosis [Internet]. 50. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11597/2581902/Otoscopy-video-screening-with-deep-anomaly-detection/https://doi.org/10.1117/12.2581902.full. Accessed 17 Mar 2021. (SPIE, 2021)
– reference: KleinmanKPsoterKJNyhanASolomonBSKimJMCanaresTEvaluation of digital otoscopy in pediatric patients: A prospective randomized controlled clinical trialAm. J. Emerg. Med.202114615015510.1016/j.ajem.2021.04.030
– reference: BinolHKhalidMNiaziKElmaraghyCMoberlyACGurcanMNOtoXNet—Automated identification of eardrum diseases from otoscope videos: A deep learning study for video-representing imagesmedRxiv (Internet)202110.1101/2021.08.05.21261672
– reference: WormaldPJBrowningGGRobinsonKIs otoscopy reliable? A structured teaching method to improve otoscopic accuracy in traineesClin. Otolaryngol. Allied Sci.199520163671:STN:280:DyaK2MzgvVOktw%3D%3D10.1111/j.1365-2273.1995.tb00014.x7788938
– reference: AlamiHAlamiHRivardLRivardLLehouxPLehouxPArtificial intelligence in health care: Laying the foundation for responsible, sustainable, and inclusive innovation in low- and middle-income countriesGlobal Health.202016116
– reference: BinolHMoberlyACNiaziMKKEssigGShahJElmaraghyCSelectStitch: Automated frame segmentation and stitching to create composite images from otoscope video clipsAppl. Sci. (Switzerland)20201017113
– reference: GraydonKWaterworthCMillerHGunasekeraHGlobal burden of hearing impairment and ear diseaseJ. Laryngol. Otol.2019133118251:STN:280:DC%2BB3c7itV2jtA%3D%3D10.1017/S002221511800127530047343
– reference: CrowsonMGHartnickCJDiercksGRGallagherTQFracchiaMSSetlurJMachine learning for accurate intraoperative pediatric middle ear effusion diagnosisPediatrics2021147410.1542/peds.2020-03454633731369
– reference: CohenJFKorevaarDAAltmanDGBrunsDEGatsonisCAHooftLSTARD 2015 guidelines for reporting diagnostic accuracy studies: Explanation and elaborationBMJ Open201661111710.1136/bmjopen-2016-012799
– reference: WuZLinZLiLPanHChenGFuYDeep learning for classification of pediatric otitis mediaLaryngoscope.202013118
– reference: World Health Organization. Childhood Hearing Loss—Act Now, Here’s How! [Internet]. Geneva; 2016. https://apps.who.int/iris/handle/10665/204507. Accessed 28 Aug 2022 (2016).
– reference: LiuWLiCRahamanMMJiangTSunHWuXIs the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformersComput. Biol. Med.20221141
– reference: BasaranEComertZCelikYConvolutional neural network approach for automatic tympanic membrane detection and classificationBiomed. Signal Process Control2020561114
– reference: ByunHYuSOhJBaeJYoonMSLeeSHAn assistive role of a machine learning network in diagnosis of middle ear diseasesJ. Clin. Med.20211015319810.3390/jcm10153198343619828347824
– reference: AleneziEMAJajkoKReidALocatelli-SmithAMcMahenCSETaoKFMClinician-rated quality of video otoscopy recordings and still images for the asynchronous assessment of middle-ear diseaseJ. Telemed. Telecare2021261357633X20987783
– reference: ZhangJLiCYinYZhangJGrzegorzekMApplications of artificial neural networks in microorganism image analysis: A comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformerArtif. Intell. Rev.20221158
– reference: MyburghHCJoseSSwanepoelDWLaurentCTowards low cost automated smartphone- and cloud-based otitis media diagnosisBiomed. Signal Process. Control [Internet].201839345210.1016/j.bspc.2017.07.015
– reference: BinolHNiaziMKKEssigGShahJMattinglyJKHarrisMSDigital otoscopy videos versus composite images: A reader study to compare the accuracy of ENT physiciansLaryngoscope20211315E1668E167610.1002/lary.2925333170529
– reference: BradleyAPThe use of the area under the ROC curve in the evaluation of machine learning algorithmsPatter Recognit.1997307114511591997PatRe..30.1145B10.1016/S0031-3203(96)00142-2
– reference: Seok, J., Song, J.J., Koo, J.W., Kin, H.C., & Choi, B.Y. The semantic segmentation approach for normal and pathologic tympanic membrane using deep learning (internet). BioRxiv. https://doi.org/10.1101/515007v2.full. Accessed 3 Mar 2019 (2019).
– reference: Basaran, E., Sengur, A., Comert, Z., Budak, U., Celik, Y., & Velappan, S. Normal and acute tympanic membrane diagnosis based on gray level co-occurrence matrix and artificial neural networks. in 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. 5–10 (2019).
– reference: World Health Organization. Global Costs of Unaddressed Hearing Loss and Cost-Effectiveness of Interventions: A WHO Report [Internet]. Geneva; 2017. https://apps.who.int/iris/bitstream/handle/10665/254659/9789241512046-eng.pdf. Accessed 28 Aug 2022 (2017).
– reference: PichicheroMEPooleMDComparison of performance by otolaryngologists, pediatricians, and general practioners on an otoendoscopic diagnostic video examinationInt. J. Pediatr. Otorhinolaryngol.200569336136610.1016/j.ijporl.2004.10.01315733595
– reference: LivingstoneDTalaiASChauJForkertNDBuilding an otoscopic screening prototype tool using deep learningJ. Otolaryngol. Head Neck Surg.2019486615
– reference: BaşaranECömertZÇelikYNeighbourhood component analysis and deep feature-based diagnosis model for middle ear otoscope imagesNeural Comput. Appl.20223486027603810.1007/s00521-021-06810-0
– reference: HabibARCrosslandGPatelHWongEKongKGunasekeraHAn artificial intelligence computer-vision algorithm to triage otoscopic images from Australian Aboriginal and Torres Strait Islander childrenOtol. Neurotol.202243448148810.1097/MAO.000000000000348435239622
– ident: 31921_CR26
  doi: 10.1117/12.2582009.full
– volume: 5
  start-page: 156
  year: 2016
  ident: 31921_CR23
  publication-title: EBioMedicine [Internet]
  doi: 10.1016/j.ebiom.2016.02.017
– volume: 6
  start-page: 1
  issue: 11
  year: 2016
  ident: 31921_CR42
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2016-012799
– year: 2021
  ident: 31921_CR25
  publication-title: medRxiv (Internet)
  doi: 10.1101/2021.08.05.21261672
– volume: 133
  start-page: 18
  issue: 1
  year: 2019
  ident: 31921_CR12
  publication-title: J. Laryngol. Otol.
  doi: 10.1017/S0022215118001275
– ident: 31921_CR1
– volume: 12
  start-page: 1318
  issue: 6
  year: 2022
  ident: 31921_CR14
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12061318
– ident: 31921_CR4
– volume: 10
  start-page: 3198
  issue: 15
  year: 2021
  ident: 31921_CR16
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm10153198
– volume: 134
  start-page: 311
  issue: 4
  year: 2020
  ident: 31921_CR17
  publication-title: J. Laryngol. Otol.
  doi: 10.1017/S0022215120000717
– volume: 69
  start-page: 361
  issue: 3
  year: 2005
  ident: 31921_CR8
  publication-title: Int. J. Pediatr. Otorhinolaryngol.
  doi: 10.1016/j.ijporl.2004.10.013
– volume: 147
  issue: 4
  year: 2021
  ident: 31921_CR15
  publication-title: Pediatrics
  doi: 10.1542/peds.2020-034546
– ident: 31921_CR29
  doi: 10.1117/12.2581902.full
– ident: 31921_CR41
– volume: 131
  start-page: 1
  year: 2020
  ident: 31921_CR35
  publication-title: Laryngoscope.
– volume: 1
  start-page: 141
  year: 2022
  ident: 31921_CR36
  publication-title: Comput. Biol. Med.
– ident: 31921_CR49
– ident: 31921_CR30
  doi: 10.3389/fdgth.2021.810427
– volume: 16
  start-page: 1
  issue: 1
  year: 2020
  ident: 31921_CR63
  publication-title: Global Health.
  doi: 10.1186/s12992-019-0531-5
– volume: 1
  start-page: 143
  year: 2022
  ident: 31921_CR40
  publication-title: Comput. Biol. Med.
– volume: 9
  start-page: 1827
  issue: 9
  year: 2019
  ident: 31921_CR55
  publication-title: Appl. Sci. (Switzerland).
– volume: 126
  start-page: 384
  year: 2020
  ident: 31921_CR11
  publication-title: Neural Netw. [Internet].
  doi: 10.1016/j.neunet.2020.03.023
– volume: 55
  start-page: 4809
  issue: 6
  year: 2022
  ident: 31921_CR37
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10121-0
– ident: 31921_CR5
– ident: 31921_CR53
  doi: 10.1109/IDAP.2019.8875973
– volume: 15
  start-page: 1
  issue: 3
  year: 2020
  ident: 31921_CR18
  publication-title: PLoS One [Internet].
  doi: 10.1371/journal.pone.0229226
– ident: 31921_CR56
  doi: 10.1101/515007v2.full
– volume: 92
  start-page: 137
  issue: 2
  year: 2002
  ident: 31921_CR9
  publication-title: S. Afr. Med. J.
– volume: 10
  start-page: 1
  issue: 17
  year: 2020
  ident: 31921_CR27
  publication-title: Appl. Sci. (Switzerland)
– ident: 31921_CR48
– volume: 26
  start-page: 1364
  year: 2020
  ident: 31921_CR43
  publication-title: Nat Med.
  doi: 10.1038/s41591-020-1034-x
– ident: 31921_CR54
  doi: 10.1109/UBMK.2019.8907070
– volume: 15
  start-page: 1
  issue: 5
  year: 2020
  ident: 31921_CR45
  publication-title: PLoS One [Internet].
  doi: 10.1371/journal.pone.0232776
– volume: 1
  start-page: 1
  year: 2022
  ident: 31921_CR13
  publication-title: Artif. Intell. Rev.
– volume: 1
  start-page: 71
  year: 2021
  ident: 31921_CR33
  publication-title: Med. Image Anal.
– volume: 20
  start-page: 63
  issue: 1
  year: 1995
  ident: 31921_CR10
  publication-title: Clin. Otolaryngol. Allied Sci.
  doi: 10.1111/j.1365-2273.1995.tb00014.x
– volume: 1
  start-page: e489
  issue: 2
  year: 2020
  ident: 31921_CR57
  publication-title: Lancet
– ident: 31921_CR2
– volume: 43
  start-page: 481
  issue: 4
  year: 2022
  ident: 31921_CR38
  publication-title: Otol. Neurotol.
  doi: 10.1097/MAO.0000000000003484
– ident: 31921_CR47
– volume: 1
  start-page: 1
  year: 2021
  ident: 31921_CR31
  publication-title: Irbm (Internet)
  doi: 10.1016/j.irbm.2021.01.001
– volume: 7
  year: 2021
  ident: 31921_CR32
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.405
– volume: 47
  start-page: 401
  issue: 3
  year: 2022
  ident: 31921_CR39
  publication-title: Clin. Otolaryngol.
  doi: 10.1111/coa.13925
– volume: 22
  start-page: 919
  issue: 66
  year: 2020
  ident: 31921_CR44
  publication-title: Deu Muhendislik Fakultesi Fen ve Muhendislik.
  doi: 10.21205/deufmd.2020226625
– volume: 9
  start-page: 33049
  issue: 12
  year: 2021
  ident: 31921_CR6
  publication-title: JMIR Med. Inform.
  doi: 10.2196/33049
– volume: 1
  start-page: 150
  issue: 46
  year: 2021
  ident: 31921_CR7
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2021.04.030
– volume: 13
  start-page: 1
  year: 2019
  ident: 31921_CR21
  publication-title: Laryngoscope
– volume: 131
  start-page: E1668
  issue: 5
  year: 2021
  ident: 31921_CR28
  publication-title: Laryngoscope
  doi: 10.1002/lary.29253
– volume: 40
  start-page: 40
  issue: 1
  year: 2020
  ident: 31921_CR34
  publication-title: Biocybern. Biomed. Eng. (Internet)
  doi: 10.1016/j.bbe.2019.11.001
– volume: 48
  start-page: 1
  issue: 66
  year: 2019
  ident: 31921_CR20
  publication-title: J. Otolaryngol. Head Neck Surg.
– volume: 61
  start-page: 921
  year: 2021
  ident: 31921_CR60
  publication-title: Int. J. Audiol.
– ident: 31921_CR19
– volume: 34
  start-page: 6027
  issue: 8
  year: 2022
  ident: 31921_CR24
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06810-0
– volume: 14
  start-page: 49
  year: 2021
  ident: 31921_CR50
  publication-title: Clin. Kidney J. (Oxford University Press)
  doi: 10.1093/ckj/sfaa188
– volume: 30
  start-page: 1145
  issue: 7
  year: 1997
  ident: 31921_CR58
  publication-title: Patter Recognit.
  doi: 10.1016/S0031-3203(96)00142-2
– volume: 17
  start-page: 299
  issue: 3
  year: 2005
  ident: 31921_CR59
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.50
– ident: 31921_CR3
– volume: 39
  start-page: 34
  year: 2018
  ident: 31921_CR22
  publication-title: Biomed. Signal Process. Control [Internet].
  doi: 10.1016/j.bspc.2017.07.015
– volume: 56
  start-page: 1
  issue: 1
  year: 2020
  ident: 31921_CR52
  publication-title: Biomed. Signal Process Control
– volume: 26
  start-page: 1357633X2098778
  year: 2021
  ident: 31921_CR61
  publication-title: J. Telemed. Telecare
  doi: 10.1177/1357633X20987783
– volume: 3
  start-page: e000798
  issue: 4
  year: 2018
  ident: 31921_CR62
  publication-title: BMJ Glob Health (Internet)
  doi: 10.1136/bmjgh-2018-000798
– volume: 23
  start-page: 25759
  year: 2021
  ident: 31921_CR51
  publication-title: J. Med. Internet Res. (JMIR Publications Inc.)
  doi: 10.2196/25759
– ident: 31921_CR46
SSID ssj0000529419
Score 2.4838762
Snippet To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from otoscopic...
Abstract To evaluate the generalizability of artificial intelligence (AI) algorithms that use deep learning methods to identify middle ear disease from...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5368
SubjectTerms 692/308/575
692/700/139
692/700/478
Algorithms
Artificial Intelligence
Deep Learning
Ear diseases
Ear Diseases - diagnostic imaging
Humanities and Social Sciences
Humans
Middle ear
multidisciplinary
Otoscopy - methods
Science
Science (multidisciplinary)
Teaching methods
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-CARIXvscCAxmJG0SLHaeJTwjQJg4w7QBoN8u1nazSmnRNhlSJP573HLdT-diFW1vbqpP34Z_9nn8P4HWZIwh2XODepMINSsFdOsWFOa0FolMrjXGhnM_3z-XxcXV6qk7igVsf0yrXPjE4atdZOiM_EKhI5Ekn6t3iIqWqURRdjSU0bsItRDacUrq-iJPNGQtFsSRX8a5MllcHPa5XdKdM0KUyJXAnvbUeBdr-v2HNP1Mmf4ubhuXo6P7_PsgDuBeBKHs_as5DuOHbR3BnLE25egw_DyMNeNswxIisGempKQeMsmlXrKuZ837BYtmJhs3m6JqYJTRO6UdB4sycN_jfw9m8Z0OHAyhkwebhUIThQBbjQ4zS7xvWDR3dklk9gW9Hh18_fkpjpYbUFpIPaV3kXimBX0zGncEPCNusU3leo8EXQmK7sQjtpsoZWxIbqbF5VZusckpMVL4LO23X-j1gpZeFRQyDbtdLozIzNT4z3nqZOUSbPAG-lpe2kcacqmmc6xBOzys9ylijjHWQsc4SeLMZsxhJPK7t_YHUYNOTCLjDD92y0dGeNS8rrwojnfFCokIjUHW-lNPaStoBiwT219LX0Sv0-kr0CbzaNKM9U5DGtL67DH3kpCIS_ASejjq3mUleEsKW-A6qLW3cmup2Szs7C5zhPMASXibwdq24V_P697t4dv1jPIe7gmwpZDLtw86wvPQv4Lb9Mcz65ctgjL8A5YU9HA
  priority: 102
  providerName: ProQuest
Title Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy
URI https://link.springer.com/article/10.1038/s41598-023-31921-0
https://www.ncbi.nlm.nih.gov/pubmed/37005441
https://www.proquest.com/docview/2793847169
https://www.proquest.com/docview/2794686109
https://pubmed.ncbi.nlm.nih.gov/PMC10067817
https://doaj.org/article/178e95a4dae24ad3951de74bfc419172
Volume 13
WOSCitedRecordID wos000984099000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BBhIviG8yRmUk3qBa4ji1_chQJ5BYFSFA5SlybSertCZTmyFV2h_PnZOWlc8XXqy2tiXrPuzf1effAbyUKYJgl3CMTRQGKFnihjM8mIclR3RqhTEulPP58kFOJmo61fm1Ul-UE9bRA3eCO0qk8jozwhnPBc5EROC8FLPSCgo1wu4bS30tmOpYvbnG_v6VTJyqoxWeVPSajNNzMs0xht45iQJh_-9Q5q_Jkj_dmIaD6OQe3O0RJHvTrfw-3PD1A7jd1ZRcP4Srcc_fXVcMwR2rOl5pSt6iNNg1a0rmvL9gfb2Iis0XuKcwSzCa8oaCqpg5r5rlvD1brFjb4AS6a2CL8G8Gw4msv9hhlDdfsaZt6HnL-hF8Phl_evtu2JdYGNpMJO2wzFKvNccvJk6cwQ-It6zTaVqip2ZcYL-xiMlm2hkriUbU2FSVJlZO85FOH8Ne3dT-KTDpRWYRfOB-6YXRsZkZHxtvvYgdwsQkgmQj7sL2_ONUBuO8CPfgqSo6FRWooiKoqIgjeLWdc9Gxb_x19DFpcTuSmLPDD2hPRW9Pxb_sKYLDjQ0UvTuvCo67GB3jIx3Bi203OiLdrpjaN5dhjBgpYq-P4ElnMtuVpJKgsUAZqB1j2lnqbk89Pwtk30nAE4mM4PXG7n6s68-yOPgfsngGdzg5TEhUOoS9dnnpn8Mt-62dr5YDuCmnMrRqAPvH40n-cRC8ENtTnlMrsd3P35_mX78DN7E2Bw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aBgheuMMCA4wETxAtcZwmeUCIy6ZNK9UeBtqbcW0nq7QmXZuBKvGb-I2c41ymctnbHnhra1uy3c_H3_G5AbxIIiTBJuSom6SooMSh8cd4Mfs5R3aqhVLGlfP5MkxGo_ToKDtYg59dLAy5VXYy0QlqU2l6I9_iCCSSpIPs7ezUp6pRZF3tSmg0sNi3y--osi3e7H3E__cl5zvbhx92_baqgK9jEdZ-Hkc2yzh-UUFoFH5AiqENKvY5gjPmAtuVRhoyzozSCWXOVDpKcxWkJuMDSr6EIv-KoMxi5CrID_o3HbKaiTBrY3OCKN1a4P1IMWycgtgyjpr7yv3nygT8jdv-6aL5m53WXX87t_63jbsNN1uizd41J-MOrNnyLlxrSm8u78GP7TbNeVkw5MCsaNJvk48beQsvWZUzY-2MtWU1CjaZouhlmrQNcq9yiGbqpMC11sfTBasrHEAmGTZ1jz4MB7LW_sUovKBgVV1RFNDyPny-lKU_gPWyKu0GsMSKWCNHw2vFCpUFaqxsoKy2IjDIpkMPwg4fUrdp2qlayIl07gJRKhtMScSUdJiSgQev-jGzJknJhb3fE-z6npRg3P1QzQvZyisZJqnNYiWMslzggUUibmwixrkWpOFzDzY7tMlW6i3kOdQ8eN43o7wiI5QqbXXm-ohBSkn-PXjYYLyfSZSQBiFwD9IV9K9MdbWlnBy7nOiho11h4sHr7qCcz-vfe_Ho4mU8g-u7h5-Gcrg32n8MNzidY-e1tQnr9fzMPoGr-ls9WcyfOkHA4OtlH6BfDK6Ybw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELZWXUBceD8CCxgJThA1cZwmOSAE7FZUu1Q9AFpOXtd2spW2SWmyoEr8Mn4dM47TVXnsbQ_c2tqWbPeb8Tee8Qwhz5IISLAOGdgmKRgocaj9KRzMfs6AnSoupbblfD4fJONxeniYTbbIz-4tDIZVdjrRKmpdKbwj7zMAEmrSQdbPXVjEZHf4evHVxwpS6Gntymm0ENk3q-9gvtWvRrvwXz9nbLj38d1731UY8FXMw8bP48hkGYMvMgi1hA9AN5QGIz8HoMaMQ7tUQEmmmZYqwSyaUkVpLoNUZ2yAiZhA_W8DJeesR7Ynow-TL-sbHvSh8TBzL3WCKO3XcFriizaGT9oyBnb8xmloiwb8jen-GbD5m9fWHobD6__zNt4g1xwFp29amblJtkx5i1xui3KubpMfey4BellQYMe0aBNzY_QbxhGvaJVTbcyCuoIbBZ3NQSlThXYIBl5ZrFN5UsBam-N5TZsKBqCzhs7tdRCFgdR5xig-PCho1VT4Pmh1h3y6kKXfJb2yKs19QhPDYwXsDQ4cw2UWyKk0gTTK8EADzw49EnZYEcolcMc6IifCBhJEqWjxJQBfwuJLBB55sR6zaNOXnNv7LUJw3RNTj9sfqmUhnCYTYZKaLJZcS8M4iDJQdG0SPs0VR9ufeWSnQ55w-rAWZ7DzyNN1M2gydE_J0lSntg8fpJj-3yP3WryvZxIlaFtw2IN0QxI2prrZUs6Obbb00BKyMPHIy05ozub17714cP4ynpArIDfiYDTef0iuMhRpG861Q3rN8tQ8IpfUt2ZWLx87rUDJ0UVL0C-v5aK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+generalizability+of+deep+learning+image+classification+algorithms+to+detect+middle+ear+disease+using+otoscopy&rft.jtitle=Scientific+reports&rft.au=Habib%2C+Al-Rahim&rft.au=Xu%2C+Yixi&rft.au=Bock%2C+Kris&rft.au=Mohanty%2C+Shrestha&rft.date=2023-04-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=5368&rft_id=info:doi/10.1038%2Fs41598-023-31921-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon