Design Method for a Wideband Non-Uniformly Spaced Linear Array Using the Modified Reinforcement Learning Algorithm

In this paper, we present a design method for a wideband non-uniformly spaced linear array (NUSLA), with both symmetric and asymmetric geometries, using the modified reinforcement learning algorithm (MORELA). We designed a cost function that provided freedom to the beam pattern by setting limits onl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors Ročník 22; číslo 14; s. 5456
Hlavní autoři: Kang, Seyoung, Kim, Seonkyo, Park, Cheolsun, Chung, Wonzoo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 21.07.2022
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we present a design method for a wideband non-uniformly spaced linear array (NUSLA), with both symmetric and asymmetric geometries, using the modified reinforcement learning algorithm (MORELA). We designed a cost function that provided freedom to the beam pattern by setting limits only on the beam width (BW) and side-lobe level (SLL) in order to satisfy the desired BW and SLL in the wide band. We added the scan angle condition to the cost function to design the scanned beam pattern, as the ability to scan a beam in the desired direction is important in various applications. In order to prevent possible pointing angle errors for asymmetric NUSLA, we employed a penalty function to ensure the peak at the desired direction. Modified reinforcement learning algorithm (MORELA), which is a reinforcement learning-based algorithm used to determine a global optimum of the cost function, is applied to optimize the spacing and weights of the NUSLA by minimizing the proposed cost function. The performance of the proposed scheme was verified by comparing it with that of existing heuristic optimization algorithms via computer simulations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s22145456