Molecular dynamics simulation on regulation of liquid–liquid phase separation of repetitive peptides

Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 13382 - 10
Hlavní autori: Yang, Xiaojun, Wang, Yanwei, Yang, Guangcan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 11.06.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.
AbstractList Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.
Abstract Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.
Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.
Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological functions and dysfunctions. This study employs a residue-leveled coarse-grained molecular dynamics approach to simulate the phase separation of repetitive polyproline and polyarginine peptides (poly PR) with varying lengths and sequences in solution, considering different concentrations and temperatures. Our findings highlight the crucial role of sequence order in promoting LLPS in peptides with identical lengths of repetitive sequences. Interestingly, repetitive peptides containing fewer than 10 polyarginine repeats exhibit no LLPS, even at salt concentrations up to 3 M. Notably, our simulations align with experimental observations, pinpointing a salt concentration of 2.7 M for PR25-induced LLPS. Utilizing the same methodology, we predict the required salt concentrations for LLPS induction as 1.2 M, 1.5 M, and 2.7 M for PR12, PR15, and PR35, respectively. These predictions demonstrate good agreement with experimental results. Extending our investigation to include the peptide glutamine and arginine (GR15) in DNA solution, our simulations mirror experimental observations of phase separation. To unveil the molecular forces steering peptide phase separation, we introduce a dielectric constant modifier and hydrophobicity disruptor into poly PR systems. Our coarse-grained analysis includes an examination of temperature effects, leading to the inference that both hydrophobic and electrostatic interactions drive phase separation in peptide systems.
ArticleNumber 13382
Author Yang, Xiaojun
Yang, Guangcan
Wang, Yanwei
Author_xml – sequence: 1
  givenname: Xiaojun
  surname: Yang
  fullname: Yang, Xiaojun
  organization: Department of Physics, Wenzhou University
– sequence: 2
  givenname: Yanwei
  surname: Wang
  fullname: Wang, Yanwei
  email: wangyw@wzu.edu.cn
  organization: Department of Physics, Wenzhou University
– sequence: 3
  givenname: Guangcan
  surname: Yang
  fullname: Yang, Guangcan
  email: yanggc@wzu.edu.cn
  organization: Department of Physics, Wenzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38862770$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi1URMvQF2CBIrFhE_AttrNCqOJSqYgNrC3HPp56lIlTO6nUHe_AG_IkeCbt0HZRy5KP7e__dexzXqKjIQ6A0GuC3xPM1IfMSdOqGlNeC86orOUzdEIxb2rKKD26Fx-j05w3uIyGtpy0L9AxU0pQKfEJ8t9jD3buTarczWC2weYqh205mEIcqjITrA87X_Xhag7u7-8_S1CNlyZDlWE06cAkGGEKU7iGaoRxCg7yK_Tcmz7D6e26Qr--fP559q2--PH1_OzTRW0bTqbacsaUZBKU8B46AaIFxZxjslHMO64Ua7HDnYHCEEMUYc4S1jXEekWtZCt0vvi6aDZ6TGFr0o2OJuj9QUxrbdIUbA9aYgvS8-LWGG5N13bGMNo5Ir1k0O28Pi5e49xtwVkYpmT6B6YPb4ZwqdfxWhNChMSlSiv07tYhxasZ8qS3IVvoezNAnLNmWMiWUKxEQd8-QjdxTkP5qx0lBG4Ubwr15n5Kh1zu6lkAtQA2xZwTeG3DtC9MyTD0mmC96x69dI8u3aP33aN3z6WPpHfuT4rYIsoFHtaQ_qf9hOofM0_aUA
CitedBy_id crossref_primary_10_1002_adma_202414703
Cites_doi 10.1038/ncomms9088
10.1016/j.neuron.2011.09.010
10.1016/j.csbj.2021.06.051
10.19185/matters.201702000010
10.15252/embj.201695957
10.1002/pro.4094
10.1038/s41467-021-21181-9
10.1016/j.cell.2015.07.047
10.1126/science.1232927
10.1007/s00401-013-1189-3
10.1016/j.cell.2017.02.007
10.1371/journal.pcbi.1005941
10.1021/acs.jpcb.0c11479
10.1016/j.cell.2018.12.035
10.1152/ajpcell.00372.2021
10.1021/acs.jctc.0c01064
10.1073/pnas.1013343108
10.1529/biophysj.107.116152
10.1016/j.bpj.2021.01.034
10.3390/molecules28186707
10.1021/jacsau.2c00414
10.1039/C8CP05095C
10.1016/j.neuron.2011.09.011
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-64327-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_70ce7f4d0b5a4cab9baa32bd17f73eb7
PMC11167010
38862770
10_1038_s41598_024_64327_7
Genre Journal Article
GrantInformation_xml – fundername: NSFC
  grantid: 12074289
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-c4338737e86ffeb6e69e83dd37583fd488390d0bae37e1a1813dc13b51cf82c73
IEDL.DBID M7P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001245305300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:51:27 EDT 2025
Tue Nov 04 02:05:40 EST 2025
Fri Sep 05 06:42:53 EDT 2025
Tue Oct 07 08:11:18 EDT 2025
Mon Jul 21 05:58:44 EDT 2025
Tue Nov 18 20:44:41 EST 2025
Sat Nov 29 02:13:17 EST 2025
Fri Feb 21 02:39:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Liquid–liquid phase separation
Molecular dynamics
Polypeptides
Hydrophobicity
GENESIS
Electrostatic interaction
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c4338737e86ffeb6e69e83dd37583fd488390d0bae37e1a1813dc13b51cf82c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3066605845?pq-origsite=%requestingapplication%
PMID 38862770
PQID 3066605845
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_70ce7f4d0b5a4cab9baa32bd17f73eb7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11167010
proquest_miscellaneous_3067912086
proquest_journals_3066605845
pubmed_primary_38862770
crossref_citationtrail_10_1038_s41598_024_64327_7
crossref_primary_10_1038_s41598_024_64327_7
springer_journals_10_1038_s41598_024_64327_7
PublicationCentury 2000
PublicationDate 2024-06-11
PublicationDateYYYYMMDD 2024-06-11
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Regy, Thompson, Kim, Mittal (CR20) 2021; 30
Hnisz, Shrinivas, Young, Chakraborty, Sharp (CR3) 2017; 169
Tesei, Schulze, Crehuet, Lindorff-Larsen (CR19) 2021; 11
Dannenhoffer-Lafage, Best (CR21) 2021; 125
Wang, Xiang, Chen, Yang (CR16) 2023; 28
Mori, Arzberger, Grässer, Gijselinck, May, Rentzsch, Weng, Schludi, van der Zee, Cruts (CR15) 2013; 126
Zhang, Xue, Li, Shi, Cao, Wang, Li (CR5) 2022; 3
Krainer, Welsh, Joseph, Espinosa, Wittmann, de Csilléry, Sridhar, Toprakcioglu, Gudiškytė, Czekalska (CR6) 2021
Altmeyer, Neelsen, Teloni, Pozdnyakova, Pellegrino, Grøfte, Rask, Streicher, Jungmichel, Nielsen (CR1) 2015
Jiang, Sun, Yang, Yuan, Velkov, Wang, Li (CR7) 2021; 19
DeJesus-Hernandez, Mackenzie, Boeve, Boxer, Baker, Rutherford, Nicholson, Finch, Flynn, Adamson (CR11) 2011; 72
Mateju, Franzmann, Patel, Kopach, Boczek, Maharana, Lee, Carra, Hyman, Alberti (CR4) 2017; 36
Dignon, Zheng, Kim, Best, Mittal (CR17) 2018; 14
Dumetz, Chockla, Kaler, Lenhoff (CR22) 2008; 94
Kroschwald, Maharana, Simon (CR18) 2017
Kanekura, Hayamizu, Kuroda (CR24) 2022; 322
Benayad, von Bülow, Stelzl, Hummer (CR8) 2020; 17
Zu, Gibbens, Doty, Gomes-Pereira, Huguet, Stone, Margolis, Peterson, Markowski, Ingram (CR13) 2011; 108
Das, Amin, Lin, Chan (CR9) 2018; 20
Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann (CR2) 2015; 162
Alberti, Gladfelter, Mittag (CR23) 2019; 176
Renton, Majounie, Waite, Simón-Sánchez, Rollinson, Gibbs, Schymick, Laaksovirta, Van Swieten, Myllykangas (CR12) 2011; 72
Perdikari, Jovic, Dignon, Kim, Fawzi, Mittal (CR10) 2021; 120
Mori, Weng, Arzberger, May, Rentzsch, Kremmer, Schmid, Kretzschmar, Cruts, Van Broeckhoven (CR14) 2013; 339
GL Dignon (64327_CR17) 2018; 14
K Kanekura (64327_CR24) 2022; 322
Y Wang (64327_CR16) 2023; 28
G Tesei (64327_CR19) 2021; 11
TM Perdikari (64327_CR10) 2021; 120
M DeJesus-Hernandez (64327_CR11) 2011; 72
AE Renton (64327_CR12) 2011; 72
G Krainer (64327_CR6) 2021
T Zu (64327_CR13) 2011; 108
T Dannenhoffer-Lafage (64327_CR21) 2021; 125
A Patel (64327_CR2) 2015; 162
AC Dumetz (64327_CR22) 2008; 94
M Zhang (64327_CR5) 2022; 3
K Mori (64327_CR14) 2013; 339
S Kroschwald (64327_CR18) 2017
M Altmeyer (64327_CR1) 2015
D Mateju (64327_CR4) 2017; 36
X Jiang (64327_CR7) 2021; 19
D Hnisz (64327_CR3) 2017; 169
S Das (64327_CR9) 2018; 20
RM Regy (64327_CR20) 2021; 30
S Alberti (64327_CR23) 2019; 176
Z Benayad (64327_CR8) 2020; 17
K Mori (64327_CR15) 2013; 126
References_xml – year: 2015
  ident: CR1
  article-title: Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9088
– volume: 72
  start-page: 257
  year: 2011
  end-page: 268
  ident: CR12
  article-title: A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.010
– volume: 19
  start-page: 3885
  year: 2021
  end-page: 3891
  ident: CR7
  article-title: Coarse-grained simulations uncover Gram-negative bacterial defense against polymyxins by the outer membrane
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.06.051
– year: 2017
  ident: CR18
  article-title: Hexanediol: A chemical probe to investigate the material properties of membrane-less compartments
  publication-title: Matters.
  doi: 10.19185/matters.201702000010
– volume: 36
  start-page: 1669
  year: 2017
  end-page: 1687
  ident: CR4
  article-title: An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function
  publication-title: EMBO J.
  doi: 10.15252/embj.201695957
– volume: 30
  start-page: 1371
  year: 2021
  end-page: 1379
  ident: CR20
  article-title: Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins
  publication-title: Protein Sci.
  doi: 10.1002/pro.4094
– year: 2021
  ident: CR6
  article-title: Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21181-9
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  ident: CR2
  article-title: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 339
  start-page: 1335
  year: 2013
  end-page: 1338
  ident: CR14
  article-title: The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS
  publication-title: Science
  doi: 10.1126/science.1232927
– volume: 126
  start-page: 881
  year: 2013
  end-page: 893
  ident: CR15
  article-title: Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-013-1189-3
– volume: 169
  start-page: 13
  year: 2017
  end-page: 23
  ident: CR3
  article-title: A phase separation model for transcriptional control
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.007
– volume: 14
  start-page: e1005941
  year: 2018
  ident: CR17
  article-title: Sequence determinants of protein phase behavior from a coarse-grained model
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005941
– volume: 125
  start-page: 4046
  year: 2021
  end-page: 4056
  ident: CR21
  article-title: A data-driven hydrophobicity scale for predicting liquid–liquid phase separation of proteins
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c11479
– volume: 176
  start-page: 419
  year: 2019
  end-page: 434
  ident: CR23
  article-title: Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.035
– volume: 322
  start-page: C197
  year: 2022
  end-page: C204
  ident: CR24
  article-title: Order controls disordered droplets: Structure–function relationships in C9ORF72-derived poly (PR)
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00372.2021
– volume: 17
  start-page: 525
  year: 2020
  end-page: 537
  ident: CR8
  article-title: Simulation of FUS protein condensates with an adapted coarse-grained model
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c01064
– volume: 108
  start-page: 260
  year: 2011
  end-page: 265
  ident: CR13
  article-title: Non-ATG-initiated translation directed by microsatellite expansions
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1013343108
– volume: 94
  start-page: 570
  year: 2008
  end-page: 583
  ident: CR22
  article-title: Protein phase behavior in aqueous solutions: Crystallization, liquid–liquid phase separation, gels, and aggregates
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.116152
– volume: 120
  start-page: 1187
  year: 2021
  end-page: 1197
  ident: CR10
  article-title: A predictive coarse-grained model for position-specific effects of post-translational modifications
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2021.01.034
– volume: 28
  start-page: 6707
  year: 2023
  ident: CR16
  article-title: Comprehensive regulation of liquid–liquid phase separation of polypeptides
  publication-title: Molecules
  doi: 10.3390/molecules28186707
– volume: 3
  start-page: 93
  year: 2022
  end-page: 104
  ident: CR5
  article-title: Sequence tendency for the interaction between low-complexity intrinsically disordered proteins
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00414
– volume: 11
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR19
  article-title: Accurate model of liquid–liquid phase behaviour of intrinsically-disordered proteins from data-driven optimization of single-chain properties
  publication-title: BioRxiv
– volume: 20
  start-page: 28558
  year: 2018
  end-page: 28574
  ident: CR9
  article-title: Coarse-grained residue-based models of disordered protein condensates: Utility and limitations of simple charge pattern parameters
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP05095C
– volume: 72
  start-page: 245
  year: 2011
  end-page: 256
  ident: CR11
  article-title: Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.011
– volume: 30
  start-page: 1371
  year: 2021
  ident: 64327_CR20
  publication-title: Protein Sci.
  doi: 10.1002/pro.4094
– volume: 14
  start-page: e1005941
  year: 2018
  ident: 64327_CR17
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005941
– volume: 176
  start-page: 419
  year: 2019
  ident: 64327_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.035
– volume: 11
  start-page: 1
  year: 2021
  ident: 64327_CR19
  publication-title: BioRxiv
– volume: 28
  start-page: 6707
  year: 2023
  ident: 64327_CR16
  publication-title: Molecules
  doi: 10.3390/molecules28186707
– volume: 94
  start-page: 570
  year: 2008
  ident: 64327_CR22
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.116152
– year: 2021
  ident: 64327_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21181-9
– volume: 125
  start-page: 4046
  year: 2021
  ident: 64327_CR21
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c11479
– volume: 322
  start-page: C197
  year: 2022
  ident: 64327_CR24
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00372.2021
– volume: 3
  start-page: 93
  year: 2022
  ident: 64327_CR5
  publication-title: JACS Au
  doi: 10.1021/jacsau.2c00414
– year: 2015
  ident: 64327_CR1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9088
– volume: 339
  start-page: 1335
  year: 2013
  ident: 64327_CR14
  publication-title: Science
  doi: 10.1126/science.1232927
– volume: 36
  start-page: 1669
  year: 2017
  ident: 64327_CR4
  publication-title: EMBO J.
  doi: 10.15252/embj.201695957
– volume: 72
  start-page: 245
  year: 2011
  ident: 64327_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.011
– volume: 17
  start-page: 525
  year: 2020
  ident: 64327_CR8
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.0c01064
– volume: 19
  start-page: 3885
  year: 2021
  ident: 64327_CR7
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.06.051
– volume: 20
  start-page: 28558
  year: 2018
  ident: 64327_CR9
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP05095C
– volume: 126
  start-page: 881
  year: 2013
  ident: 64327_CR15
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-013-1189-3
– volume: 162
  start-page: 1066
  year: 2015
  ident: 64327_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 108
  start-page: 260
  year: 2011
  ident: 64327_CR13
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1013343108
– volume: 120
  start-page: 1187
  year: 2021
  ident: 64327_CR10
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2021.01.034
– year: 2017
  ident: 64327_CR18
  publication-title: Matters.
  doi: 10.19185/matters.201702000010
– volume: 169
  start-page: 13
  year: 2017
  ident: 64327_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2017.02.007
– volume: 72
  start-page: 257
  year: 2011
  ident: 64327_CR12
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.010
SSID ssj0000529419
Score 2.4395895
Snippet Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling biological...
Understanding the intricate interactions governing protein and peptide behavior in liquid-liquid phase separation (LLPS) is crucial for unraveling biological...
Abstract Understanding the intricate interactions governing protein and peptide behavior in liquid–liquid phase separation (LLPS) is crucial for unraveling...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13382
SubjectTerms 631/57/2266
631/57/2269
631/57/2272
Dielectric constant
DNA - chemistry
DNA - metabolism
Electrostatic interaction
Electrostatic properties
GENESIS
Humanities and Social Sciences
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Liquid–liquid phase separation
Molecular dynamics
Molecular Dynamics Simulation
multidisciplinary
Peptides
Peptides - chemistry
Phase Separation
Phase Transition
Polypeptides
Polyproline
Salts
Science
Science (multidisciplinary)
Temperature
Temperature effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuqLwDBRmJG0SNYzt2joCouFBxAKk3y081UkmXzS4St_4H_iG_hLGdXbo8L0g55DGRJvPIzGjs-QCe2tBijcO72mEsqHnv0OeEbetghHAqeuOUyWAT8vhYnZz07y5BfaU1YWU8cBHcoWxckJH7xgrDnbG9NYa11lMZJQs27yPHrOdSMVWmerc9p_28S6Zh6nDCSJV2k7W8xiDcylruRKI8sP93WeaviyV_6pjmQHS0DzfmDJK8KJzfhCthvAXXCqbkl9sQ324Ab4kvaPMTmYaPM0oXwWNZ4OfzVSRnw6f14L9dfC0nZHGKcY1MocwELzTLsEib0fDHSBZpFYwP0x34cPT6_as39QymUDvB6ap2HItRyWRQXYzBdqHrg2LeMywYWPTox6xvUMomIA01GPiZd5RZQV1UrZPsLuyN52O4D8Q21ATFleCR8cYJi2UlZoXUWMU6xrsK6Eaw2s2TxhPgxZnOHW-mdFGGRmXorAwtK3i2fWdR5mz8lfpl0teWMs3IzjfQcvRsOfpfllPBwUbbenbcSbNUzzWYlYkKnmwfo8ulPooZw_k608ieotXhl94rxrHlhCksEaVsKlA7ZrPD6u6TcTjNY71paolheVzB842F_eDrz7J48D9k8RCut8k1EigTPYC91XIdHsFV93k1TMvH2be-A7SSKsY
  priority: 102
  providerName: Directory of Open Access Journals
Title Molecular dynamics simulation on regulation of liquid–liquid phase separation of repetitive peptides
URI https://link.springer.com/article/10.1038/s41598-024-64327-7
https://www.ncbi.nlm.nih.gov/pubmed/38862770
https://www.proquest.com/docview/3066605845
https://www.proquest.com/docview/3067912086
https://pubmed.ncbi.nlm.nih.gov/PMC11167010
https://doaj.org/article/70ce7f4d0b5a4cab9baa32bd17f73eb7
Volume 14
WOSCitedRecordID wos001245305300042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvKGBsgoSN4gax07snBBFreCwqwiBtJwiv9JGKrvpZrcSN_4D_5BfwtjObrU8ekGKoiSeRHbG45nx2PMBvFQ2Qx-HFYlGXZCwUqPM5SpLrMxzLRojtZAebIJPJmI6Lathwq0fllWux0Q_UJu5dnPkh9QZ2imqy_xNd5E41CgXXR0gNHZgz2VJoH7pXrWZY3FRLEbKYa9MSsVhj_rK7SnLWIKqOOMJ39JHPm3_32zNP5dM_hY39ero5O7_NuQe3BkM0fht6Dn34YadPYBbAZry20Noxmvc3NgE0Po-7tuvA9hXjMcioNj7uyY-by9Wrfn5_Ue4iLszVI9xb0Nq8UCzsJ3b04bja9y5xTTG9o_g88nxp3fvkwGTIdE5I8tEM_RpOeVWFE1jVWGL0gpqDEW_gzYGhwNapiZV0iINkWg_UKMJVTnRjcg0p49hdzaf2X2IVUqkFUzkrKEs1blC7xSNSyKVoAVlRQRkzZlaDwnLHW7Gee0D51TUgZs1crP23Kx5BK8273QhXce11EeO4RtKl2rbP5gvTutBcmueassbhm3KJdNSlUpKmilDeMOpVfiRgzWf60H--_qKyRG82BSj5LpwjJzZ-crT8JJk6FNG8CT0rk1NqEBPk_M0ArHV77aqul0ya898dnDiImvoZUfwet1Fr-r173_x9PpmPIPbmZMah9pEDmB3uVjZ53BTXy7bfjGCHT7l_ixGsHd0PKk-jvzsBp7HWTXyYokl1Ydx9eUXzoE-Bg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VAoILb9pAASPBCax6H_auDwjxqlq1jXooUm_bfbm11DppnIBy4z_wP_hR_BJm148qPHrrASmHxB5bu843OzOe2fkQeqEdgRiHZbEBWxCz3IDOpZrETqWpEYVVRqhANsGHQ3FwkO8toR_dXhhfVtmtiWGhtiPj35GvU-9oJ2Au07fjs9izRvnsakeh0cBi282_QshWv9n6CP_vS0I2Pu1_2IxbVoHYpAxPY8MgKuOUO5EVhdOZy3InqLUUPGdaWAA0zRObaOVABiuwgNQaTHWKTSGI4RTuewVdBTeCiFAquNe_0_FZM4bzdm9OQsV6DfbR72EjLAbTT3jMF-xfoAn4m2_7Z4nmb3naYP42bv9vD-4OutU62tG7RjPuoiVX3UPXG-rN-X1U7Ha8wJGdV-q0NHVUl6ctmVkEn4k76n8V0Ul5Nivtz2_fmy_R-BjMf1S7pnV6IzNxY79nD-xHNPbFQtbVD9DnS5nkQ7RcjSq3iiKdYOUEEykrKEtMqiH6BucZKy1oRlk2QLhDgjRtQ3bPC3IiQ2EAFbJBjwT0yIAeyQfoVX_NuGlHcqH0ew-wXtK3Eg8HRpMj2a5MkifG8YLBnFLFjNK5VooSbTEvOHUabrLW4Uq261stz0E1QM_707Ay-XSTqtxoFmR4jgnEzAO00qC5HwkVEElzngyQWMD5wlAXz1Tlceh-jn3mMMFw6etOJc7H9e9n8ejiaTxDNzb3d3fkztZw-zG6SbzGeoYqvIaWp5OZe4KumS_Tsp48DSofocPLVpVfu52T5Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V8hAX3o9AASPBCax4vWvv-oAQUCKqQpQDSL0t-2wttU4aJ6Dc-A_8G34Ov4TZ9aMKj956QMohscfWrvPNzoxndj6EniibQoxD81iDLYhpoUHnMpXGVmaZ5s5IzWUgm2DjMd_bKyYb6Ee3F8aXVXZrYliozVT7d-RD4h3tBMxlNnRtWcRke_Rydhx7Bimfae3oNBqI7NrVVwjf6hc72_BfP03T0duPb97FLcNArDOKF7GmEKExwizPnbMqt3lhOTGGgBdNnAFwkyIxiZIWZLAEa0iMxkRlWDueakbgvufQeeabloeywUn_fsdn0Cgu2n06CeHDGmyl38-W0hjcgJTFbM0WBsqAv_m5f5Zr_pazDaZwdPV_fojX0JXWAY9eNRpzHW3Y6ga62FByrm4i96HjC47MqpJHpa6jujxqSc4i-Mztfv_LRYfl8bI0P799b75EswNwC6LaNi3VG5m5nfm9fGBXopkvIjK2voU-nckkb6PNalrZuyhSCZaWU55RR2iiMwVROTjVWCpOckLzAcIdKoRuG7V7vpBDEQoGCBcNkgQgSQQkCTZAz_prZk2bklOlX3uw9ZK-xXg4MJ3vi3bFEizRljkKc8ok1VIVSkqSKoOZY8QquMlWhzHRrnu1OAHYAD3uT8OK5dNQsrLTZZBhBU4hlh6gOw2y-5EQDhE2Y8kA8TXMrw11_UxVHoSu6NhnFBMMlz7v1ONkXP9-FvdOn8YjdAk0RLzfGe_eR5dTr7yeuApvoc3FfGkfoAv6y6Ks5w-D9kfo81lryi9CYpyi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulation+on+regulation+of+liquid%E2%80%93liquid+phase+separation+of+repetitive+peptides&rft.jtitle=Scientific+reports&rft.au=Yang%2C+Xiaojun&rft.au=Wang%2C+Yanwei&rft.au=Yang%2C+Guangcan&rft.date=2024-06-11&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=13382&rft_id=info:doi/10.1038%2Fs41598-024-64327-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon