Optimizing cognitive load and learning adaptability with adaptive microlearning for in-service personnel
Adaptive microlearning has emerged as a crucial approach for enhancing the working skills of in-service personnel. This study introduces the design and development of an innovative adaptive microlearning (AML) system and investigates its effectiveness compared to a conventional microlearning (CML) s...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 25960 - 18 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
29.10.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Adaptive microlearning has emerged as a crucial approach for enhancing the working skills of in-service personnel. This study introduces the design and development of an innovative adaptive microlearning (AML) system and investigates its effectiveness compared to a conventional microlearning (CML) system. The main distinguishing feature of an AML system from a CML system is its adaptive features that tailor the learning experience to individual needs, including personalized content delivery, real-time feedback, and adaptive learning paths. A quasi-experimental study involving 111 in-service personnel (N
AML
= 56, N
CML
= 55) was conducted. ANCOVA results confirmed that the AML system significantly reduced unnecessary cognitive load due to inappropriate instructional design (mean difference of -20.02,
p
< 0.05) and significantly improved learning adaptability (mean difference of 40.72,
p
< 0.05). These findings highlight the potential of adaptive microlearning systems to overcome barriers to effective learning, thereby supporting lifelong learning and professional development in various working contexts. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-024-77122-1 |