Cooperative integration of spatially resolved multi-omics data with COSMOS
Recent advancements in biological technologies have enabled the measurement of spatially resolved multi-omics data, yet computational algorithms for this purpose are scarce. Existing tools target either single omics or lack spatial integration. We generate a graph neural network algorithm named COSM...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 16; H. 1; S. 27 - 10 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
02.01.2025
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Recent advancements in biological technologies have enabled the measurement of spatially resolved multi-omics data, yet computational algorithms for this purpose are scarce. Existing tools target either single omics or lack spatial integration. We generate a graph neural network algorithm named COSMOS to address this gap and demonstrated the superior performance of COSMOS in domain segmentation, visualization, and spatiotemporal map for spatially resolved multi-omics data integration tasks.
Recent advancements in biological technologies have enabled the measurement of spatially resolved multi-omics data. Here, the authors present COSMOS and demonstrate its superior performance compared to existing methods for integrating spatially resolved multi-omics data. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2041-1723 2041-1723 |
| DOI: | 10.1038/s41467-024-55204-y |