Image convolution techniques integrated with YOLOv3 algorithm in motion object data filtering and detection
In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only L...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 7651 - 13 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.04.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance. |
|---|---|
| AbstractList | In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as "jogging", "subway", "video 1", and "video 2". Notably, the detection success rates for "jogging" and "video 1" consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for "Bolt" and "Walking2", success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method's tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance.In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as "jogging", "subway", "video 1", and "video 2". Notably, the detection success rates for "jogging" and "video 1" consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for "Bolt" and "Walking2", success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method's tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance. In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance. Abstract In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance. |
| ArticleNumber | 7651 |
| Author | Cheng, Mai Liu, Mengyuan |
| Author_xml | – sequence: 1 givenname: Mai surname: Cheng fullname: Cheng, Mai email: st112284@m2.kcg.edu organization: The Kyoto College of Graduate Studies for Informatics – sequence: 2 givenname: Mengyuan surname: Liu fullname: Liu, Mengyuan organization: The Kyoto College of Graduate Studies for Informatics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38561431$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1vEzEUXKEiWkr_AAdkiQuXBXttZ-0TQhUfkSLlAgdO1vPHbhx27eB1UvHvcbIttD3Uh2c_e2Y08ryX1VmIwVXVa4LfE0zFh4kRLkWNG1bztpWyxs-qiwYzXje0ac7unc-rq2na4rJ4IxmRL6pzKviCMEouql_LEXqHTAyHOOyzjwFlZzbB_967CfmQXZ8gO4tufN6gn-vV-kARDH1MpR8LAI3xxIp660xGFjKgzg_ZJR96BMEi64riEfOqet7BMLmr2_2y-vHl8_frb_Vq_XV5_WlVG85IrlshtcVUs66xjBtMGOjOLEgpvKXUkK4DJ4UGI1vNtSml05aBBFlaTOlltZx1bYSt2iU_QvqjInh1uoipV5CyN4NTmjJiW9tqAMu6hREOO2mLDyasdkwUrY-z1m6vR2eNCznB8ED04UvwG9XHgyJYCiY5LwrvbhVSPH5qVqOfjBsGCC7uJ0UxJaTEtJAF-vYRdBv3KZS_KqhGYCoxZgX15r6lf17uQi0AMQNMitOUXKeMz3BMoDj0Q7GmjiOk5hFSZYTUaYQULtTmEfVO_UkSnUnT7hi6S_9tP8H6Czpf25w |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104611 crossref_primary_10_1109_ACCESS_2024_3523936 crossref_primary_10_1007_s12524_025_02202_2 crossref_primary_10_3390_jmse12101862 crossref_primary_10_1016_j_meaene_2024_100015 crossref_primary_10_1007_s11554_025_01762_3 |
| Cites_doi | 10.1109/ACCESS.2020.3007481 10.1177/09544062211019774 10.1109/ACCESS.2021.3077499 10.1007/s11042-020-09749-x 10.1002/ima.22663 10.1111/phor.12429 10.1016/j.infrared.2023.104640 10.1109/ACCESS.2021.3053956 10.1016/j.dt.2020.06.013 10.1049/ipr2.12286 10.3934/ipi.2022010 10.1016/j.micpro.2020.103535 10.24018/ejers.2021.6.1.2316 10.5946/ce.2020.054 10.1016/j.ifacol.2021.06.172 10.1016/j.biosystemseng.2021.02.010 10.1108/AEAT-05-2021-0142 10.3390/electronics10182243 10.1017/S0373463321000783 10.3390/photonics8070278 10.1007/s00607-020-00869-8 10.32628/CSEIT217249 10.48550/arXiv.1804.02767 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-57799-0 |
| DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_b341d7d7baad4f6c8e0e9dc5448dbe48 PMC10984955 38561431 10_1038_s41598_024_57799_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-789bd03b4f2d45c014abfc61bfc5733c1ffae98bac97b5bc7b5fbd4a9a9b5b033 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195796200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:45:34 EDT 2025 Tue Nov 04 02:05:51 EST 2025 Sun Nov 09 12:28:33 EST 2025 Tue Oct 07 09:04:05 EDT 2025 Wed Feb 19 02:03:23 EST 2025 Tue Nov 18 21:43:58 EST 2025 Sat Nov 29 01:58:42 EST 2025 Fri Feb 21 02:38:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Video surveillance YOLOv3 Object tracking Image convolution techniques Object detection |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-789bd03b4f2d45c014abfc61bfc5733c1ffae98bac97b5bc7b5fbd4a9a9b5b033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/b341d7d7baad4f6c8e0e9dc5448dbe48 |
| PMID | 38561431 |
| PQID | 3028039004 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b341d7d7baad4f6c8e0e9dc5448dbe48 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10984955 proquest_miscellaneous_3031132269 proquest_journals_3028039004 pubmed_primary_38561431 crossref_citationtrail_10_1038_s41598_024_57799_0 crossref_primary_10_1038_s41598_024_57799_0 springer_journals_10_1038_s41598_024_57799_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Al-qaness, Abbasi, Fan, Ibrahim, Hawbani (CR4) 2021; 103 Kaliappan, Thapasimuthu Rajeswari, Dakshinamoorthy (CR5) 2022; 37 Won-Jae, Myung-Il, Hye-Won, Jisang, Yeong-Min, Sung-Jun (CR25) 2021; 1 CR18 Meng, Wang, Shao, Wang, Yu, Xiao (CR24) 2021; 17 Arulappan, Thankaraj (CR14) 2022; 32 Guo, Yuan, Zhang, Chen (CR23) 2021; 10 Xu, Li, Zhang (CR2) 2021; 9 Shen, Chen, Liu, Zhang (CR6) 2022; 16 Law, Choi, Lam, Lui (CR16) 2022; 16 Koroveshi, Ktona (CR20) 2021; 6 Ashraf, Imran, Qahtani, Alsufyani, Almutiry, Mahmood (CR1) 2022; 70 Shi, Liu, Jiang, Zhao (CR15) 2021; 1 Li, Liu, Wei, Zhou (CR17) 2022; 236 Choi, Shin, Jung, Bae, Kim, Byeon (CR12) 2020; 53 Gan, Ou, Zhao, Xu, Xue (CR19) 2021; 205 Gothane (CR10) 2021; 7 Hou, Li (CR22) 2021; 80 Li, Liu, Wang, Chen, Yang (CR27) 2021; 8 Panda, Barczyk (CR26) 2021; 54 Xu (CR13) 2022; 94 Guo, Lu, Liu (CR7) 2022; 75 Krišto, Ivasic-Kos, Pobar (CR3) 2020; 8 Li, Deng, Yang, Liu, Gu (CR11) 2021; 9 Yi, Li, Liu (CR8) 2023; 131 Liu, Jiang, Wang, Ouyang, Zhang (CR21) 2021; 2 Jha, Seo, Yang, Joshi (CR9) 2021; 80 Y Liu (57799_CR21) 2021; 2 S Yi (57799_CR8) 2023; 131 W Shi (57799_CR15) 2021; 1 H Gan (57799_CR19) 2021; 205 57799_CR18 L Won-Jae (57799_CR25) 2021; 1 X Xu (57799_CR13) 2022; 94 M Krišto (57799_CR3) 2020; 8 S Jha (57799_CR9) 2021; 80 J Guo (57799_CR23) 2021; 10 A Arulappan (57799_CR14) 2022; 32 J Choi (57799_CR12) 2020; 53 MAA Al-qaness (57799_CR4) 2021; 103 J Hou (57799_CR22) 2021; 80 P Panda (57799_CR26) 2021; 54 AH Ashraf (57799_CR1) 2022; 70 W Shen (57799_CR6) 2022; 16 D Li (57799_CR17) 2022; 236 Z Li (57799_CR27) 2021; 8 H Law (57799_CR16) 2022; 16 FJ Meng (57799_CR24) 2021; 17 H Li (57799_CR11) 2021; 9 NK Kaliappan (57799_CR5) 2022; 37 Y Guo (57799_CR7) 2022; 75 Z Xu (57799_CR2) 2021; 9 J Koroveshi (57799_CR20) 2021; 6 S Gothane (57799_CR10) 2021; 7 |
| References_xml | – ident: CR18 – volume: 8 start-page: 125459 issue: 2 year: 2020 end-page: 125476 ident: CR3 article-title: Thermal object detection in difficult weather conditions using YOLO publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007481 – volume: 236 start-page: 1780 issue: 3 year: 2022 end-page: 1795 ident: CR17 article-title: Robotic grasping method of bolster spring based on image-based visual servoing with YOLOv3 object detection algorithm publication-title: Proc. Inst. Mech. Eng.C J. Mech. Eng. Sci. doi: 10.1177/09544062211019774 – volume: 9 start-page: 68482 issue: 1 year: 2021 end-page: 68497 ident: CR2 article-title: A surveillance video real-time analysis system based on edge-cloud and fl-yolo cooperation in coal mine publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077499 – volume: 80 start-page: 3981 issue: 3 year: 2021 end-page: 3996 ident: CR9 article-title: Real time object detection and trackingsystem for video surveillance system publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09749-x – volume: 32 start-page: 815 issue: 3 year: 2022 end-page: 830 ident: CR14 article-title: Liver tumor segmentation using a new asymmetrical dilated convolutional semantic segmentation network in CT images publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22663 – volume: 37 start-page: 490 issue: 180 year: 2022 end-page: 502 ident: CR5 article-title: Intelligent video surveillance using enhanced deep belief based multilayered convolution neural network classification techniques publication-title: Photogramm. Rec. doi: 10.1111/phor.12429 – volume: 131 start-page: 104640 year: 2023 ident: CR8 article-title: HCTIRdeblur: A hybrid convolution-transformer network for single infrared image deblurring publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2023.104640 – volume: 9 start-page: 16692 issue: 2 year: 2021 end-page: 16706 ident: CR11 article-title: Enhanced YOLO v3 tiny network for real-time ship detection from visual image publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053956 – volume: 70 start-page: 2761 issue: 4 year: 2022 end-page: 2775 ident: CR1 article-title: Weapons detection for security and video surveillance using cnn and YOLO-v5s publication-title: CMC-Comput. Mater. Contin. – volume: 17 start-page: 1249 issue: 4 year: 2021 end-page: 1261 ident: CR24 article-title: Visual-attention gabor filter based online multi-armored target tracking publication-title: Def. Technol. doi: 10.1016/j.dt.2020.06.013 – volume: 16 start-page: 681 issue: 3 year: 2022 end-page: 690 ident: CR6 article-title: An image enhancement algorithm of video surveillance scene based on deep learning publication-title: IET Image Process. doi: 10.1049/ipr2.12286 – volume: 16 start-page: 1019 issue: 4 year: 2022 end-page: 1046 ident: CR16 article-title: Quasiconformal model with CNN features for large deformation image registration publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2022010 – volume: 80 start-page: 103535 issue: 3 year: 2021 ident: CR22 article-title: Swimming target detection and tracking technology in video image processing publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103535 – volume: 1 start-page: 31 issue: 2 year: 2021 ident: CR15 article-title: Video compressed sensing using a convolutional neural network publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 6 start-page: 48 issue: 1 year: 2021 end-page: 54 ident: CR20 article-title: Target tracking using reinforcement learning and neural networks publication-title: Eur. J. Eng. Res. Sci. doi: 10.24018/ejers.2021.6.1.2316 – volume: 53 start-page: 117 issue: 2 year: 2020 end-page: 126 ident: CR12 article-title: Convolutional neural network technology in endoscopic imaging: Artificial intelligence for endoscopy publication-title: Clin. Endosc. doi: 10.5946/ce.2020.054 – volume: 54 start-page: 743 issue: 9 year: 2021 end-page: 748 ident: CR26 article-title: Blending of learning-based tracking and object detection for monocular camera-based target following—Sciencedirect publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.06.172 – volume: 205 start-page: 48 issue: 1 year: 2021 end-page: 63 ident: CR19 article-title: Automated piglet tracking using a single convolutional neural network publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.02.010 – volume: 94 start-page: 398 issue: 3 year: 2022 end-page: 406 ident: CR13 article-title: Target group distribution pattern analysis with bagged convolutional neural networks for UAV distribution pattern identification publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-05-2021-0142 – volume: 1 start-page: 5 issue: 5 year: 2021 ident: CR25 article-title: Detection and tracking for the awareness of surroundings of a ship based on deep learning publication-title: J. Comput. Des. Eng. – volume: 10 start-page: 2243 issue: 18 year: 2021 ident: CR23 article-title: Vision-based target detection and tracking for a miniature pan-tilt inertially stabilized platform publication-title: Electronics doi: 10.3390/electronics10182243 – volume: 75 start-page: 230 issue: 1 year: 2022 end-page: 250 ident: CR7 article-title: Lightweight deep network-enabled real-time low-visibility enhancement for promoting vessel detection in maritime video surveillance publication-title: J. Navig. doi: 10.1017/S0373463321000783 – volume: 8 start-page: 278 issue: 7 year: 2021 ident: CR27 article-title: Target tracking and ranging based on single photon detection publication-title: Photonics doi: 10.3390/photonics8070278 – volume: 103 start-page: 211 issue: 1 year: 2021 end-page: 230 ident: CR4 article-title: An improved YOLO-based road traffic monitoring system publication-title: Computing doi: 10.1007/s00607-020-00869-8 – volume: 7 start-page: 268 issue: 2 year: 2021 end-page: 272 ident: CR10 article-title: A practice for object detection using YOLO algorithm publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. doi: 10.32628/CSEIT217249 – volume: 2 start-page: 1 issue: 1 year: 2021 end-page: 12 ident: CR21 article-title: Research on design of intelligent background differential model for training target monitoring publication-title: Complexity – volume: 2 start-page: 1 issue: 1 year: 2021 ident: 57799_CR21 publication-title: Complexity – volume: 9 start-page: 68482 issue: 1 year: 2021 ident: 57799_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077499 – volume: 80 start-page: 3981 issue: 3 year: 2021 ident: 57799_CR9 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09749-x – volume: 205 start-page: 48 issue: 1 year: 2021 ident: 57799_CR19 publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.02.010 – volume: 75 start-page: 230 issue: 1 year: 2022 ident: 57799_CR7 publication-title: J. Navig. doi: 10.1017/S0373463321000783 – volume: 53 start-page: 117 issue: 2 year: 2020 ident: 57799_CR12 publication-title: Clin. Endosc. doi: 10.5946/ce.2020.054 – volume: 10 start-page: 2243 issue: 18 year: 2021 ident: 57799_CR23 publication-title: Electronics doi: 10.3390/electronics10182243 – volume: 17 start-page: 1249 issue: 4 year: 2021 ident: 57799_CR24 publication-title: Def. Technol. doi: 10.1016/j.dt.2020.06.013 – volume: 103 start-page: 211 issue: 1 year: 2021 ident: 57799_CR4 publication-title: Computing doi: 10.1007/s00607-020-00869-8 – volume: 80 start-page: 103535 issue: 3 year: 2021 ident: 57799_CR22 publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103535 – volume: 8 start-page: 125459 issue: 2 year: 2020 ident: 57799_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007481 – volume: 32 start-page: 815 issue: 3 year: 2022 ident: 57799_CR14 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22663 – ident: 57799_CR18 doi: 10.48550/arXiv.1804.02767 – volume: 37 start-page: 490 issue: 180 year: 2022 ident: 57799_CR5 publication-title: Photogramm. Rec. doi: 10.1111/phor.12429 – volume: 16 start-page: 681 issue: 3 year: 2022 ident: 57799_CR6 publication-title: IET Image Process. doi: 10.1049/ipr2.12286 – volume: 7 start-page: 268 issue: 2 year: 2021 ident: 57799_CR10 publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. doi: 10.32628/CSEIT217249 – volume: 16 start-page: 1019 issue: 4 year: 2022 ident: 57799_CR16 publication-title: Inverse Probl. Imaging doi: 10.3934/ipi.2022010 – volume: 70 start-page: 2761 issue: 4 year: 2022 ident: 57799_CR1 publication-title: CMC-Comput. Mater. Contin. – volume: 8 start-page: 278 issue: 7 year: 2021 ident: 57799_CR27 publication-title: Photonics doi: 10.3390/photonics8070278 – volume: 131 start-page: 104640 year: 2023 ident: 57799_CR8 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2023.104640 – volume: 6 start-page: 48 issue: 1 year: 2021 ident: 57799_CR20 publication-title: Eur. J. Eng. Res. Sci. doi: 10.24018/ejers.2021.6.1.2316 – volume: 9 start-page: 16692 issue: 2 year: 2021 ident: 57799_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053956 – volume: 1 start-page: 31 issue: 2 year: 2021 ident: 57799_CR15 publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 54 start-page: 743 issue: 9 year: 2021 ident: 57799_CR26 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.06.172 – volume: 236 start-page: 1780 issue: 3 year: 2022 ident: 57799_CR17 publication-title: Proc. Inst. Mech. Eng.C J. Mech. Eng. Sci. doi: 10.1177/09544062211019774 – volume: 1 start-page: 5 issue: 5 year: 2021 ident: 57799_CR25 publication-title: J. Comput. Des. Eng. – volume: 94 start-page: 398 issue: 3 year: 2022 ident: 57799_CR13 publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-05-2021-0142 |
| SSID | ssj0000529419 |
| Score | 2.4692912 |
| Snippet | In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic... Abstract In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7651 |
| SubjectTerms | 639/301 639/705 Accuracy Algorithms Comparative analysis Humanities and Social Sciences Image convolution techniques Image processing Localization multidisciplinary Object detection Object tracking Science Science (multidisciplinary) Success Surveillance Video surveillance YOLOv3 |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggNQL70KgICNxg6hx7MT2CQGiAqlqOQBaTpaf7Yo2aTfbSvx7PI431fLohYulxI5ie8Yz9sz4G4ReujoEaUxduqDhSo7XpXbUl6zVTRsco3WK8v22x_f3xWwmP2eD25DDKlcyMQlq11uwke9Q8AHGA3rF3pyelZA1CryrOYXGdXQD0mYDn_MZn2ws4MViROa7MhUVO0PUV3CnrGZlwzlcwF_TRwm2_297zT9DJn_zmyZ1tHvnfwdyF93OG1H8duSce-ia7-6jW2Nqyp8P0I9PJ1HSYAhKz8yJJ7jXAU8gEw6DIRd_P9g7uKBYHx_GPy2PTmIDPOYHwr0BSw-GSFQc5uCbj-PBunPY-WWKA-seoq-7H768_1jmxAylbRhZllxI4ypqWKgda2w8ZWkTbEtiAfCKloSgvRRGW8lNY2wsgnFMSy3jY0XpFtro-s4_RtiHwCNbEENYYJFxtNWNbXXljQyisaJAZEUeZTNqOSTPOFbJe06FGkmqIklVIqmqCvRq-uZ0xOy4svU7oPrUEvC204t-cajy8lUmKnvHHTdaOxZaK3zlpYuzwYQznsVubq-IrbIQGNQlpQv0YqqOyxd8Mrrz_Tm0oQQMAq0s0KORxaaeUAEwrZQUSKwx31pX12u6-VGCCCeVFPHo2xTo9YpPL_v177l4cvUwnqLNGpZOClzaRhvLxbl_hm7ai-V8WDxPa-8XgNw6XQ priority: 102 providerName: ProQuest |
| Title | Image convolution techniques integrated with YOLOv3 algorithm in motion object data filtering and detection |
| URI | https://link.springer.com/article/10.1038/s41598-024-57799-0 https://www.ncbi.nlm.nih.gov/pubmed/38561431 https://www.proquest.com/docview/3028039004 https://www.proquest.com/docview/3031132269 https://pubmed.ncbi.nlm.nih.gov/PMC10984955 https://doaj.org/article/b341d7d7baad4f6c8e0e9dc5448dbe48 |
| Volume | 14 |
| WOSCitedRecordID | wos001195796200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0SNYye2jxS1olK7XSFA21PkJ6xos2h3W4l_z9jJhi7PC5eRnDjSaGb8mMzMNwAvXBmCMqbMXdCxJMfrXDvmc17rqg6OszJl-X48EuOxnE7V5Eqrr5gT1sEDd4LbNbjNOuGE0drxUFvpC6-crdCtcMbzVOZbCHXFmepQvUvFqeqrZAomd5d4UsVqspLnlRCx9H7jJEqA_b-7Zf6aLPlTxDQdRAd34HZ_gySvO87vwjXf3oObXU_Jb_fhy-E5bhEkZpP3VkUGnNYlGdAhHIl_YMnpydHJJSP67NN8geNznEC6xj5kbuIvGhJTSEmYxaA6skN064jzq5TA1T6ADwf779-8zfuOCjkKjK5yIZVxBTM8lI5XFt0jbYKtKZKIi2hpCNorabRVwlTGIgnGca20wmHB2EPYauetfwzEhyBQn9RQHjhqXFtd2VoX3qggKyszoGvpNraHG49dL86aFPZmsuk00qBGmqSRpsjg5fDN1w5s46-z96LShpkRKDs9QPNpevNp_mU-GeysVd70q3fZsBhvZgr3jwyeD69x3cVgim79_CLOYTR68rXK4FFnIQMnTEZ8VUYzkBu2s8Hq5pt29jlhe9NCSfRZqwxerc3sB19_lsWT_yGLp3CrjOsj5SXtwNZqceGfwQ17uZotFyO4LqYiUTmC7b398eTdKC06pMflJFKBdHtyeDw5_Q5GtzUt |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLQguvKGBAkaCE0TNw0nsA0K8qq663e6hoPZk_GxXbbNld1vUP8VvZCavann01gOXSEkcyXa-Gdsz38wQ8tIm3gutk9B6hSE5ToXKpi5kucpyb1maVCzfr4NiOOS7u2K0RH62sTBIq2x1YqWo7cSgjXwtRR8gHNAj9u7ke4hVo9C72pbQqGGx6c5_wJFt9rb_Cf7vqyRZ_7zzcSNsqgqEJmPxPCy40DZKNfOJZZmBI4LS3uQxXDA3oIm9V05wrYwodKYNXLy2TAkl4DZCAyio_GUGYI96ZHnU3xrtdVYd9JuxWDTROVHK12awQmIUW8LCrCgw5H9hBawKBfxtd_snSfM3T221AK7f_t-m7g651Wy16ftaNu6SJVfeI9fr4pvn98lh_xh0KUXafSN-tEtoO6NdGg1L0VRN97YH22cpVUf7MLL5wTE0oHUFJDrRaMuiyLWlfozsA5g_qkpLrZtXTLfyAflyJSN9SHrlpHQrhDrvCwB-rGPmGYiGMiozuYqcFp5nhgckbuEgTZOXHcuDHMmKH5ByWUNIAoRkBSEZBeR1981JnZXk0tYfEGVdS8woXj2YTPdlo6Ckhu2MLWyhlbLM54a7yAkLs8G41Y5BN1dbcMlGzc3kBbIC8qJ7DQoKvU6qdJNTbJPGaPLIRUAe1ZDuepJyTESbxgHhC2Bf6Orim3J8UCVBjyPB4XCfBeRNKxcX_fr3XDy-fBjPyY2Nna2BHPSHm0_IzQTFtqJprZLefHrqnpJr5mw-nk2fNZJPyberlphfqJOc4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VLSAuvB-GAosEJ7Bie9f27gEhShsRNUojBKg9mX22Ea1TkrSof41fx4xfVXj01gMXS4k30u7mm9mdmW9mCHlhE--l1klovcKUHKdCZZkLeabSzFvOkorl-2WYj0Zid1eOV8jPNhcGaZWtTqwUtZ0a9JH3GMYAwUCPeM83tIjxZv_t8fcQO0hhpLVtp1FDZNud_QDzbf5msAn_9csk6W99ev8hbDoMhCbl8SLMhdQ2Ypr7xPLUgLmgtDdZDA-sE2hi75WTQisjc51qAw-vLVdSSfgYoTMU1P9azsDoWSVrG1uj8cfOw4MxNB7LJlMnYqI3h9MSM9oSHqZ5jun_S6dh1TTgbzfdPwmbv0Vtq8Owf_N_3sZb5EZzBafvapm5TVZceYdcrZtynt0l3wZHoGMp0vEbsaRdods57cprWIoubLq3M9w5ZVQd7sPKFgdHMIDWnZHoVKOPiyIHl_oJshJgL6kqLbVuUTHgynvk86Ws9D5ZLaele0io8z4HgYh1zD0HkVFGpSZTkdPSi9SIgMQtNArT1GvHtiGHRcUbYKKo4VQAnIoKTkUUkFfdb47raiUXjt5AxHUjsdJ49cV0tl80iqvQcM2xuc21Upb7zAgXOWlhN7iw2nGY5noLtKJRf_PiHGUBed69BsWF0ShVuukJjmExukIyGZAHNby7mTCBBWpZHBCxBPylqS6_KScHVXH0OJICjP40IK9bGTmf17_34tHFy3hGroGYFMPBaPsxuZ6gBFfsrXWyupiduCfkijldTOazp40SoOTrZQvML1qBpX0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+convolution+techniques+integrated+with+YOLOv3+algorithm+in+motion+object+data+filtering+and+detection&rft.jtitle=Scientific+reports&rft.au=Cheng%2C+Mai&rft.au=Liu%2C+Mengyuan&rft.date=2024-04-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=7651&rft_id=info:doi/10.1038%2Fs41598-024-57799-0&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |