Image convolution techniques integrated with YOLOv3 algorithm in motion object data filtering and detection

In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only L...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Scientific reports Ročník 14; číslo 1; s. 7651 - 13
Hlavní autori: Cheng, Mai, Liu, Mengyuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.04.2024
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2045-2322, 2045-2322
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance.
AbstractList In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as "jogging", "subway", "video 1", and "video 2". Notably, the detection success rates for "jogging" and "video 1" consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for "Bolt" and "Walking2", success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method's tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance.In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as "jogging", "subway", "video 1", and "video 2". Notably, the detection success rates for "jogging" and "video 1" consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for "Bolt" and "Walking2", success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method's tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance.
In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance.
Abstract In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance.
ArticleNumber 7651
Author Cheng, Mai
Liu, Mengyuan
Author_xml – sequence: 1
  givenname: Mai
  surname: Cheng
  fullname: Cheng, Mai
  email: st112284@m2.kcg.edu
  organization: The Kyoto College of Graduate Studies for Informatics
– sequence: 2
  givenname: Mengyuan
  surname: Liu
  fullname: Liu, Mengyuan
  organization: The Kyoto College of Graduate Studies for Informatics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38561431$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEUXKEiWkr_AAdkiQuXBXttZ-0TQhUfkSLlAgdO1vPHbhx27eB1UvHvcbIttD3Uh2c_e2Y08ryX1VmIwVXVa4LfE0zFh4kRLkWNG1bztpWyxs-qiwYzXje0ac7unc-rq2na4rJ4IxmRL6pzKviCMEouql_LEXqHTAyHOOyzjwFlZzbB_967CfmQXZ8gO4tufN6gn-vV-kARDH1MpR8LAI3xxIp660xGFjKgzg_ZJR96BMEi64riEfOqet7BMLmr2_2y-vHl8_frb_Vq_XV5_WlVG85IrlshtcVUs66xjBtMGOjOLEgpvKXUkK4DJ4UGI1vNtSml05aBBFlaTOlltZx1bYSt2iU_QvqjInh1uoipV5CyN4NTmjJiW9tqAMu6hREOO2mLDyasdkwUrY-z1m6vR2eNCznB8ED04UvwG9XHgyJYCiY5LwrvbhVSPH5qVqOfjBsGCC7uJ0UxJaTEtJAF-vYRdBv3KZS_KqhGYCoxZgX15r6lf17uQi0AMQNMitOUXKeMz3BMoDj0Q7GmjiOk5hFSZYTUaYQULtTmEfVO_UkSnUnT7hi6S_9tP8H6Czpf25w
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104611
crossref_primary_10_1109_ACCESS_2024_3523936
crossref_primary_10_1007_s12524_025_02202_2
crossref_primary_10_3390_jmse12101862
crossref_primary_10_1016_j_meaene_2024_100015
crossref_primary_10_1007_s11554_025_01762_3
Cites_doi 10.1109/ACCESS.2020.3007481
10.1177/09544062211019774
10.1109/ACCESS.2021.3077499
10.1007/s11042-020-09749-x
10.1002/ima.22663
10.1111/phor.12429
10.1016/j.infrared.2023.104640
10.1109/ACCESS.2021.3053956
10.1016/j.dt.2020.06.013
10.1049/ipr2.12286
10.3934/ipi.2022010
10.1016/j.micpro.2020.103535
10.24018/ejers.2021.6.1.2316
10.5946/ce.2020.054
10.1016/j.ifacol.2021.06.172
10.1016/j.biosystemseng.2021.02.010
10.1108/AEAT-05-2021-0142
10.3390/electronics10182243
10.1017/S0373463321000783
10.3390/photonics8070278
10.1007/s00607-020-00869-8
10.32628/CSEIT217249
10.48550/arXiv.1804.02767
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-57799-0
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

CrossRef


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_b341d7d7baad4f6c8e0e9dc5448dbe48
PMC10984955
38561431
10_1038_s41598_024_57799_0
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-789bd03b4f2d45c014abfc61bfc5733c1ffae98bac97b5bc7b5fbd4a9a9b5b033
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001195796200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:45:34 EDT 2025
Tue Nov 04 02:05:51 EST 2025
Sun Nov 09 12:28:33 EST 2025
Tue Oct 07 09:04:05 EDT 2025
Wed Feb 19 02:03:23 EST 2025
Tue Nov 18 21:43:58 EST 2025
Sat Nov 29 01:58:42 EST 2025
Fri Feb 21 02:38:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Video surveillance
YOLOv3
Object tracking
Image convolution techniques
Object detection
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-789bd03b4f2d45c014abfc61bfc5733c1ffae98bac97b5bc7b5fbd4a9a9b5b033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/b341d7d7baad4f6c8e0e9dc5448dbe48
PMID 38561431
PQID 3028039004
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_b341d7d7baad4f6c8e0e9dc5448dbe48
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10984955
proquest_miscellaneous_3031132269
proquest_journals_3028039004
pubmed_primary_38561431
crossref_citationtrail_10_1038_s41598_024_57799_0
crossref_primary_10_1038_s41598_024_57799_0
springer_journals_10_1038_s41598_024_57799_0
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Al-qaness, Abbasi, Fan, Ibrahim, Hawbani (CR4) 2021; 103
Kaliappan, Thapasimuthu Rajeswari, Dakshinamoorthy (CR5) 2022; 37
Won-Jae, Myung-Il, Hye-Won, Jisang, Yeong-Min, Sung-Jun (CR25) 2021; 1
CR18
Meng, Wang, Shao, Wang, Yu, Xiao (CR24) 2021; 17
Arulappan, Thankaraj (CR14) 2022; 32
Guo, Yuan, Zhang, Chen (CR23) 2021; 10
Xu, Li, Zhang (CR2) 2021; 9
Shen, Chen, Liu, Zhang (CR6) 2022; 16
Law, Choi, Lam, Lui (CR16) 2022; 16
Koroveshi, Ktona (CR20) 2021; 6
Ashraf, Imran, Qahtani, Alsufyani, Almutiry, Mahmood (CR1) 2022; 70
Shi, Liu, Jiang, Zhao (CR15) 2021; 1
Li, Liu, Wei, Zhou (CR17) 2022; 236
Choi, Shin, Jung, Bae, Kim, Byeon (CR12) 2020; 53
Gan, Ou, Zhao, Xu, Xue (CR19) 2021; 205
Gothane (CR10) 2021; 7
Hou, Li (CR22) 2021; 80
Li, Liu, Wang, Chen, Yang (CR27) 2021; 8
Panda, Barczyk (CR26) 2021; 54
Xu (CR13) 2022; 94
Guo, Lu, Liu (CR7) 2022; 75
Krišto, Ivasic-Kos, Pobar (CR3) 2020; 8
Li, Deng, Yang, Liu, Gu (CR11) 2021; 9
Yi, Li, Liu (CR8) 2023; 131
Liu, Jiang, Wang, Ouyang, Zhang (CR21) 2021; 2
Jha, Seo, Yang, Joshi (CR9) 2021; 80
Y Liu (57799_CR21) 2021; 2
S Yi (57799_CR8) 2023; 131
W Shi (57799_CR15) 2021; 1
H Gan (57799_CR19) 2021; 205
57799_CR18
L Won-Jae (57799_CR25) 2021; 1
X Xu (57799_CR13) 2022; 94
M Krišto (57799_CR3) 2020; 8
S Jha (57799_CR9) 2021; 80
J Guo (57799_CR23) 2021; 10
A Arulappan (57799_CR14) 2022; 32
J Choi (57799_CR12) 2020; 53
MAA Al-qaness (57799_CR4) 2021; 103
J Hou (57799_CR22) 2021; 80
P Panda (57799_CR26) 2021; 54
AH Ashraf (57799_CR1) 2022; 70
W Shen (57799_CR6) 2022; 16
D Li (57799_CR17) 2022; 236
Z Li (57799_CR27) 2021; 8
H Law (57799_CR16) 2022; 16
FJ Meng (57799_CR24) 2021; 17
H Li (57799_CR11) 2021; 9
NK Kaliappan (57799_CR5) 2022; 37
Y Guo (57799_CR7) 2022; 75
Z Xu (57799_CR2) 2021; 9
J Koroveshi (57799_CR20) 2021; 6
S Gothane (57799_CR10) 2021; 7
References_xml – ident: CR18
– volume: 8
  start-page: 125459
  issue: 2
  year: 2020
  end-page: 125476
  ident: CR3
  article-title: Thermal object detection in difficult weather conditions using YOLO
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007481
– volume: 236
  start-page: 1780
  issue: 3
  year: 2022
  end-page: 1795
  ident: CR17
  article-title: Robotic grasping method of bolster spring based on image-based visual servoing with YOLOv3 object detection algorithm
  publication-title: Proc. Inst. Mech. Eng.C J. Mech. Eng. Sci.
  doi: 10.1177/09544062211019774
– volume: 9
  start-page: 68482
  issue: 1
  year: 2021
  end-page: 68497
  ident: CR2
  article-title: A surveillance video real-time analysis system based on edge-cloud and fl-yolo cooperation in coal mine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077499
– volume: 80
  start-page: 3981
  issue: 3
  year: 2021
  end-page: 3996
  ident: CR9
  article-title: Real time object detection and trackingsystem for video surveillance system
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09749-x
– volume: 32
  start-page: 815
  issue: 3
  year: 2022
  end-page: 830
  ident: CR14
  article-title: Liver tumor segmentation using a new asymmetrical dilated convolutional semantic segmentation network in CT images
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22663
– volume: 37
  start-page: 490
  issue: 180
  year: 2022
  end-page: 502
  ident: CR5
  article-title: Intelligent video surveillance using enhanced deep belief based multilayered convolution neural network classification techniques
  publication-title: Photogramm. Rec.
  doi: 10.1111/phor.12429
– volume: 131
  start-page: 104640
  year: 2023
  ident: CR8
  article-title: HCTIRdeblur: A hybrid convolution-transformer network for single infrared image deblurring
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2023.104640
– volume: 9
  start-page: 16692
  issue: 2
  year: 2021
  end-page: 16706
  ident: CR11
  article-title: Enhanced YOLO v3 tiny network for real-time ship detection from visual image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053956
– volume: 70
  start-page: 2761
  issue: 4
  year: 2022
  end-page: 2775
  ident: CR1
  article-title: Weapons detection for security and video surveillance using cnn and YOLO-v5s
  publication-title: CMC-Comput. Mater. Contin.
– volume: 17
  start-page: 1249
  issue: 4
  year: 2021
  end-page: 1261
  ident: CR24
  article-title: Visual-attention gabor filter based online multi-armored target tracking
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2020.06.013
– volume: 16
  start-page: 681
  issue: 3
  year: 2022
  end-page: 690
  ident: CR6
  article-title: An image enhancement algorithm of video surveillance scene based on deep learning
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12286
– volume: 16
  start-page: 1019
  issue: 4
  year: 2022
  end-page: 1046
  ident: CR16
  article-title: Quasiconformal model with CNN features for large deformation image registration
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2022010
– volume: 80
  start-page: 103535
  issue: 3
  year: 2021
  ident: CR22
  article-title: Swimming target detection and tracking technology in video image processing
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103535
– volume: 1
  start-page: 31
  issue: 2
  year: 2021
  ident: CR15
  article-title: Video compressed sensing using a convolutional neural network
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 6
  start-page: 48
  issue: 1
  year: 2021
  end-page: 54
  ident: CR20
  article-title: Target tracking using reinforcement learning and neural networks
  publication-title: Eur. J. Eng. Res. Sci.
  doi: 10.24018/ejers.2021.6.1.2316
– volume: 53
  start-page: 117
  issue: 2
  year: 2020
  end-page: 126
  ident: CR12
  article-title: Convolutional neural network technology in endoscopic imaging: Artificial intelligence for endoscopy
  publication-title: Clin. Endosc.
  doi: 10.5946/ce.2020.054
– volume: 54
  start-page: 743
  issue: 9
  year: 2021
  end-page: 748
  ident: CR26
  article-title: Blending of learning-based tracking and object detection for monocular camera-based target following—Sciencedirect
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.06.172
– volume: 205
  start-page: 48
  issue: 1
  year: 2021
  end-page: 63
  ident: CR19
  article-title: Automated piglet tracking using a single convolutional neural network
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.02.010
– volume: 94
  start-page: 398
  issue: 3
  year: 2022
  end-page: 406
  ident: CR13
  article-title: Target group distribution pattern analysis with bagged convolutional neural networks for UAV distribution pattern identification
  publication-title: Aircr. Eng. Aerosp. Technol.
  doi: 10.1108/AEAT-05-2021-0142
– volume: 1
  start-page: 5
  issue: 5
  year: 2021
  ident: CR25
  article-title: Detection and tracking for the awareness of surroundings of a ship based on deep learning
  publication-title: J. Comput. Des. Eng.
– volume: 10
  start-page: 2243
  issue: 18
  year: 2021
  ident: CR23
  article-title: Vision-based target detection and tracking for a miniature pan-tilt inertially stabilized platform
  publication-title: Electronics
  doi: 10.3390/electronics10182243
– volume: 75
  start-page: 230
  issue: 1
  year: 2022
  end-page: 250
  ident: CR7
  article-title: Lightweight deep network-enabled real-time low-visibility enhancement for promoting vessel detection in maritime video surveillance
  publication-title: J. Navig.
  doi: 10.1017/S0373463321000783
– volume: 8
  start-page: 278
  issue: 7
  year: 2021
  ident: CR27
  article-title: Target tracking and ranging based on single photon detection
  publication-title: Photonics
  doi: 10.3390/photonics8070278
– volume: 103
  start-page: 211
  issue: 1
  year: 2021
  end-page: 230
  ident: CR4
  article-title: An improved YOLO-based road traffic monitoring system
  publication-title: Computing
  doi: 10.1007/s00607-020-00869-8
– volume: 7
  start-page: 268
  issue: 2
  year: 2021
  end-page: 272
  ident: CR10
  article-title: A practice for object detection using YOLO algorithm
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
  doi: 10.32628/CSEIT217249
– volume: 2
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  ident: CR21
  article-title: Research on design of intelligent background differential model for training target monitoring
  publication-title: Complexity
– volume: 2
  start-page: 1
  issue: 1
  year: 2021
  ident: 57799_CR21
  publication-title: Complexity
– volume: 9
  start-page: 68482
  issue: 1
  year: 2021
  ident: 57799_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077499
– volume: 80
  start-page: 3981
  issue: 3
  year: 2021
  ident: 57799_CR9
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09749-x
– volume: 205
  start-page: 48
  issue: 1
  year: 2021
  ident: 57799_CR19
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.02.010
– volume: 75
  start-page: 230
  issue: 1
  year: 2022
  ident: 57799_CR7
  publication-title: J. Navig.
  doi: 10.1017/S0373463321000783
– volume: 53
  start-page: 117
  issue: 2
  year: 2020
  ident: 57799_CR12
  publication-title: Clin. Endosc.
  doi: 10.5946/ce.2020.054
– volume: 10
  start-page: 2243
  issue: 18
  year: 2021
  ident: 57799_CR23
  publication-title: Electronics
  doi: 10.3390/electronics10182243
– volume: 17
  start-page: 1249
  issue: 4
  year: 2021
  ident: 57799_CR24
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2020.06.013
– volume: 103
  start-page: 211
  issue: 1
  year: 2021
  ident: 57799_CR4
  publication-title: Computing
  doi: 10.1007/s00607-020-00869-8
– volume: 80
  start-page: 103535
  issue: 3
  year: 2021
  ident: 57799_CR22
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103535
– volume: 8
  start-page: 125459
  issue: 2
  year: 2020
  ident: 57799_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007481
– volume: 32
  start-page: 815
  issue: 3
  year: 2022
  ident: 57799_CR14
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22663
– ident: 57799_CR18
  doi: 10.48550/arXiv.1804.02767
– volume: 37
  start-page: 490
  issue: 180
  year: 2022
  ident: 57799_CR5
  publication-title: Photogramm. Rec.
  doi: 10.1111/phor.12429
– volume: 16
  start-page: 681
  issue: 3
  year: 2022
  ident: 57799_CR6
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12286
– volume: 7
  start-page: 268
  issue: 2
  year: 2021
  ident: 57799_CR10
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
  doi: 10.32628/CSEIT217249
– volume: 16
  start-page: 1019
  issue: 4
  year: 2022
  ident: 57799_CR16
  publication-title: Inverse Probl. Imaging
  doi: 10.3934/ipi.2022010
– volume: 70
  start-page: 2761
  issue: 4
  year: 2022
  ident: 57799_CR1
  publication-title: CMC-Comput. Mater. Contin.
– volume: 8
  start-page: 278
  issue: 7
  year: 2021
  ident: 57799_CR27
  publication-title: Photonics
  doi: 10.3390/photonics8070278
– volume: 131
  start-page: 104640
  year: 2023
  ident: 57799_CR8
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2023.104640
– volume: 6
  start-page: 48
  issue: 1
  year: 2021
  ident: 57799_CR20
  publication-title: Eur. J. Eng. Res. Sci.
  doi: 10.24018/ejers.2021.6.1.2316
– volume: 9
  start-page: 16692
  issue: 2
  year: 2021
  ident: 57799_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053956
– volume: 1
  start-page: 31
  issue: 2
  year: 2021
  ident: 57799_CR15
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 54
  start-page: 743
  issue: 9
  year: 2021
  ident: 57799_CR26
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.06.172
– volume: 236
  start-page: 1780
  issue: 3
  year: 2022
  ident: 57799_CR17
  publication-title: Proc. Inst. Mech. Eng.C J. Mech. Eng. Sci.
  doi: 10.1177/09544062211019774
– volume: 1
  start-page: 5
  issue: 5
  year: 2021
  ident: 57799_CR25
  publication-title: J. Comput. Des. Eng.
– volume: 94
  start-page: 398
  issue: 3
  year: 2022
  ident: 57799_CR13
  publication-title: Aircr. Eng. Aerosp. Technol.
  doi: 10.1108/AEAT-05-2021-0142
SSID ssj0000529419
Score 2.4692912
Snippet In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic...
Abstract In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7651
SubjectTerms 639/301
639/705
Accuracy
Algorithms
Comparative analysis
Humanities and Social Sciences
Image convolution techniques
Image processing
Localization
multidisciplinary
Object detection
Object tracking
Science
Science (multidisciplinary)
Success
Surveillance
Video surveillance
YOLOv3
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggNQL70KgICNxg6hx7MT2CQGiAqlqOQBaTpaf7Yo2aTfbSvx7PI431fLohYulxI5ie8Yz9sz4G4ReujoEaUxduqDhSo7XpXbUl6zVTRsco3WK8v22x_f3xWwmP2eD25DDKlcyMQlq11uwke9Q8AHGA3rF3pyelZA1CryrOYXGdXQD0mYDn_MZn2ws4MViROa7MhUVO0PUV3CnrGZlwzlcwF_TRwm2_297zT9DJn_zmyZ1tHvnfwdyF93OG1H8duSce-ia7-6jW2Nqyp8P0I9PJ1HSYAhKz8yJJ7jXAU8gEw6DIRd_P9g7uKBYHx_GPy2PTmIDPOYHwr0BSw-GSFQc5uCbj-PBunPY-WWKA-seoq-7H768_1jmxAylbRhZllxI4ypqWKgda2w8ZWkTbEtiAfCKloSgvRRGW8lNY2wsgnFMSy3jY0XpFtro-s4_RtiHwCNbEENYYJFxtNWNbXXljQyisaJAZEUeZTNqOSTPOFbJe06FGkmqIklVIqmqCvRq-uZ0xOy4svU7oPrUEvC204t-cajy8lUmKnvHHTdaOxZaK3zlpYuzwYQznsVubq-IrbIQGNQlpQv0YqqOyxd8Mrrz_Tm0oQQMAq0s0KORxaaeUAEwrZQUSKwx31pX12u6-VGCCCeVFPHo2xTo9YpPL_v177l4cvUwnqLNGpZOClzaRhvLxbl_hm7ai-V8WDxPa-8XgNw6XQ
  priority: 102
  providerName: ProQuest
Title Image convolution techniques integrated with YOLOv3 algorithm in motion object data filtering and detection
URI https://link.springer.com/article/10.1038/s41598-024-57799-0
https://www.ncbi.nlm.nih.gov/pubmed/38561431
https://www.proquest.com/docview/3028039004
https://www.proquest.com/docview/3031132269
https://pubmed.ncbi.nlm.nih.gov/PMC10984955
https://doaj.org/article/b341d7d7baad4f6c8e0e9dc5448dbe48
Volume 14
WOSCitedRecordID wos001195796200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCxIXxJtAWRmJG0SNYye2jxS1olK7XSFA21PkJ6xos2h3W4l_z9jJhi7PC5eRnDjSaGb8mMzMNwAvXBmCMqbMXdCxJMfrXDvmc17rqg6OszJl-X48EuOxnE7V5Eqrr5gT1sEDd4LbNbjNOuGE0drxUFvpC6-crdCtcMbzVOZbCHXFmepQvUvFqeqrZAomd5d4UsVqspLnlRCx9H7jJEqA_b-7Zf6aLPlTxDQdRAd34HZ_gySvO87vwjXf3oObXU_Jb_fhy-E5bhEkZpP3VkUGnNYlGdAhHIl_YMnpydHJJSP67NN8geNznEC6xj5kbuIvGhJTSEmYxaA6skN064jzq5TA1T6ADwf779-8zfuOCjkKjK5yIZVxBTM8lI5XFt0jbYKtKZKIi2hpCNorabRVwlTGIgnGca20wmHB2EPYauetfwzEhyBQn9RQHjhqXFtd2VoX3qggKyszoGvpNraHG49dL86aFPZmsuk00qBGmqSRpsjg5fDN1w5s46-z96LShpkRKDs9QPNpevNp_mU-GeysVd70q3fZsBhvZgr3jwyeD69x3cVgim79_CLOYTR68rXK4FFnIQMnTEZ8VUYzkBu2s8Hq5pt29jlhe9NCSfRZqwxerc3sB19_lsWT_yGLp3CrjOsj5SXtwNZqceGfwQ17uZotFyO4LqYiUTmC7b398eTdKC06pMflJFKBdHtyeDw5_Q5GtzUt
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqLQguvKGBAkaCE0TNw0nsA0K8qq663e6hoPZk_GxXbbNld1vUP8VvZCavann01gOXSEkcyXa-Gdsz38wQ8tIm3gutk9B6hSE5ToXKpi5kucpyb1maVCzfr4NiOOS7u2K0RH62sTBIq2x1YqWo7cSgjXwtRR8gHNAj9u7ke4hVo9C72pbQqGGx6c5_wJFt9rb_Cf7vqyRZ_7zzcSNsqgqEJmPxPCy40DZKNfOJZZmBI4LS3uQxXDA3oIm9V05wrYwodKYNXLy2TAkl4DZCAyio_GUGYI96ZHnU3xrtdVYd9JuxWDTROVHK12awQmIUW8LCrCgw5H9hBawKBfxtd_snSfM3T221AK7f_t-m7g651Wy16ftaNu6SJVfeI9fr4pvn98lh_xh0KUXafSN-tEtoO6NdGg1L0VRN97YH22cpVUf7MLL5wTE0oHUFJDrRaMuiyLWlfozsA5g_qkpLrZtXTLfyAflyJSN9SHrlpHQrhDrvCwB-rGPmGYiGMiozuYqcFp5nhgckbuEgTZOXHcuDHMmKH5ByWUNIAoRkBSEZBeR1981JnZXk0tYfEGVdS8woXj2YTPdlo6Ckhu2MLWyhlbLM54a7yAkLs8G41Y5BN1dbcMlGzc3kBbIC8qJ7DQoKvU6qdJNTbJPGaPLIRUAe1ZDuepJyTESbxgHhC2Bf6Orim3J8UCVBjyPB4XCfBeRNKxcX_fr3XDy-fBjPyY2Nna2BHPSHm0_IzQTFtqJprZLefHrqnpJr5mw-nk2fNZJPyberlphfqJOc4w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VLSAuvB-GAosEJ7Bie9f27gEhShsRNUojBKg9mX22Ea1TkrSof41fx4xfVXj01gMXS4k30u7mm9mdmW9mCHlhE--l1klovcKUHKdCZZkLeabSzFvOkorl-2WYj0Zid1eOV8jPNhcGaZWtTqwUtZ0a9JH3GMYAwUCPeM83tIjxZv_t8fcQO0hhpLVtp1FDZNud_QDzbf5msAn_9csk6W99ev8hbDoMhCbl8SLMhdQ2Ypr7xPLUgLmgtDdZDA-sE2hi75WTQisjc51qAw-vLVdSSfgYoTMU1P9azsDoWSVrG1uj8cfOw4MxNB7LJlMnYqI3h9MSM9oSHqZ5jun_S6dh1TTgbzfdPwmbv0Vtq8Owf_N_3sZb5EZzBafvapm5TVZceYdcrZtynt0l3wZHoGMp0vEbsaRdods57cprWIoubLq3M9w5ZVQd7sPKFgdHMIDWnZHoVKOPiyIHl_oJshJgL6kqLbVuUTHgynvk86Ws9D5ZLaele0io8z4HgYh1zD0HkVFGpSZTkdPSi9SIgMQtNArT1GvHtiGHRcUbYKKo4VQAnIoKTkUUkFfdb47raiUXjt5AxHUjsdJ49cV0tl80iqvQcM2xuc21Upb7zAgXOWlhN7iw2nGY5noLtKJRf_PiHGUBed69BsWF0ShVuukJjmExukIyGZAHNby7mTCBBWpZHBCxBPylqS6_KScHVXH0OJICjP40IK9bGTmf17_34tHFy3hGroGYFMPBaPsxuZ6gBFfsrXWyupiduCfkijldTOazp40SoOTrZQvML1qBpX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+convolution+techniques+integrated+with+YOLOv3+algorithm+in+motion+object+data+filtering+and+detection&rft.jtitle=Scientific+reports&rft.au=Cheng%2C+Mai&rft.au=Liu%2C+Mengyuan&rft.date=2024-04-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=7651&rft_id=info:doi/10.1038%2Fs41598-024-57799-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon