Image convolution techniques integrated with YOLOv3 algorithm in motion object data filtering and detection
In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only L...
Saved in:
| Published in: | Scientific reports Vol. 14; no. 1; pp. 7651 - 13 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.04.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In order to address the challenges of identifying, detecting, and tracking moving objects in video surveillance, this paper emphasizes image-based dynamic entity detection. It delves into the complexities of numerous moving objects, dense targets, and intricate backgrounds. Leveraging the You Only Look Once (YOLOv3) algorithm framework, this paper proposes improvements in image segmentation and data filtering to address these challenges. These enhancements form a novel multi-object detection algorithm based on an improved YOLOv3 framework, specifically designed for video applications. Experimental validation demonstrates the feasibility of this algorithm, with success rates exceeding 60% for videos such as “jogging”, “subway”, “video 1”, and “video 2”. Notably, the detection success rates for “jogging” and “video 1” consistently surpass 80%, indicating outstanding detection performance. Although the accuracy slightly decreases for “Bolt” and “Walking2”, success rates still hover around 70%. Comparative analysis with other algorithms reveals that this method’s tracking accuracy surpasses that of particle filters, Discriminative Scale Space Tracker (DSST), and Scale Adaptive Multiple Features (SAMF) algorithms, with an accuracy of 0.822. This indicates superior overall performance in target tracking. Therefore, the improved YOLOv3-based multi-object detection and tracking algorithm demonstrates robust filtering and detection capabilities in noise-resistant experiments, making it highly suitable for various detection tasks in practical applications. It can address inherent limitations such as missed detections, false positives, and imprecise localization. These improvements significantly enhance the efficiency and accuracy of target detection, providing valuable insights for researchers in the field of object detection, tracking, and recognition in video surveillance. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-024-57799-0 |