The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms

Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-a...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurodegeneration Vol. 18; no. 1; pp. 45 - 29
Main Authors: Chandra, Sidhanth, Di Meco, Antonio, Dodiya, Hemraj B., Popovic, Jelena, Cuddy, Leah K., Weigle, Ian Q., Zhang, Xiaoqiong, Sadleir, Katherine, Sisodia, Sangram S., Vassar, Robert
Format: Journal Article
Language:English
Published: London BioMed Central 06.07.2023
Springer Nature B.V
BMC
Subjects:
ISSN:1750-1326, 1750-1326
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. Methods To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. Results Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. Conclusions We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
AbstractList BackgroundPrevious studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined.MethodsTo study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx.ResultsHerein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes.ConclusionsWe show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. Methods To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. Results Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. Conclusions We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
Abstract Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. Methods To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. Results Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. Conclusions We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined.BACKGROUNDPrevious studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined.To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx.METHODSTo study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx.Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes.RESULTSHerein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes.We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.CONCLUSIONSWe show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
ArticleNumber 45
Author Di Meco, Antonio
Chandra, Sidhanth
Vassar, Robert
Weigle, Ian Q.
Popovic, Jelena
Sadleir, Katherine
Dodiya, Hemraj B.
Sisodia, Sangram S.
Zhang, Xiaoqiong
Cuddy, Leah K.
Author_xml – sequence: 1
  givenname: Sidhanth
  surname: Chandra
  fullname: Chandra, Sidhanth
  organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Medical Scientist Training Program, Northwestern University Feinberg School of Medicine
– sequence: 2
  givenname: Antonio
  surname: Di Meco
  fullname: Di Meco, Antonio
  organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
– sequence: 3
  givenname: Hemraj B.
  surname: Dodiya
  fullname: Dodiya, Hemraj B.
  organization: Department of Neurobiology, University of Chicago
– sequence: 4
  givenname: Jelena
  surname: Popovic
  fullname: Popovic, Jelena
  organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
– sequence: 5
  givenname: Leah K.
  surname: Cuddy
  fullname: Cuddy, Leah K.
  organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
– sequence: 6
  givenname: Ian Q.
  surname: Weigle
  fullname: Weigle, Ian Q.
  organization: Department of Neurobiology, University of Chicago
– sequence: 7
  givenname: Xiaoqiong
  surname: Zhang
  fullname: Zhang, Xiaoqiong
  organization: Department of Neurobiology, University of Chicago
– sequence: 8
  givenname: Katherine
  surname: Sadleir
  fullname: Sadleir, Katherine
  organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
– sequence: 9
  givenname: Sangram S.
  surname: Sisodia
  fullname: Sisodia, Sangram S.
  organization: Department of Neurobiology, University of Chicago
– sequence: 10
  givenname: Robert
  orcidid: 0000-0002-1358-504X
  surname: Vassar
  fullname: Vassar, Robert
  email: r-vassar@northwestern.edu
  organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Northwestern University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37415149$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQjVARbS_8AAsUiQ2bgF9JnBWqKh6VKrEpa2viR-KrxL7YDtLtZ_EhfBO-Telr0Y3tGZ9zPOM5p8WR804XxVuMPmLMm08RU0RYhQitEGpoXZEXxQlua1RhSpqjB-fj4jTGLUKsRah-VRzTluEas-6kuL4adTksqZytDL63ftZl0MMyQdKxhJiCl_t0yIFM1rsy-fLs758S5v3krfLRxjKNwS_DuEoMk4WpVHqnndIuleBUad19PGs5grNxjq-LlwamqN_c7pvi59cvV-ffq8sf3y7Ozy4rWTOcKsY1NS1Ar2WPO0UxNhxLrmhvkKolNK1psWw07SkzChnCGwp117dKIzC1opviYtVVHrZiF-wMYS88WHGT8GEQEJKVkxZGN6xrQKK-MQxxBcCwlMA473jXK5O1Pq9au6WftZK5owDTI9HHN86OYvC_BUaUMJLXTfHhViH4X4uOScw2Sj1N4LRfoiCc1qQlbdtl6Psn0K1fgst_dUDxljcNwRn17mFJd7X8n3EGkBWQpxNj0OYOgpE4GEmsRhLZSOLGSIJkEn9CkjbBwQG5LTs9T6UrNeZ33KDDfdnPsP4BFkXhbg
CitedBy_id crossref_primary_10_1016_j_ejphar_2025_177260
crossref_primary_10_1080_19490976_2025_2501193
crossref_primary_10_1186_s43556_025_00307_1
crossref_primary_10_1186_s12974_023_03004_4
crossref_primary_10_1016_j_arr_2024_102637
crossref_primary_10_1080_19490976_2025_2551879
crossref_primary_10_1016_j_biopha_2023_115825
crossref_primary_10_1016_j_nutres_2025_04_002
crossref_primary_10_1172_JCI180826
crossref_primary_10_1111_imr_13412
crossref_primary_10_1172_JCI194443
crossref_primary_10_3389_fphar_2024_1459655
crossref_primary_10_1186_s40035_024_00432_x
crossref_primary_10_1080_17425247_2025_2480654
crossref_primary_10_1186_s12974_024_03185_6
crossref_primary_10_1016_j_neurot_2024_e00425
crossref_primary_10_1186_s12974_025_03371_0
crossref_primary_10_1186_s13195_024_01471_2
crossref_primary_10_1016_j_ijbiomac_2025_146160
crossref_primary_10_1080_19490976_2024_2363014
crossref_primary_10_3390_microorganisms13010122
crossref_primary_10_1007_s00429_025_03003_6
crossref_primary_10_3389_fnagi_2024_1429211
crossref_primary_10_1002_mog2_85
crossref_primary_10_4103_NRR_NRR_D_23_01776
crossref_primary_10_1016_j_ijbiomac_2025_139503
crossref_primary_10_1093_infdis_jiae200
crossref_primary_10_1136_pn_2024_004400
crossref_primary_10_1186_s13024_024_00720_0
crossref_primary_10_1038_s41419_024_06578_w
crossref_primary_10_1016_j_celrep_2025_115546
crossref_primary_10_1007_s00702_025_02956_6
crossref_primary_10_1038_s41392_024_01743_1
Cites_doi 10.1038/s41467-017-00037-1
10.1186/s13024-019-0333-5
10.1186/s13024-019-0352-2
10.18632/aging.102810
10.1186/s13024-020-00391-7
10.1038/s41586-020-2681-2
10.1186/s13024-020-00378-4
10.1002/glia.24253
10.1038/ng.801
10.3233/JAD-160884
10.1186/s13041-021-00865-9
10.1038/s41598-017-11047-w
10.1038/s41593-020-00783-4
10.1523/JNEUROSCI.3199-16.2017
10.1186/1742-2094-8-150
10.1038/s41586-018-0119-x
10.1126/science.1233521
10.1016/j.neuroscience.2020.07.016
10.1073/pnas.2102191118
10.1016/j.ajpath.2011.05.047
10.1186/s40478-021-01180-z
10.3233/JAD-160926
10.1038/s41467-019-11053-8
10.1371/journal.pone.0021880
10.4049/jimmunol.169.3.1505
10.14806/ej.17.1.200
10.3233/NHA-150002
10.1016/j.cell.2016.11.018
10.1038/s41593-021-00905-6
10.1093/nar/gks042
10.1038/srep41802
10.3389/fphys.2018.01534
10.1016/j.bbih.2021.100318
10.1038/s41588-022-01024-z
10.3390/ijms23158209
10.1073/pnas.1604032113
10.1016/j.mayocp.2020.07.019
10.1038/ng.2802
10.1186/s13024-023-00595-7
10.1038/s41398-019-0525-3
10.1038/sj.embor.7400784
10.1073/pnas.1800165115
10.1126/science.add1236
10.1093/bioinformatics/btt593
10.1523/JNEUROSCI.2352-20.2021
10.1126/science.aal3589
10.1111/j.1476-5381.2011.01302.x
10.1007/s00424-019-02310-2
10.1126/scitranslmed.aaf6295
10.1523/JNEUROSCI.3442-16.2017
10.1111/j.2517-6161.1995.tb02031.x
10.1038/nri.2016.90
10.1038/s41598-020-64797-5
10.1523/JNEUROSCI.0115-20.2020
10.3389/fnagi.2019.00059
10.15252/emmm.201809665
10.1038/s41573-022-00390-x
10.1001/jama.2013.2973
10.1038/s41586-021-03960-y
10.1126/science.abq4822
10.3389/fnagi.2016.00256
10.1016/j.cell.2019.09.001
10.1128/mBio.00632-19
10.1016/j.celrep.2020.107776
10.1111/bph.14568
10.1074/jbc.M111.288746
10.1038/s41586-021-03734-6
10.1186/s13024-022-00522-2
10.3389/fmicb.2020.01008
10.1126/science.adc9020
10.1523/JNEUROSCI.0877-17.2017
10.3390/nu15040932
10.1038/nature21029
10.1084/jem.20182386
10.1038/s41586-020-03116-4
10.1371/journal.ppat.1009027
10.1093/bioinformatics/btq461
10.1186/s12974-020-01932-z
10.1186/s40478-018-0606-1
10.3233/JAD-201367
10.1523/JNEUROSCI.2117-15.2016
10.1073/pnas.1100957108
10.1093/hmg/ddh019
10.1016/j.neuron.2022.03.008
10.1038/s41467-021-27702-w
10.1073/pnas.2020810118
10.1186/s40478-020-00988-5
10.1016/j.jbiotec.2017.06.1198
10.1016/j.neuron.2014.11.018
10.1186/s13024-021-00487-8
10.1186/s13024-021-00427-6
10.1126/sciadv.aba0466
10.1126/science.abf1230
10.1098/rsob.170228
10.1016/j.celrep.2022.110961
10.1056/NEJMoa1211851
10.3233/JAD-200488
10.1038/s41598-017-13601-y
10.1038/nature10554
10.3233/JAD-170020
10.1038/nmeth.3869
10.1038/s41467-019-11674-z
10.1073/pnas.1922788117
10.1038/nm.4106
10.1523/JNEUROSCI.6221-11.2012
10.1038/s41467-019-14198-8
10.15252/embj.2021108662
10.1038/s41591-018-0051-5
10.1016/j.neurobiolaging.2016.08.019
10.1016/j.celrep.2019.07.033
10.1084/jem.20200895
10.1186/s13024-017-0184-x
10.1038/srep30028
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13024-023-00635-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1750-1326
EndPage 29
ExternalDocumentID oai_doaj_org_article_fe6496ac0b6f408daa41cca488989bdf
PMC10324210
37415149
10_1186_s13024_023_00635_2
Genre Journal Article
GrantInformation_xml – fundername: National Institute on Aging
  grantid: F30AG079577
  funderid: http://dx.doi.org/10.13039/100000049
– fundername: Good Ventures Foundation
  funderid: http://dx.doi.org/10.13039/100020392
– fundername: NIA NIH HHS
  grantid: F30 AG079577
– fundername: NIA NIH HHS
  grantid: F30AG079577
– fundername: NCI NIH HHS
  grantid: P30 CA060553
– fundername: ;
– fundername: ;
  grantid: F30AG079577
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
IHR
INH
INR
IPY
ITC
KQ8
LGEZI
LOTEE
M1P
M48
M~E
NADUK
NXXTH
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c541t-48e3f7aabecb19d311f81c8d3bf0d5ca67f71c6e3b34fd0f2863a59b7de0af5d3
IEDL.DBID DOA
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001025059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1750-1326
IngestDate Fri Oct 03 12:51:54 EDT 2025
Tue Nov 04 02:06:33 EST 2025
Sun Nov 09 10:06:26 EST 2025
Mon Oct 20 02:56:43 EDT 2025
Thu Apr 03 07:03:42 EDT 2025
Sat Nov 29 03:16:37 EST 2025
Tue Nov 18 21:07:04 EST 2025
Sat Sep 06 07:29:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neuroinflammation
Amyloid
Astrocyte
Gut microbiome
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-48e3f7aabecb19d311f81c8d3bf0d5ca67f71c6e3b34fd0f2863a59b7de0af5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1358-504X
OpenAccessLink https://doaj.org/article/fe6496ac0b6f408daa41cca488989bdf
PMID 37415149
PQID 2838786621
PQPubID 55149
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_fe6496ac0b6f408daa41cca488989bdf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10324210
proquest_miscellaneous_2835272779
proquest_journals_2838786621
pubmed_primary_37415149
crossref_primary_10_1186_s13024_023_00635_2
crossref_citationtrail_10_1186_s13024_023_00635_2
springer_journals_10_1186_s13024_023_00635_2
PublicationCentury 2000
PublicationDate 2023-07-06
PublicationDateYYYYMMDD 2023-07-06
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Molecular neurodegeneration
PublicationTitleAbbrev Mol Neurodegeneration
PublicationTitleAlternate Mol Neurodegener
PublicationYear 2023
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References C Chen (635_CR36) 2020; 6
IC Clark (635_CR96) 2021; 372
TR Sampson (635_CR23) 2016; 167
N Reichenbach (635_CR84) 2019; 11
J-Y Hur (635_CR110) 2020; 586
JM Basak (635_CR112) 2012; 287
JS Sadick (635_CR13) 2019; 176
JL Zamanian (635_CR53) 2012; 32
J Oksanen (635_CR51) 2015; 22–1
MA Wheeler (635_CR95) 2023; 379
MP Kummer (635_CR55) 2021; 40
JP Haran (635_CR91) 2019; 10
CS Constantinescu (635_CR98) 2011; 164
C Reitz (635_CR7) 2013; 309
T Harach (635_CR34) 2017; 7
Z Aversa (635_CR99) 2021; 96
J-S Park (635_CR59) 2021; 9
LM Sanmarco (635_CR22) 2021; 590
HB Dodiya (635_CR78) 2021; 219
F Endo (635_CR20) 2022; 378
P Sompol (635_CR107) 2017; 37
C Brandscheid (635_CR35) 2017; 56
NM Vogt (635_CR33) 2017; 7
SL Klein (635_CR81) 2016; 16
HB Dodiya (635_CR27) 2022; 219
KA Guttenplan (635_CR15) 2021; 599
S Schacke (635_CR66) 2022; 70
I Matias (635_CR86) 2019; 11
E Spangenberg (635_CR79) 2019; 10
MY Batiuk (635_CR19) 2020; 11
RC Edgar (635_CR46) 2010; 26
AG Efthymiou (635_CR8) 2017; 12
J Maldonado Weng (635_CR89) 2019; 14
S Spichak (635_CR80) 2021; 16
KA Guttenplan (635_CR14) 2020; 31
HB Dodiya (635_CR77) 2020; 10
S Kiani Shabestari (635_CR94) 2022; 39
T Guo (635_CR2) 2020; 15
M Lavialle (635_CR65) 2011; 108
H Lian (635_CR58) 2016; 36
J Xiao (635_CR101) 2020; 77
A Serrano-Pozo (635_CR93) 2011; 179
F Lei (635_CR104) 2020; 117
J Cavieres-Lepe (635_CR113) 2021; 41
MA DeTure (635_CR3) 2019; 14
JL Jankowsky (635_CR75) 2004; 13
Y Chen (635_CR38) 2020; 2020
L Katsouri (635_CR111) 2011; 6
HR Bulgart (635_CR28) 2020; 15
GM Dos Santos (635_CR88) 2020; 11
Y Lu (635_CR82) 2020; 40
K Boztug (635_CR72) 2002; 169
DJ McCarthy (635_CR49) 2012; 40
V Rothhammer (635_CR97) 2016; 22
H Den (635_CR102) 2020; 12
H Wang (635_CR109) 2021; 118
J Zhao (635_CR108) 2011; 8
R Radde (635_CR43) 2006; 7
SP Yun (635_CR12) 2018; 24
M Jiao (635_CR70) 2020; 17
AKY Fu (635_CR68) 2016; 113
J Du (635_CR61) 2021; 14
CC Liu (635_CR114) 2017; 37
LE Clarke (635_CR54) 2018; 115
C Bellenguez (635_CR9) 2022; 54
ID Vainchtein (635_CR69) 2018; 359
J Zhang (635_CR44) 2014; 30
W Sun (635_CR62) 2017; 37
V Rothhammer (635_CR56) 2018; 557
K Ceyzériat (635_CR106) 2018; 6
AC Naj (635_CR4) 2011; 43
D Bairamian (635_CR29) 2022; 17
HB Dodiya (635_CR26) 2019; 216
H-G Lee (635_CR10) 2022; 21
M Kumar (635_CR116) 2016; 4
SA Liddelow (635_CR11) 2017; 541
MR Minter (635_CR24) 2016; 6
R Guerreiro (635_CR5) 2013; 368
A Verkhratsky (635_CR85) 2019; 471
Z Jiwaji (635_CR52) 2022; 13
JS Sadick (635_CR18) 2022; 110
C Mezö (635_CR41) 2020; 8
JC Lambert (635_CR6) 2013; 45
CS McAlpine (635_CR57) 2021; 595
635_CR90
635_CR92
DO Seo (635_CR42) 2023; 379
KM Still (635_CR67) 2020; 16
Y Fujita (635_CR115) 2020; 443
YM Morizawa (635_CR74) 2017; 8
J Sun (635_CR103) 2019; 9
Y Benjamini (635_CR50) 1995; 57
JG Markle (635_CR83) 2013; 339
L Shen (635_CR37) 2017; 56
FO Glöckner (635_CR47) 2017; 261
MR Minter (635_CR25) 2017; 7
P Hasel (635_CR17) 2021; 24
GR Frost (635_CR16) 2017; 7
A Cattaneo (635_CR32) 2017; 49
E Akbari (635_CR100) 2016; 8
L Zhang (635_CR39) 2017; 60
Q Shi (635_CR63) 2017; 9
EA Kennedy (635_CR76) 2018; 9
635_CR45
R Rojo (635_CR105) 2019; 10
JM Long (635_CR1) 2019; 179
H Lian (635_CR64) 2015; 85
S Chandra (635_CR31) 2023; 18
Y Wang (635_CR71) 2021; 118
BJ Callahan (635_CR48) 2016; 13
D Cuervo-Zanatta (635_CR40) 2021; 82
C Escartin (635_CR60) 2021; 24
P Preman (635_CR87) 2021; 16
K Berer (635_CR21) 2011; 479
H Doron (635_CR73) 2019; 28
VTE Aho (635_CR30) 2021; 16
References_xml – volume: 8
  start-page: 28
  issue: 1
  year: 2017
  ident: 635_CR74
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-00037-1
– volume: 14
  start-page: 32
  issue: 1
  year: 2019
  ident: 635_CR3
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-019-0333-5
– volume: 14
  start-page: 47
  issue: 1
  year: 2019
  ident: 635_CR89
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-019-0352-2
– volume: 12
  start-page: 4010
  issue: 4
  year: 2020
  ident: 635_CR102
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102810
– volume: 15
  start-page: 40
  issue: 1
  year: 2020
  ident: 635_CR2
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-020-00391-7
– volume: 586
  start-page: 735
  issue: 7831
  year: 2020
  ident: 635_CR110
  publication-title: Nature
  doi: 10.1038/s41586-020-2681-2
– volume: 15
  start-page: 42
  issue: 1
  year: 2020
  ident: 635_CR28
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-020-00378-4
– volume: 70
  start-page: 2309
  issue: 12
  year: 2022
  ident: 635_CR66
  publication-title: Glia
  doi: 10.1002/glia.24253
– volume: 43
  start-page: 436
  issue: 5
  year: 2011
  ident: 635_CR4
  publication-title: Nat Genet
  doi: 10.1038/ng.801
– volume: 56
  start-page: 385
  year: 2017
  ident: 635_CR37
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160884
– volume: 14
  start-page: 154
  issue: 1
  year: 2021
  ident: 635_CR61
  publication-title: Mol Brain
  doi: 10.1186/s13041-021-00865-9
– volume: 7
  start-page: 10411
  issue: 1
  year: 2017
  ident: 635_CR25
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-11047-w
– volume: 24
  start-page: 312
  issue: 3
  year: 2021
  ident: 635_CR60
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-020-00783-4
– volume: 37
  start-page: 4493
  issue: 17
  year: 2017
  ident: 635_CR62
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3199-16.2017
– volume: 8
  start-page: 150
  year: 2011
  ident: 635_CR108
  publication-title: J Neuroinflammation
  doi: 10.1186/1742-2094-8-150
– volume: 2020
  start-page: 8456596
  year: 2020
  ident: 635_CR38
  publication-title: Biomed Res Int
– volume: 557
  start-page: 724
  issue: 7707
  year: 2018
  ident: 635_CR56
  publication-title: Nature
  doi: 10.1038/s41586-018-0119-x
– volume: 339
  start-page: 1084
  issue: 6123
  year: 2013
  ident: 635_CR83
  publication-title: Science (New York, NY)
  doi: 10.1126/science.1233521
– volume: 443
  start-page: 1
  year: 2020
  ident: 635_CR115
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2020.07.016
– volume: 118
  start-page: e2102191118
  issue: 33
  year: 2021
  ident: 635_CR109
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2102191118
– volume: 179
  start-page: 1373
  issue: 3
  year: 2011
  ident: 635_CR93
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.05.047
– volume: 9
  start-page: 78
  issue: 1
  year: 2021
  ident: 635_CR59
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-021-01180-z
– volume: 56
  start-page: 775
  issue: 2
  year: 2017
  ident: 635_CR35
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160926
– volume: 10
  start-page: 3215
  issue: 1
  year: 2019
  ident: 635_CR105
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11053-8
– volume: 6
  start-page: e21880
  issue: 7
  year: 2011
  ident: 635_CR111
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021880
– volume: 169
  start-page: 1505
  issue: 3
  year: 2002
  ident: 635_CR72
  publication-title: J Immunol
  doi: 10.4049/jimmunol.169.3.1505
– ident: 635_CR45
  doi: 10.14806/ej.17.1.200
– volume: 4
  start-page: 3
  issue: 1
  year: 2016
  ident: 635_CR116
  publication-title: Nutr Healthy Aging
  doi: 10.3233/NHA-150002
– volume: 167
  start-page: 1469
  issue: 6
  year: 2016
  ident: 635_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.018
– volume: 24
  start-page: 1475
  year: 2021
  ident: 635_CR17
  publication-title: Nat Neurosci.
  doi: 10.1038/s41593-021-00905-6
– volume: 40
  start-page: 4288
  issue: 10
  year: 2012
  ident: 635_CR49
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks042
– volume: 7
  start-page: 41802
  year: 2017
  ident: 635_CR34
  publication-title: Sci Rep
  doi: 10.1038/srep41802
– volume: 9
  start-page: 1534
  year: 2018
  ident: 635_CR76
  publication-title: Front Physiol.
  doi: 10.3389/fphys.2018.01534
– volume: 16
  start-page: 100318
  year: 2021
  ident: 635_CR80
  publication-title: Brain Behav Immun Health
  doi: 10.1016/j.bbih.2021.100318
– volume: 54
  start-page: 412
  issue: 4
  year: 2022
  ident: 635_CR9
  publication-title: Nat Genet
  doi: 10.1038/s41588-022-01024-z
– ident: 635_CR90
  doi: 10.3390/ijms23158209
– volume: 113
  start-page: E2705
  issue: 19
  year: 2016
  ident: 635_CR68
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1604032113
– volume: 96
  start-page: 66
  issue: 1
  year: 2021
  ident: 635_CR99
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2020.07.019
– volume: 45
  start-page: 1452
  issue: 12
  year: 2013
  ident: 635_CR6
  publication-title: Nat Genet
  doi: 10.1038/ng.2802
– volume: 18
  start-page: 9
  issue: 1
  year: 2023
  ident: 635_CR31
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-023-00595-7
– volume: 9
  start-page: 189
  issue: 1
  year: 2019
  ident: 635_CR103
  publication-title: Transl Psychiatry
  doi: 10.1038/s41398-019-0525-3
– volume: 7
  start-page: 940
  issue: 9
  year: 2006
  ident: 635_CR43
  publication-title: EMBO Rep
  doi: 10.1038/sj.embor.7400784
– volume: 115
  start-page: E1896
  issue: 8
  year: 2018
  ident: 635_CR54
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1800165115
– volume: 379
  start-page: eadd1236
  issue: 6628
  year: 2023
  ident: 635_CR42
  publication-title: Science (New York, NY)
  doi: 10.1126/science.add1236
– volume: 30
  start-page: 614
  issue: 5
  year: 2014
  ident: 635_CR44
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt593
– volume: 41
  start-page: 3749
  issue: 17
  year: 2021
  ident: 635_CR113
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2352-20.2021
– volume: 359
  start-page: 1269
  issue: 6381
  year: 2018
  ident: 635_CR69
  publication-title: Science (New York, NY)
  doi: 10.1126/science.aal3589
– volume: 164
  start-page: 1079
  issue: 4
  year: 2011
  ident: 635_CR98
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2011.01302.x
– volume: 471
  start-page: 1247
  issue: 10
  year: 2019
  ident: 635_CR85
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-019-02310-2
– volume: 9
  start-page: eaaf6295
  issue: 392
  year: 2017
  ident: 635_CR63
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf6295
– volume: 37
  start-page: 4023
  issue: 15
  year: 2017
  ident: 635_CR114
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3442-16.2017
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 635_CR50
  publication-title: J Roy Stat Soc: Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 16
  start-page: 626
  issue: 10
  year: 2016
  ident: 635_CR81
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.90
– volume: 10
  start-page: 8183
  issue: 1
  year: 2020
  ident: 635_CR77
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64797-5
– volume: 40
  start-page: 7355
  issue: 38
  year: 2020
  ident: 635_CR82
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0115-20.2020
– volume: 11
  start-page: 59
  year: 2019
  ident: 635_CR86
  publication-title: Fronti Aging Neurosci.
  doi: 10.3389/fnagi.2019.00059
– volume: 11
  start-page: e9665
  issue: 2
  year: 2019
  ident: 635_CR84
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.201809665
– volume: 21
  start-page: 339
  issue: 5
  year: 2022
  ident: 635_CR10
  publication-title: Nat Rev Drug Discovery
  doi: 10.1038/s41573-022-00390-x
– volume: 309
  start-page: 1483
  issue: 14
  year: 2013
  ident: 635_CR7
  publication-title: JAMA
  doi: 10.1001/jama.2013.2973
– volume: 599
  start-page: 102
  year: 2021
  ident: 635_CR15
  publication-title: Nature.
  doi: 10.1038/s41586-021-03960-y
– volume: 379
  start-page: 1023
  issue: 6636
  year: 2023
  ident: 635_CR95
  publication-title: Science (New York, NY)
  doi: 10.1126/science.abq4822
– volume: 8
  start-page: 256
  year: 2016
  ident: 635_CR100
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2016.00256
– volume: 179
  start-page: 312
  issue: 2
  year: 2019
  ident: 635_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2019.09.001
– volume: 10
  start-page: e00632
  issue: 3
  year: 2019
  ident: 635_CR91
  publication-title: mBio
  doi: 10.1128/mBio.00632-19
– volume: 31
  start-page: 107776
  issue: 12
  year: 2020
  ident: 635_CR14
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2020.107776
– volume: 176
  start-page: 3585
  issue: 18
  year: 2019
  ident: 635_CR13
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.14568
– volume: 287
  start-page: 13959
  issue: 17
  year: 2012
  ident: 635_CR112
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.288746
– volume: 595
  start-page: 701
  issue: 7869
  year: 2021
  ident: 635_CR57
  publication-title: Nature
  doi: 10.1038/s41586-021-03734-6
– volume: 17
  start-page: 19
  issue: 1
  year: 2022
  ident: 635_CR29
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-022-00522-2
– volume: 11
  start-page: 1008
  year: 2020
  ident: 635_CR88
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.01008
– volume: 378
  start-page: eadc9020
  issue: 6619
  year: 2022
  ident: 635_CR20
  publication-title: Science (New York, NY).
  doi: 10.1126/science.adc9020
– volume: 37
  start-page: 6132
  issue: 25
  year: 2017
  ident: 635_CR107
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0877-17.2017
– ident: 635_CR92
  doi: 10.3390/nu15040932
– volume: 541
  start-page: 481
  issue: 7638
  year: 2017
  ident: 635_CR11
  publication-title: Nature
  doi: 10.1038/nature21029
– volume: 216
  start-page: 1542
  issue: 7
  year: 2019
  ident: 635_CR26
  publication-title: J Exp Med
  doi: 10.1084/jem.20182386
– volume: 590
  start-page: 473
  issue: 7846
  year: 2021
  ident: 635_CR22
  publication-title: Nature
  doi: 10.1038/s41586-020-03116-4
– volume: 16
  start-page: e1009027
  issue: 10
  year: 2020
  ident: 635_CR67
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1009027
– volume: 26
  start-page: 2460
  issue: 19
  year: 2010
  ident: 635_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– volume: 17
  start-page: 251
  issue: 1
  year: 2020
  ident: 635_CR70
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-020-01932-z
– volume: 6
  start-page: 104
  issue: 1
  year: 2018
  ident: 635_CR106
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-018-0606-1
– volume: 82
  start-page: S195
  issue: s1
  year: 2021
  ident: 635_CR40
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-201367
– volume: 36
  start-page: 577
  issue: 2
  year: 2016
  ident: 635_CR58
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2117-15.2016
– volume: 108
  start-page: 12915
  issue: 31
  year: 2011
  ident: 635_CR65
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1100957108
– volume: 13
  start-page: 159
  issue: 2
  year: 2004
  ident: 635_CR75
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddh019
– volume: 110
  start-page: 1788
  year: 2022
  ident: 635_CR18
  publication-title: Neuron.
  doi: 10.1016/j.neuron.2022.03.008
– volume: 13
  start-page: 135
  issue: 1
  year: 2022
  ident: 635_CR52
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27702-w
– volume: 118
  start-page: e2020810118
  issue: 1
  year: 2021
  ident: 635_CR71
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2020810118
– volume: 8
  start-page: 119
  issue: 1
  year: 2020
  ident: 635_CR41
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-020-00988-5
– volume: 261
  start-page: 169
  year: 2017
  ident: 635_CR47
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2017.06.1198
– volume: 85
  start-page: 101
  issue: 1
  year: 2015
  ident: 635_CR64
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.11.018
– volume: 16
  start-page: 68
  issue: 1
  year: 2021
  ident: 635_CR87
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-021-00487-8
– volume: 16
  start-page: 6
  issue: 1
  year: 2021
  ident: 635_CR30
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-021-00427-6
– volume: 6
  start-page: eaba0466
  issue: 31
  year: 2020
  ident: 635_CR36
  publication-title: Science advances
  doi: 10.1126/sciadv.aba0466
– volume: 372
  start-page: eabf1230
  issue: 6540
  year: 2021
  ident: 635_CR96
  publication-title: Science (New York, NY).
  doi: 10.1126/science.abf1230
– volume: 7
  start-page: 170228
  issue: 12
  year: 2017
  ident: 635_CR16
  publication-title: Open Biol.
  doi: 10.1098/rsob.170228
– volume: 39
  issue: 11
  year: 2022
  ident: 635_CR94
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2022.110961
– volume: 368
  start-page: 117
  issue: 2
  year: 2013
  ident: 635_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211851
– volume: 77
  start-page: 139
  issue: 1
  year: 2020
  ident: 635_CR101
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-200488
– volume: 7
  start-page: 13537
  issue: 1
  year: 2017
  ident: 635_CR33
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-13601-y
– volume: 479
  start-page: 538
  issue: 7374
  year: 2011
  ident: 635_CR21
  publication-title: Nature
  doi: 10.1038/nature10554
– volume: 60
  start-page: 1241
  year: 2017
  ident: 635_CR39
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-170020
– volume: 13
  start-page: 581
  issue: 7
  year: 2016
  ident: 635_CR48
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 10
  start-page: 3758
  issue: 1
  year: 2019
  ident: 635_CR79
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11674-z
– volume: 117
  start-page: 23336
  issue: 38
  year: 2020
  ident: 635_CR104
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1922788117
– volume: 22
  start-page: 586
  issue: 6
  year: 2016
  ident: 635_CR97
  publication-title: Nat Med
  doi: 10.1038/nm.4106
– volume: 32
  start-page: 6391
  issue: 18
  year: 2012
  ident: 635_CR53
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.6221-11.2012
– volume: 11
  start-page: 1220
  issue: 1
  year: 2020
  ident: 635_CR19
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-14198-8
– volume: 40
  start-page: e108662
  issue: 24
  year: 2021
  ident: 635_CR55
  publication-title: EMBO J
  doi: 10.15252/embj.2021108662
– volume: 24
  start-page: 931
  issue: 7
  year: 2018
  ident: 635_CR12
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0051-5
– volume: 49
  start-page: 60
  year: 2017
  ident: 635_CR32
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.08.019
– volume: 28
  start-page: 1785
  issue: 7
  year: 2019
  ident: 635_CR73
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.07.033
– volume: 219
  start-page: e2020089
  issue: 1
  year: 2022
  ident: 635_CR27
  publication-title: J Exp Med.
  doi: 10.1084/jem.20200895
– volume: 22–1
  start-page: 1
  issue: 2
  year: 2015
  ident: 635_CR51
  publication-title: R Package Version
– volume: 12
  start-page: 43
  issue: 1
  year: 2017
  ident: 635_CR8
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-017-0184-x
– volume: 219
  start-page: e20200895
  issue: 1
  year: 2021
  ident: 635_CR78
  publication-title: J Exp Med
  doi: 10.1084/jem.20200895
– volume: 6
  start-page: 30028
  year: 2016
  ident: 635_CR24
  publication-title: Sci Rep
  doi: 10.1038/srep30028
SSID ssj0047005
Score 2.5041628
Snippet Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and...
Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and...
BackgroundPrevious studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and...
Abstract Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Alzheimer Disease - metabolism
Alzheimer's disease
Amyloid
Amyloid beta-Peptides - metabolism
Amyloid beta-Protein Precursor - metabolism
Amyloidosis
Amyloidosis - metabolism
Animal models
Animals
Antibiotics
Astrocyte
Astrocytes
Astrocytes - metabolism
Bacteria
Biomedical and Life Sciences
Biomedicine
Brain
Colony-stimulating factor
Complement component C3
Confocal microscopy
Digestive system
Feces
Female
Gastrointestinal Microbiome
Gene expression
Genotype & phenotype
Germfree
Glial fibrillary acidic protein
Gliosis
Gliosis - metabolism
Gut microbiome
Gut microbiota
Homeostasis
Immunoblotting
Immunohistochemistry
Inflammation
Intestinal microflora
Macrophage colony-stimulating factor
Male
Mice
Mice, Transgenic
Microbiomes
Microbiota
Microglia
Microglia - metabolism
Molecular Medicine
Morphology
Neurodegeneration
Neuroinflammation
Neurology
Neurosciences
Pathogens
Pathology
Phenotypes
Plaque, Amyloid - pathology
Recruitment
Research Article
Senile plaques
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagy4ELr-WRZUFGQlwgauw4jnNCBbECCVY9gLScIj-7kZpkadKVys_ih_CbsB2nVXnsiWNsJ7Ljb2Zsz_gbAJ4TmlrLIFjMhTExwYRbmcMiRkimmbYixrln1_-Yn56ys7NiHq5HdyGsctSJXlEPbM8ubtsq4alqpTsxn1qjyHJGKUavL77FLoeU87WGhBrXwYEj3mITcDD_8Gn-ddTMJLeQGy_OMDrtnNOOxNZqxc5SZzHeM06ew_9vC88_4yd_c6J623Ry-_-O6g64FdaocDaA6i64ppt74HDW2P15vYEvoI8a9cfxh-C7xRlcrHtYVwOlU63hashvrzvIu94ayE3vyoYbFLBv4eznD8jrzbKtVNtVHQy5goZPLJZWIuCYm7eHvFGwanbPtXZ3lauu7u6DLyfvPr99H4d8DrHMCOpjwnRqcs4tbAQqVIqQYUgylQqTqExympscSapTkRKjEoMZTXlWiFzphJtMpQ_ApGkb_QhALCgtlOGkEIZwRAUucikzIYlCWBkRATROZCkD2bnLubEs_aaH0XKY_NJOfuknv8QReLl952Kg-riy9RuHj21LR9PtC9rVogxSXxpNSUG5TAQ1JGGKc4Kk45F3STuFMhE4HmFRBt3RlTsURODZttpKvXPl8Ea3a98mw3bpmRcReDiAcduT1C0S7cY3AmwPpntd3a9pqnPPLO7YFQlGSQRejYje9evf_-Lo6mE8BjexFzIXaHkMJv1qrZ-AG_Kyr7rV0yCkvwDK9lD0
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELZQ4cCFrSyBgoyEuEBEvMRxjq8VFQdUITb1Znl9jdQk6DkPqfys_pD-JmwnedWDggTHeIlGk288M7H9DQAvKCPBMyieS-VcTjGVweawyhHSpLTBxKRM7Prvq6Mjfnxcf5guhfn5tPu8JZlW6mTWnL3xcYuN5sHH5NGvlnlYeK8Hd8ejOX789HVef2kVgDVfj7ly3pYLSkz9V4WXv5-S_GWrNHmgw9v_J_sdcGuKOOFihMhdcM1298DuogvZdnsGX8J0BjT9XN8FPwJq4HI9wLYZCZpaC1djtXrrofRDcHdnQ2wb70PAoYeLi3Mo25D3N6b3jYdT5Z_xFcvTgG84V9odoOwMbLrL59bGm8eNb_198OXw7eeDd_lUnSHXJUVDTrklrpIygECh2hCEHEeaG6JcYUotWeUqpJklilBnCoc5I7KsVWVsIV1pyAOw0_WdfQQgVozVxklaK0clYgrXldal0tQgbJzKAJo_mNATdXmsoHEqUgrDmRgVLIKCRVKwwBl4tZnzbSTu-Ovo_YiDzchIup0a-tVSTDYsnGW0ZlIXijlacCMlRTqywscSnMq4DOzNKBLTSuBFCN94xRnDKAPPN93BhuPGjOxsv05jShwCyarOwMMRdBtJSAz5QhqbAb4Fxy1Rt3u65iTxhEeuRBpS-gy8nlF5KdefdfH434Y_ATdxAnY8RrkHdobV2j4FN_T3ofGrZ8k0fwIFFTnS
  priority: 102
  providerName: Springer Nature
Title The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms
URI https://link.springer.com/article/10.1186/s13024-023-00635-2
https://www.ncbi.nlm.nih.gov/pubmed/37415149
https://www.proquest.com/docview/2838786621
https://www.proquest.com/docview/2835272779
https://pubmed.ncbi.nlm.nih.gov/PMC10324210
https://doaj.org/article/fe6496ac0b6f408daa41cca488989bdf
Volume 18
WOSCitedRecordID wos001025059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1750-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047005
  issn: 1750-1326
  databaseCode: RBZ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1750-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047005
  issn: 1750-1326
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1750-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047005
  issn: 1750-1326
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1750-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047005
  issn: 1750-1326
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Health and Medical Complete
  customDbUrl:
  eissn: 1750-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047005
  issn: 1750-1326
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1750-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047005
  issn: 1750-1326
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1750-1326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047005
  issn: 1750-1326
  databaseCode: RSV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagcOCCgLKklJGREBeIGjuO7RynqBVIMBqVRcMp8loiNRk0yVQqP4sfwm_CSzJlWC9cInlJZPl9z--92P4eAE8IzZ1lkDwV0tqUYCKczmGZIqTywjgVEyKw679msxlfLMr5D6m-_JmwSA8cJ-7AGkpKKlQmqSUZ10IQpDwVt897KLX1q6_zesZgKq7BhDlwjVdkOD3o_PYcSZ19Sr1NLlK8ZYYCW__vXMxfT0r-tF0arNDxLXBzcB_hNA77Nrhi2jtgd9q60Lm5gE9hONAZ_pTvgi8OAvB03cOmjmxLjYGrmHredFB0vbNdF72vi5cbYL-E029foWhcEF_rZVd3cEjjEz9xeubACse0uT0UrYZ1e1lujL9GXHdNdxe8Pz569-JlOqRaSFVBUJ8SbnLLhHASlajUOUKWI8V1Lm2mCyUoswwpanKZE6sziznNRVFKpk0mbKHze2CnXbbmAYBYUlpqK0gpLRGISlwypQqpiEZYW5kANM58pQYecp8O46wK8QinVZRW5aRVBWlVOAHPNu98jiwcf-196AW66ekZtEOFw1U14Kr6F64SsD_CoRrUuqucL8YZpxSjBDzeNDuF9LssojXLdehTYOcVsjIB9yN6NiPJvf_mYtIE8C1cbQ11u6WtPwXSb098SFx8noDnIwQvx_Xnudj7H3PxENzAQXf8Scl9sNOv1uYRuK7O-7pbTcBVtmDhySfg2uHRbH4yCdroSvNXb-YfXenk7Yfvft49VA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGAQk2vIZHYAAjARuIJnYcx1kgVB6jGU2pWAxSdxk_S6Q2GZoUVD6KBR_CN2E7SavymN0sWDZxI9c9597r3Ot7AHhCaGw9g2AhF8aEBBNuOYdFiJCME20pxrnvrj9MRyM2HmcftsD3_iyMK6vsbaI31KqS7h35nnWDLGWUYvTq9HPoVKNcdrWX0GhhcaSXX-2WrX55-Nb-v08x3n93_OYg7FQFQpkQ1ISE6diknNvJC5SpGCHDkGQqFiZSieQ0NSmSVMciJkZFBjMa8yQTqdIRN4mK7XMvgIvWjqeuhCwdrzZ4JLWQ7g_mMLpXu6QgCa1XDF0kkIR4w_l5jYC_BbZ_1mf-lqT1vm__2v-2atfB1S7KhoOWFjfAli5vgp1ByZtqtoTPoK979QmFHfDNMgVOFg2cFW1TqpmGcz1xsma6hrxurItfNu5aewYENhUc_PwB-Ww5rQpV1UUNO7Wj9hGTqeU07NWFG8hLBYty_Xmm3Wnrop7Vt8DHc1mF22C7rEp9F0AsKM2U4SQThnBEhcWTlImQRCGsjAgA6qGSy65du1MNmeZ-28Zo3sIrt_DKPbxyHIDnq--cts1Kzhz92iFwNdI1GvcXqvkk7-xWbjQlGeUyEtSQiCnOCZKuE76THRXKBGC3B17eWb86X6MuAI9Xt63dcskoXupq4cck2AbPaRaAOy3cVzOJXZhrt-4BYBtE2Jjq5p2y-OR7o7v-kASjKAAves6s5_Xvtbh39s94BC4fHL8f5sPD0dF9cAV7Sruy0V2w3cwX-gG4JL80RT1_6A0CBCfnzaVf77ekbg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA6yivjibb1UV40gvmjZSZOm6eN4GRSXYcEL-xZyHQvTdpl2hPFn-UP8TebSzjq6CuJj05OSpt_JOafJ-Q4ATwjFzjJIlgppbUoyIpzOZTJFSOHcOBUTIrDrHxXzOTs5KY9_yuIPp93HLcmY0-BZmpr-8FTbqOKMHnZ-u42kzt6k3sbmqVuELxJfNMjH6-8_jWsxKRzIxlSZc_vtmKPA2n-eq_n7iclftk2DNZpd-__3uA6uDp4onEbo3AAXTHMT7E8bF4XXG_gUhrOh4af7Pvjq0AQX6x7WVSRuqg1cxSr2poOi650Z3PS-LeZJwL6F0-_foKg3y7bSbVd1cKgIFB-xWDrcw7ECbw9Fo2HVnF3XxmckV13d3QIfZ68_vHyTDlUbUpUT1KeEGWwLIRw4JCo1RsgypJjG0k50rgQtbIEUNVhiYvXEZoxikZey0GYibK7xbbDXtI25C2AmKS21FaSUlghEZVYWSuVSEY0ybWUC0PjxuBoozX1ljSUPoQ2jPE4wdxPMwwTzLAHPtn1OI6HHX6VfeExsJT0Zd2hoVws-6Da3hpKSCjWR1JIJ00IQpDxbvC_NKbVNwMGIKD6sEB13bh0rGKUZSsDj7W2n237DRjSmXQeZPHMOZlEm4E4E4HYk2LuCLrxNANuB5s5Qd-801efAH-45FIkL9RPwfETo2bj-PBf3_k38Ebh8_GrGj97O390HV7KAcX_S8gDs9au1eQAuqS991a0eBo39AQYoRZo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gut+microbiome+regulates+astrocyte+reaction+to+A%CE%B2+amyloidosis+through+microglial+dependent+and+independent+mechanisms&rft.jtitle=Molecular+neurodegeneration&rft.au=Chandra%2C+Sidhanth&rft.au=Di+Meco%2C+Antonio&rft.au=Dodiya%2C+Hemraj+B.&rft.au=Popovic%2C+Jelena&rft.date=2023-07-06&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=18&rft_id=info:doi/10.1186%2Fs13024-023-00635-2&rft.externalDocID=PMC10324210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon