The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms
Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-a...
Saved in:
| Published in: | Molecular neurodegeneration Vol. 18; no. 1; pp. 45 - 29 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
06.07.2023
Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1750-1326, 1750-1326 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined.
Methods
To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx.
Results
Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes.
Conclusions
We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia. |
|---|---|
| AbstractList | BackgroundPrevious studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined.MethodsTo study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx.ResultsHerein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes.ConclusionsWe show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia. Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia. Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. Methods To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. Results Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. Conclusions We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia. Abstract Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. Methods To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. Results Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. Conclusions We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia. Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined.BACKGROUNDPrevious studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined.To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx.METHODSTo study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx.Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes.RESULTSHerein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes.We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.CONCLUSIONSWe show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia. |
| ArticleNumber | 45 |
| Author | Di Meco, Antonio Chandra, Sidhanth Vassar, Robert Weigle, Ian Q. Popovic, Jelena Sadleir, Katherine Dodiya, Hemraj B. Sisodia, Sangram S. Zhang, Xiaoqiong Cuddy, Leah K. |
| Author_xml | – sequence: 1 givenname: Sidhanth surname: Chandra fullname: Chandra, Sidhanth organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Medical Scientist Training Program, Northwestern University Feinberg School of Medicine – sequence: 2 givenname: Antonio surname: Di Meco fullname: Di Meco, Antonio organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine – sequence: 3 givenname: Hemraj B. surname: Dodiya fullname: Dodiya, Hemraj B. organization: Department of Neurobiology, University of Chicago – sequence: 4 givenname: Jelena surname: Popovic fullname: Popovic, Jelena organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine – sequence: 5 givenname: Leah K. surname: Cuddy fullname: Cuddy, Leah K. organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine – sequence: 6 givenname: Ian Q. surname: Weigle fullname: Weigle, Ian Q. organization: Department of Neurobiology, University of Chicago – sequence: 7 givenname: Xiaoqiong surname: Zhang fullname: Zhang, Xiaoqiong organization: Department of Neurobiology, University of Chicago – sequence: 8 givenname: Katherine surname: Sadleir fullname: Sadleir, Katherine organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine – sequence: 9 givenname: Sangram S. surname: Sisodia fullname: Sisodia, Sangram S. organization: Department of Neurobiology, University of Chicago – sequence: 10 givenname: Robert orcidid: 0000-0002-1358-504X surname: Vassar fullname: Vassar, Robert email: r-vassar@northwestern.edu organization: Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Northwestern University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37415149$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu1TAQjVARbS_8AAsUiQ2bgF9JnBWqKh6VKrEpa2viR-KrxL7YDtLtZ_EhfBO-Telr0Y3tGZ9zPOM5p8WR804XxVuMPmLMm08RU0RYhQitEGpoXZEXxQlua1RhSpqjB-fj4jTGLUKsRah-VRzTluEas-6kuL4adTksqZytDL63ftZl0MMyQdKxhJiCl_t0yIFM1rsy-fLs758S5v3krfLRxjKNwS_DuEoMk4WpVHqnndIuleBUad19PGs5grNxjq-LlwamqN_c7pvi59cvV-ffq8sf3y7Ozy4rWTOcKsY1NS1Ar2WPO0UxNhxLrmhvkKolNK1psWw07SkzChnCGwp117dKIzC1opviYtVVHrZiF-wMYS88WHGT8GEQEJKVkxZGN6xrQKK-MQxxBcCwlMA473jXK5O1Pq9au6WftZK5owDTI9HHN86OYvC_BUaUMJLXTfHhViH4X4uOScw2Sj1N4LRfoiCc1qQlbdtl6Psn0K1fgst_dUDxljcNwRn17mFJd7X8n3EGkBWQpxNj0OYOgpE4GEmsRhLZSOLGSIJkEn9CkjbBwQG5LTs9T6UrNeZ33KDDfdnPsP4BFkXhbg |
| CitedBy_id | crossref_primary_10_1016_j_ejphar_2025_177260 crossref_primary_10_1080_19490976_2025_2501193 crossref_primary_10_1186_s43556_025_00307_1 crossref_primary_10_1186_s12974_023_03004_4 crossref_primary_10_1016_j_arr_2024_102637 crossref_primary_10_1080_19490976_2025_2551879 crossref_primary_10_1016_j_biopha_2023_115825 crossref_primary_10_1016_j_nutres_2025_04_002 crossref_primary_10_1172_JCI180826 crossref_primary_10_1111_imr_13412 crossref_primary_10_1172_JCI194443 crossref_primary_10_3389_fphar_2024_1459655 crossref_primary_10_1186_s40035_024_00432_x crossref_primary_10_1080_17425247_2025_2480654 crossref_primary_10_1186_s12974_024_03185_6 crossref_primary_10_1016_j_neurot_2024_e00425 crossref_primary_10_1186_s12974_025_03371_0 crossref_primary_10_1186_s13195_024_01471_2 crossref_primary_10_1016_j_ijbiomac_2025_146160 crossref_primary_10_1080_19490976_2024_2363014 crossref_primary_10_3390_microorganisms13010122 crossref_primary_10_1007_s00429_025_03003_6 crossref_primary_10_3389_fnagi_2024_1429211 crossref_primary_10_1002_mog2_85 crossref_primary_10_4103_NRR_NRR_D_23_01776 crossref_primary_10_1016_j_ijbiomac_2025_139503 crossref_primary_10_1093_infdis_jiae200 crossref_primary_10_1136_pn_2024_004400 crossref_primary_10_1186_s13024_024_00720_0 crossref_primary_10_1038_s41419_024_06578_w crossref_primary_10_1016_j_celrep_2025_115546 crossref_primary_10_1007_s00702_025_02956_6 crossref_primary_10_1038_s41392_024_01743_1 |
| Cites_doi | 10.1038/s41467-017-00037-1 10.1186/s13024-019-0333-5 10.1186/s13024-019-0352-2 10.18632/aging.102810 10.1186/s13024-020-00391-7 10.1038/s41586-020-2681-2 10.1186/s13024-020-00378-4 10.1002/glia.24253 10.1038/ng.801 10.3233/JAD-160884 10.1186/s13041-021-00865-9 10.1038/s41598-017-11047-w 10.1038/s41593-020-00783-4 10.1523/JNEUROSCI.3199-16.2017 10.1186/1742-2094-8-150 10.1038/s41586-018-0119-x 10.1126/science.1233521 10.1016/j.neuroscience.2020.07.016 10.1073/pnas.2102191118 10.1016/j.ajpath.2011.05.047 10.1186/s40478-021-01180-z 10.3233/JAD-160926 10.1038/s41467-019-11053-8 10.1371/journal.pone.0021880 10.4049/jimmunol.169.3.1505 10.14806/ej.17.1.200 10.3233/NHA-150002 10.1016/j.cell.2016.11.018 10.1038/s41593-021-00905-6 10.1093/nar/gks042 10.1038/srep41802 10.3389/fphys.2018.01534 10.1016/j.bbih.2021.100318 10.1038/s41588-022-01024-z 10.3390/ijms23158209 10.1073/pnas.1604032113 10.1016/j.mayocp.2020.07.019 10.1038/ng.2802 10.1186/s13024-023-00595-7 10.1038/s41398-019-0525-3 10.1038/sj.embor.7400784 10.1073/pnas.1800165115 10.1126/science.add1236 10.1093/bioinformatics/btt593 10.1523/JNEUROSCI.2352-20.2021 10.1126/science.aal3589 10.1111/j.1476-5381.2011.01302.x 10.1007/s00424-019-02310-2 10.1126/scitranslmed.aaf6295 10.1523/JNEUROSCI.3442-16.2017 10.1111/j.2517-6161.1995.tb02031.x 10.1038/nri.2016.90 10.1038/s41598-020-64797-5 10.1523/JNEUROSCI.0115-20.2020 10.3389/fnagi.2019.00059 10.15252/emmm.201809665 10.1038/s41573-022-00390-x 10.1001/jama.2013.2973 10.1038/s41586-021-03960-y 10.1126/science.abq4822 10.3389/fnagi.2016.00256 10.1016/j.cell.2019.09.001 10.1128/mBio.00632-19 10.1016/j.celrep.2020.107776 10.1111/bph.14568 10.1074/jbc.M111.288746 10.1038/s41586-021-03734-6 10.1186/s13024-022-00522-2 10.3389/fmicb.2020.01008 10.1126/science.adc9020 10.1523/JNEUROSCI.0877-17.2017 10.3390/nu15040932 10.1038/nature21029 10.1084/jem.20182386 10.1038/s41586-020-03116-4 10.1371/journal.ppat.1009027 10.1093/bioinformatics/btq461 10.1186/s12974-020-01932-z 10.1186/s40478-018-0606-1 10.3233/JAD-201367 10.1523/JNEUROSCI.2117-15.2016 10.1073/pnas.1100957108 10.1093/hmg/ddh019 10.1016/j.neuron.2022.03.008 10.1038/s41467-021-27702-w 10.1073/pnas.2020810118 10.1186/s40478-020-00988-5 10.1016/j.jbiotec.2017.06.1198 10.1016/j.neuron.2014.11.018 10.1186/s13024-021-00487-8 10.1186/s13024-021-00427-6 10.1126/sciadv.aba0466 10.1126/science.abf1230 10.1098/rsob.170228 10.1016/j.celrep.2022.110961 10.1056/NEJMoa1211851 10.3233/JAD-200488 10.1038/s41598-017-13601-y 10.1038/nature10554 10.3233/JAD-170020 10.1038/nmeth.3869 10.1038/s41467-019-11674-z 10.1073/pnas.1922788117 10.1038/nm.4106 10.1523/JNEUROSCI.6221-11.2012 10.1038/s41467-019-14198-8 10.15252/embj.2021108662 10.1038/s41591-018-0051-5 10.1016/j.neurobiolaging.2016.08.019 10.1016/j.celrep.2019.07.033 10.1084/jem.20200895 10.1186/s13024-017-0184-x 10.1038/srep30028 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1186/s13024-023-00635-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1750-1326 |
| EndPage | 29 |
| ExternalDocumentID | oai_doaj_org_article_fe6496ac0b6f408daa41cca488989bdf PMC10324210 37415149 10_1186_s13024_023_00635_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Institute on Aging grantid: F30AG079577 funderid: http://dx.doi.org/10.13039/100000049 – fundername: Good Ventures Foundation funderid: http://dx.doi.org/10.13039/100020392 – fundername: NIA NIH HHS grantid: F30 AG079577 – fundername: NIA NIH HHS grantid: F30AG079577 – fundername: NCI NIH HHS grantid: P30 CA060553 – fundername: ; – fundername: ; grantid: F30AG079577 |
| GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABIVO ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IHR INH INR IPY ITC KQ8 LGEZI LOTEE M1P M48 M~E NADUK NXXTH O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW ~8M AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c541t-48e3f7aabecb19d311f81c8d3bf0d5ca67f71c6e3b34fd0f2863a59b7de0af5d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001025059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1750-1326 |
| IngestDate | Fri Oct 03 12:51:54 EDT 2025 Tue Nov 04 02:06:33 EST 2025 Sun Nov 09 10:06:26 EST 2025 Mon Oct 20 02:56:43 EDT 2025 Thu Apr 03 07:03:42 EDT 2025 Sat Nov 29 03:16:37 EST 2025 Tue Nov 18 21:07:04 EST 2025 Sat Sep 06 07:29:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Neuroinflammation Amyloid Astrocyte Gut microbiome |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-48e3f7aabecb19d311f81c8d3bf0d5ca67f71c6e3b34fd0f2863a59b7de0af5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1358-504X |
| OpenAccessLink | https://doaj.org/article/fe6496ac0b6f408daa41cca488989bdf |
| PMID | 37415149 |
| PQID | 2838786621 |
| PQPubID | 55149 |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fe6496ac0b6f408daa41cca488989bdf pubmedcentral_primary_oai_pubmedcentral_nih_gov_10324210 proquest_miscellaneous_2835272779 proquest_journals_2838786621 pubmed_primary_37415149 crossref_primary_10_1186_s13024_023_00635_2 crossref_citationtrail_10_1186_s13024_023_00635_2 springer_journals_10_1186_s13024_023_00635_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-06 |
| PublicationDateYYYYMMDD | 2023-07-06 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Molecular neurodegeneration |
| PublicationTitleAbbrev | Mol Neurodegeneration |
| PublicationTitleAlternate | Mol Neurodegener |
| PublicationYear | 2023 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | C Chen (635_CR36) 2020; 6 IC Clark (635_CR96) 2021; 372 TR Sampson (635_CR23) 2016; 167 N Reichenbach (635_CR84) 2019; 11 J-Y Hur (635_CR110) 2020; 586 JM Basak (635_CR112) 2012; 287 JS Sadick (635_CR13) 2019; 176 JL Zamanian (635_CR53) 2012; 32 J Oksanen (635_CR51) 2015; 22–1 MA Wheeler (635_CR95) 2023; 379 MP Kummer (635_CR55) 2021; 40 JP Haran (635_CR91) 2019; 10 CS Constantinescu (635_CR98) 2011; 164 C Reitz (635_CR7) 2013; 309 T Harach (635_CR34) 2017; 7 Z Aversa (635_CR99) 2021; 96 J-S Park (635_CR59) 2021; 9 LM Sanmarco (635_CR22) 2021; 590 HB Dodiya (635_CR78) 2021; 219 F Endo (635_CR20) 2022; 378 P Sompol (635_CR107) 2017; 37 C Brandscheid (635_CR35) 2017; 56 NM Vogt (635_CR33) 2017; 7 SL Klein (635_CR81) 2016; 16 HB Dodiya (635_CR27) 2022; 219 KA Guttenplan (635_CR15) 2021; 599 S Schacke (635_CR66) 2022; 70 I Matias (635_CR86) 2019; 11 E Spangenberg (635_CR79) 2019; 10 MY Batiuk (635_CR19) 2020; 11 RC Edgar (635_CR46) 2010; 26 AG Efthymiou (635_CR8) 2017; 12 J Maldonado Weng (635_CR89) 2019; 14 S Spichak (635_CR80) 2021; 16 KA Guttenplan (635_CR14) 2020; 31 HB Dodiya (635_CR77) 2020; 10 S Kiani Shabestari (635_CR94) 2022; 39 T Guo (635_CR2) 2020; 15 M Lavialle (635_CR65) 2011; 108 H Lian (635_CR58) 2016; 36 J Xiao (635_CR101) 2020; 77 A Serrano-Pozo (635_CR93) 2011; 179 F Lei (635_CR104) 2020; 117 J Cavieres-Lepe (635_CR113) 2021; 41 MA DeTure (635_CR3) 2019; 14 JL Jankowsky (635_CR75) 2004; 13 Y Chen (635_CR38) 2020; 2020 L Katsouri (635_CR111) 2011; 6 HR Bulgart (635_CR28) 2020; 15 GM Dos Santos (635_CR88) 2020; 11 Y Lu (635_CR82) 2020; 40 K Boztug (635_CR72) 2002; 169 DJ McCarthy (635_CR49) 2012; 40 V Rothhammer (635_CR97) 2016; 22 H Den (635_CR102) 2020; 12 H Wang (635_CR109) 2021; 118 J Zhao (635_CR108) 2011; 8 R Radde (635_CR43) 2006; 7 SP Yun (635_CR12) 2018; 24 M Jiao (635_CR70) 2020; 17 AKY Fu (635_CR68) 2016; 113 J Du (635_CR61) 2021; 14 CC Liu (635_CR114) 2017; 37 LE Clarke (635_CR54) 2018; 115 C Bellenguez (635_CR9) 2022; 54 ID Vainchtein (635_CR69) 2018; 359 J Zhang (635_CR44) 2014; 30 W Sun (635_CR62) 2017; 37 V Rothhammer (635_CR56) 2018; 557 K Ceyzériat (635_CR106) 2018; 6 AC Naj (635_CR4) 2011; 43 D Bairamian (635_CR29) 2022; 17 HB Dodiya (635_CR26) 2019; 216 H-G Lee (635_CR10) 2022; 21 M Kumar (635_CR116) 2016; 4 SA Liddelow (635_CR11) 2017; 541 MR Minter (635_CR24) 2016; 6 R Guerreiro (635_CR5) 2013; 368 A Verkhratsky (635_CR85) 2019; 471 Z Jiwaji (635_CR52) 2022; 13 JS Sadick (635_CR18) 2022; 110 C Mezö (635_CR41) 2020; 8 JC Lambert (635_CR6) 2013; 45 CS McAlpine (635_CR57) 2021; 595 635_CR90 635_CR92 DO Seo (635_CR42) 2023; 379 KM Still (635_CR67) 2020; 16 Y Fujita (635_CR115) 2020; 443 YM Morizawa (635_CR74) 2017; 8 J Sun (635_CR103) 2019; 9 Y Benjamini (635_CR50) 1995; 57 JG Markle (635_CR83) 2013; 339 L Shen (635_CR37) 2017; 56 FO Glöckner (635_CR47) 2017; 261 MR Minter (635_CR25) 2017; 7 P Hasel (635_CR17) 2021; 24 GR Frost (635_CR16) 2017; 7 A Cattaneo (635_CR32) 2017; 49 E Akbari (635_CR100) 2016; 8 L Zhang (635_CR39) 2017; 60 Q Shi (635_CR63) 2017; 9 EA Kennedy (635_CR76) 2018; 9 635_CR45 R Rojo (635_CR105) 2019; 10 JM Long (635_CR1) 2019; 179 H Lian (635_CR64) 2015; 85 S Chandra (635_CR31) 2023; 18 Y Wang (635_CR71) 2021; 118 BJ Callahan (635_CR48) 2016; 13 D Cuervo-Zanatta (635_CR40) 2021; 82 C Escartin (635_CR60) 2021; 24 P Preman (635_CR87) 2021; 16 K Berer (635_CR21) 2011; 479 H Doron (635_CR73) 2019; 28 VTE Aho (635_CR30) 2021; 16 |
| References_xml | – volume: 8 start-page: 28 issue: 1 year: 2017 ident: 635_CR74 publication-title: Nat Commun doi: 10.1038/s41467-017-00037-1 – volume: 14 start-page: 32 issue: 1 year: 2019 ident: 635_CR3 publication-title: Mol Neurodegener doi: 10.1186/s13024-019-0333-5 – volume: 14 start-page: 47 issue: 1 year: 2019 ident: 635_CR89 publication-title: Mol Neurodegener doi: 10.1186/s13024-019-0352-2 – volume: 12 start-page: 4010 issue: 4 year: 2020 ident: 635_CR102 publication-title: Aging (Albany NY) doi: 10.18632/aging.102810 – volume: 15 start-page: 40 issue: 1 year: 2020 ident: 635_CR2 publication-title: Mol Neurodegener doi: 10.1186/s13024-020-00391-7 – volume: 586 start-page: 735 issue: 7831 year: 2020 ident: 635_CR110 publication-title: Nature doi: 10.1038/s41586-020-2681-2 – volume: 15 start-page: 42 issue: 1 year: 2020 ident: 635_CR28 publication-title: Mol Neurodegener doi: 10.1186/s13024-020-00378-4 – volume: 70 start-page: 2309 issue: 12 year: 2022 ident: 635_CR66 publication-title: Glia doi: 10.1002/glia.24253 – volume: 43 start-page: 436 issue: 5 year: 2011 ident: 635_CR4 publication-title: Nat Genet doi: 10.1038/ng.801 – volume: 56 start-page: 385 year: 2017 ident: 635_CR37 publication-title: J Alzheimers Dis doi: 10.3233/JAD-160884 – volume: 14 start-page: 154 issue: 1 year: 2021 ident: 635_CR61 publication-title: Mol Brain doi: 10.1186/s13041-021-00865-9 – volume: 7 start-page: 10411 issue: 1 year: 2017 ident: 635_CR25 publication-title: Sci Rep doi: 10.1038/s41598-017-11047-w – volume: 24 start-page: 312 issue: 3 year: 2021 ident: 635_CR60 publication-title: Nat Neurosci doi: 10.1038/s41593-020-00783-4 – volume: 37 start-page: 4493 issue: 17 year: 2017 ident: 635_CR62 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3199-16.2017 – volume: 8 start-page: 150 year: 2011 ident: 635_CR108 publication-title: J Neuroinflammation doi: 10.1186/1742-2094-8-150 – volume: 2020 start-page: 8456596 year: 2020 ident: 635_CR38 publication-title: Biomed Res Int – volume: 557 start-page: 724 issue: 7707 year: 2018 ident: 635_CR56 publication-title: Nature doi: 10.1038/s41586-018-0119-x – volume: 339 start-page: 1084 issue: 6123 year: 2013 ident: 635_CR83 publication-title: Science (New York, NY) doi: 10.1126/science.1233521 – volume: 443 start-page: 1 year: 2020 ident: 635_CR115 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2020.07.016 – volume: 118 start-page: e2102191118 issue: 33 year: 2021 ident: 635_CR109 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2102191118 – volume: 179 start-page: 1373 issue: 3 year: 2011 ident: 635_CR93 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.05.047 – volume: 9 start-page: 78 issue: 1 year: 2021 ident: 635_CR59 publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-021-01180-z – volume: 56 start-page: 775 issue: 2 year: 2017 ident: 635_CR35 publication-title: J Alzheimers Dis doi: 10.3233/JAD-160926 – volume: 10 start-page: 3215 issue: 1 year: 2019 ident: 635_CR105 publication-title: Nat Commun doi: 10.1038/s41467-019-11053-8 – volume: 6 start-page: e21880 issue: 7 year: 2011 ident: 635_CR111 publication-title: PLoS One doi: 10.1371/journal.pone.0021880 – volume: 169 start-page: 1505 issue: 3 year: 2002 ident: 635_CR72 publication-title: J Immunol doi: 10.4049/jimmunol.169.3.1505 – ident: 635_CR45 doi: 10.14806/ej.17.1.200 – volume: 4 start-page: 3 issue: 1 year: 2016 ident: 635_CR116 publication-title: Nutr Healthy Aging doi: 10.3233/NHA-150002 – volume: 167 start-page: 1469 issue: 6 year: 2016 ident: 635_CR23 publication-title: Cell doi: 10.1016/j.cell.2016.11.018 – volume: 24 start-page: 1475 year: 2021 ident: 635_CR17 publication-title: Nat Neurosci. doi: 10.1038/s41593-021-00905-6 – volume: 40 start-page: 4288 issue: 10 year: 2012 ident: 635_CR49 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks042 – volume: 7 start-page: 41802 year: 2017 ident: 635_CR34 publication-title: Sci Rep doi: 10.1038/srep41802 – volume: 9 start-page: 1534 year: 2018 ident: 635_CR76 publication-title: Front Physiol. doi: 10.3389/fphys.2018.01534 – volume: 16 start-page: 100318 year: 2021 ident: 635_CR80 publication-title: Brain Behav Immun Health doi: 10.1016/j.bbih.2021.100318 – volume: 54 start-page: 412 issue: 4 year: 2022 ident: 635_CR9 publication-title: Nat Genet doi: 10.1038/s41588-022-01024-z – ident: 635_CR90 doi: 10.3390/ijms23158209 – volume: 113 start-page: E2705 issue: 19 year: 2016 ident: 635_CR68 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1604032113 – volume: 96 start-page: 66 issue: 1 year: 2021 ident: 635_CR99 publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2020.07.019 – volume: 45 start-page: 1452 issue: 12 year: 2013 ident: 635_CR6 publication-title: Nat Genet doi: 10.1038/ng.2802 – volume: 18 start-page: 9 issue: 1 year: 2023 ident: 635_CR31 publication-title: Mol Neurodegener doi: 10.1186/s13024-023-00595-7 – volume: 9 start-page: 189 issue: 1 year: 2019 ident: 635_CR103 publication-title: Transl Psychiatry doi: 10.1038/s41398-019-0525-3 – volume: 7 start-page: 940 issue: 9 year: 2006 ident: 635_CR43 publication-title: EMBO Rep doi: 10.1038/sj.embor.7400784 – volume: 115 start-page: E1896 issue: 8 year: 2018 ident: 635_CR54 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1800165115 – volume: 379 start-page: eadd1236 issue: 6628 year: 2023 ident: 635_CR42 publication-title: Science (New York, NY) doi: 10.1126/science.add1236 – volume: 30 start-page: 614 issue: 5 year: 2014 ident: 635_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt593 – volume: 41 start-page: 3749 issue: 17 year: 2021 ident: 635_CR113 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2352-20.2021 – volume: 359 start-page: 1269 issue: 6381 year: 2018 ident: 635_CR69 publication-title: Science (New York, NY) doi: 10.1126/science.aal3589 – volume: 164 start-page: 1079 issue: 4 year: 2011 ident: 635_CR98 publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2011.01302.x – volume: 471 start-page: 1247 issue: 10 year: 2019 ident: 635_CR85 publication-title: Pflugers Arch doi: 10.1007/s00424-019-02310-2 – volume: 9 start-page: eaaf6295 issue: 392 year: 2017 ident: 635_CR63 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf6295 – volume: 37 start-page: 4023 issue: 15 year: 2017 ident: 635_CR114 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3442-16.2017 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 635_CR50 publication-title: J Roy Stat Soc: Ser B (Methodol) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 16 start-page: 626 issue: 10 year: 2016 ident: 635_CR81 publication-title: Nat Rev Immunol doi: 10.1038/nri.2016.90 – volume: 10 start-page: 8183 issue: 1 year: 2020 ident: 635_CR77 publication-title: Sci Rep doi: 10.1038/s41598-020-64797-5 – volume: 40 start-page: 7355 issue: 38 year: 2020 ident: 635_CR82 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0115-20.2020 – volume: 11 start-page: 59 year: 2019 ident: 635_CR86 publication-title: Fronti Aging Neurosci. doi: 10.3389/fnagi.2019.00059 – volume: 11 start-page: e9665 issue: 2 year: 2019 ident: 635_CR84 publication-title: EMBO Mol Med doi: 10.15252/emmm.201809665 – volume: 21 start-page: 339 issue: 5 year: 2022 ident: 635_CR10 publication-title: Nat Rev Drug Discovery doi: 10.1038/s41573-022-00390-x – volume: 309 start-page: 1483 issue: 14 year: 2013 ident: 635_CR7 publication-title: JAMA doi: 10.1001/jama.2013.2973 – volume: 599 start-page: 102 year: 2021 ident: 635_CR15 publication-title: Nature. doi: 10.1038/s41586-021-03960-y – volume: 379 start-page: 1023 issue: 6636 year: 2023 ident: 635_CR95 publication-title: Science (New York, NY) doi: 10.1126/science.abq4822 – volume: 8 start-page: 256 year: 2016 ident: 635_CR100 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2016.00256 – volume: 179 start-page: 312 issue: 2 year: 2019 ident: 635_CR1 publication-title: Cell doi: 10.1016/j.cell.2019.09.001 – volume: 10 start-page: e00632 issue: 3 year: 2019 ident: 635_CR91 publication-title: mBio doi: 10.1128/mBio.00632-19 – volume: 31 start-page: 107776 issue: 12 year: 2020 ident: 635_CR14 publication-title: Cell Rep doi: 10.1016/j.celrep.2020.107776 – volume: 176 start-page: 3585 issue: 18 year: 2019 ident: 635_CR13 publication-title: Br J Pharmacol doi: 10.1111/bph.14568 – volume: 287 start-page: 13959 issue: 17 year: 2012 ident: 635_CR112 publication-title: J Biol Chem doi: 10.1074/jbc.M111.288746 – volume: 595 start-page: 701 issue: 7869 year: 2021 ident: 635_CR57 publication-title: Nature doi: 10.1038/s41586-021-03734-6 – volume: 17 start-page: 19 issue: 1 year: 2022 ident: 635_CR29 publication-title: Mol Neurodegener doi: 10.1186/s13024-022-00522-2 – volume: 11 start-page: 1008 year: 2020 ident: 635_CR88 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01008 – volume: 378 start-page: eadc9020 issue: 6619 year: 2022 ident: 635_CR20 publication-title: Science (New York, NY). doi: 10.1126/science.adc9020 – volume: 37 start-page: 6132 issue: 25 year: 2017 ident: 635_CR107 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0877-17.2017 – ident: 635_CR92 doi: 10.3390/nu15040932 – volume: 541 start-page: 481 issue: 7638 year: 2017 ident: 635_CR11 publication-title: Nature doi: 10.1038/nature21029 – volume: 216 start-page: 1542 issue: 7 year: 2019 ident: 635_CR26 publication-title: J Exp Med doi: 10.1084/jem.20182386 – volume: 590 start-page: 473 issue: 7846 year: 2021 ident: 635_CR22 publication-title: Nature doi: 10.1038/s41586-020-03116-4 – volume: 16 start-page: e1009027 issue: 10 year: 2020 ident: 635_CR67 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009027 – volume: 26 start-page: 2460 issue: 19 year: 2010 ident: 635_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 17 start-page: 251 issue: 1 year: 2020 ident: 635_CR70 publication-title: J Neuroinflammation doi: 10.1186/s12974-020-01932-z – volume: 6 start-page: 104 issue: 1 year: 2018 ident: 635_CR106 publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-018-0606-1 – volume: 82 start-page: S195 issue: s1 year: 2021 ident: 635_CR40 publication-title: J Alzheimers Dis doi: 10.3233/JAD-201367 – volume: 36 start-page: 577 issue: 2 year: 2016 ident: 635_CR58 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2117-15.2016 – volume: 108 start-page: 12915 issue: 31 year: 2011 ident: 635_CR65 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1100957108 – volume: 13 start-page: 159 issue: 2 year: 2004 ident: 635_CR75 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddh019 – volume: 110 start-page: 1788 year: 2022 ident: 635_CR18 publication-title: Neuron. doi: 10.1016/j.neuron.2022.03.008 – volume: 13 start-page: 135 issue: 1 year: 2022 ident: 635_CR52 publication-title: Nat Commun doi: 10.1038/s41467-021-27702-w – volume: 118 start-page: e2020810118 issue: 1 year: 2021 ident: 635_CR71 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2020810118 – volume: 8 start-page: 119 issue: 1 year: 2020 ident: 635_CR41 publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-020-00988-5 – volume: 261 start-page: 169 year: 2017 ident: 635_CR47 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2017.06.1198 – volume: 85 start-page: 101 issue: 1 year: 2015 ident: 635_CR64 publication-title: Neuron doi: 10.1016/j.neuron.2014.11.018 – volume: 16 start-page: 68 issue: 1 year: 2021 ident: 635_CR87 publication-title: Mol Neurodegener doi: 10.1186/s13024-021-00487-8 – volume: 16 start-page: 6 issue: 1 year: 2021 ident: 635_CR30 publication-title: Mol Neurodegener doi: 10.1186/s13024-021-00427-6 – volume: 6 start-page: eaba0466 issue: 31 year: 2020 ident: 635_CR36 publication-title: Science advances doi: 10.1126/sciadv.aba0466 – volume: 372 start-page: eabf1230 issue: 6540 year: 2021 ident: 635_CR96 publication-title: Science (New York, NY). doi: 10.1126/science.abf1230 – volume: 7 start-page: 170228 issue: 12 year: 2017 ident: 635_CR16 publication-title: Open Biol. doi: 10.1098/rsob.170228 – volume: 39 issue: 11 year: 2022 ident: 635_CR94 publication-title: Cell Rep doi: 10.1016/j.celrep.2022.110961 – volume: 368 start-page: 117 issue: 2 year: 2013 ident: 635_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMoa1211851 – volume: 77 start-page: 139 issue: 1 year: 2020 ident: 635_CR101 publication-title: J Alzheimers Dis doi: 10.3233/JAD-200488 – volume: 7 start-page: 13537 issue: 1 year: 2017 ident: 635_CR33 publication-title: Sci Rep doi: 10.1038/s41598-017-13601-y – volume: 479 start-page: 538 issue: 7374 year: 2011 ident: 635_CR21 publication-title: Nature doi: 10.1038/nature10554 – volume: 60 start-page: 1241 year: 2017 ident: 635_CR39 publication-title: J Alzheimers Dis doi: 10.3233/JAD-170020 – volume: 13 start-page: 581 issue: 7 year: 2016 ident: 635_CR48 publication-title: Nat Methods doi: 10.1038/nmeth.3869 – volume: 10 start-page: 3758 issue: 1 year: 2019 ident: 635_CR79 publication-title: Nat Commun doi: 10.1038/s41467-019-11674-z – volume: 117 start-page: 23336 issue: 38 year: 2020 ident: 635_CR104 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1922788117 – volume: 22 start-page: 586 issue: 6 year: 2016 ident: 635_CR97 publication-title: Nat Med doi: 10.1038/nm.4106 – volume: 32 start-page: 6391 issue: 18 year: 2012 ident: 635_CR53 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.6221-11.2012 – volume: 11 start-page: 1220 issue: 1 year: 2020 ident: 635_CR19 publication-title: Nat Commun doi: 10.1038/s41467-019-14198-8 – volume: 40 start-page: e108662 issue: 24 year: 2021 ident: 635_CR55 publication-title: EMBO J doi: 10.15252/embj.2021108662 – volume: 24 start-page: 931 issue: 7 year: 2018 ident: 635_CR12 publication-title: Nat Med doi: 10.1038/s41591-018-0051-5 – volume: 49 start-page: 60 year: 2017 ident: 635_CR32 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.08.019 – volume: 28 start-page: 1785 issue: 7 year: 2019 ident: 635_CR73 publication-title: Cell Rep doi: 10.1016/j.celrep.2019.07.033 – volume: 219 start-page: e2020089 issue: 1 year: 2022 ident: 635_CR27 publication-title: J Exp Med. doi: 10.1084/jem.20200895 – volume: 22–1 start-page: 1 issue: 2 year: 2015 ident: 635_CR51 publication-title: R Package Version – volume: 12 start-page: 43 issue: 1 year: 2017 ident: 635_CR8 publication-title: Mol Neurodegener doi: 10.1186/s13024-017-0184-x – volume: 219 start-page: e20200895 issue: 1 year: 2021 ident: 635_CR78 publication-title: J Exp Med doi: 10.1084/jem.20200895 – volume: 6 start-page: 30028 year: 2016 ident: 635_CR24 publication-title: Sci Rep doi: 10.1038/srep30028 |
| SSID | ssj0047005 |
| Score | 2.5041628 |
| Snippet | Background
Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and... Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and... BackgroundPrevious studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and... Abstract Background Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ)... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 45 |
| SubjectTerms | Alzheimer Disease - metabolism Alzheimer's disease Amyloid Amyloid beta-Peptides - metabolism Amyloid beta-Protein Precursor - metabolism Amyloidosis Amyloidosis - metabolism Animal models Animals Antibiotics Astrocyte Astrocytes Astrocytes - metabolism Bacteria Biomedical and Life Sciences Biomedicine Brain Colony-stimulating factor Complement component C3 Confocal microscopy Digestive system Feces Female Gastrointestinal Microbiome Gene expression Genotype & phenotype Germfree Glial fibrillary acidic protein Gliosis Gliosis - metabolism Gut microbiome Gut microbiota Homeostasis Immunoblotting Immunohistochemistry Inflammation Intestinal microflora Macrophage colony-stimulating factor Male Mice Mice, Transgenic Microbiomes Microbiota Microglia Microglia - metabolism Molecular Medicine Morphology Neurodegeneration Neuroinflammation Neurology Neurosciences Pathogens Pathology Phenotypes Plaque, Amyloid - pathology Recruitment Research Article Senile plaques |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagy4ELr-WRZUFGQlwgauw4jnNCBbECCVY9gLScIj-7kZpkadKVys_ih_CbsB2nVXnsiWNsJ7Ljb2Zsz_gbAJ4TmlrLIFjMhTExwYRbmcMiRkimmbYixrln1_-Yn56ys7NiHq5HdyGsctSJXlEPbM8ubtsq4alqpTsxn1qjyHJGKUavL77FLoeU87WGhBrXwYEj3mITcDD_8Gn-ddTMJLeQGy_OMDrtnNOOxNZqxc5SZzHeM06ew_9vC88_4yd_c6J623Ry-_-O6g64FdaocDaA6i64ppt74HDW2P15vYEvoI8a9cfxh-C7xRlcrHtYVwOlU63hashvrzvIu94ayE3vyoYbFLBv4eznD8jrzbKtVNtVHQy5goZPLJZWIuCYm7eHvFGwanbPtXZ3lauu7u6DLyfvPr99H4d8DrHMCOpjwnRqcs4tbAQqVIqQYUgylQqTqExympscSapTkRKjEoMZTXlWiFzphJtMpQ_ApGkb_QhALCgtlOGkEIZwRAUucikzIYlCWBkRATROZCkD2bnLubEs_aaH0XKY_NJOfuknv8QReLl952Kg-riy9RuHj21LR9PtC9rVogxSXxpNSUG5TAQ1JGGKc4Kk45F3STuFMhE4HmFRBt3RlTsURODZttpKvXPl8Ea3a98mw3bpmRcReDiAcduT1C0S7cY3AmwPpntd3a9pqnPPLO7YFQlGSQRejYje9evf_-Lo6mE8BjexFzIXaHkMJv1qrZ-AG_Kyr7rV0yCkvwDK9lD0 priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwELZQ4cCFrSyBgoyEuEBEvMRxjq8VFQdUITb1Znl9jdQk6DkPqfys_pD-JmwnedWDggTHeIlGk288M7H9DQAvKCPBMyieS-VcTjGVweawyhHSpLTBxKRM7Prvq6Mjfnxcf5guhfn5tPu8JZlW6mTWnL3xcYuN5sHH5NGvlnlYeK8Hd8ejOX789HVef2kVgDVfj7ly3pYLSkz9V4WXv5-S_GWrNHmgw9v_J_sdcGuKOOFihMhdcM1298DuogvZdnsGX8J0BjT9XN8FPwJq4HI9wLYZCZpaC1djtXrrofRDcHdnQ2wb70PAoYeLi3Mo25D3N6b3jYdT5Z_xFcvTgG84V9odoOwMbLrL59bGm8eNb_198OXw7eeDd_lUnSHXJUVDTrklrpIygECh2hCEHEeaG6JcYUotWeUqpJklilBnCoc5I7KsVWVsIV1pyAOw0_WdfQQgVozVxklaK0clYgrXldal0tQgbJzKAJo_mNATdXmsoHEqUgrDmRgVLIKCRVKwwBl4tZnzbSTu-Ovo_YiDzchIup0a-tVSTDYsnGW0ZlIXijlacCMlRTqywscSnMq4DOzNKBLTSuBFCN94xRnDKAPPN93BhuPGjOxsv05jShwCyarOwMMRdBtJSAz5QhqbAb4Fxy1Rt3u65iTxhEeuRBpS-gy8nlF5KdefdfH434Y_ATdxAnY8RrkHdobV2j4FN_T3ofGrZ8k0fwIFFTnS priority: 102 providerName: Springer Nature |
| Title | The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms |
| URI | https://link.springer.com/article/10.1186/s13024-023-00635-2 https://www.ncbi.nlm.nih.gov/pubmed/37415149 https://www.proquest.com/docview/2838786621 https://www.proquest.com/docview/2835272779 https://pubmed.ncbi.nlm.nih.gov/PMC10324210 https://doaj.org/article/fe6496ac0b6f408daa41cca488989bdf |
| Volume | 18 |
| WOSCitedRecordID | wos001025059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1750-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047005 issn: 1750-1326 databaseCode: RBZ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1750-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047005 issn: 1750-1326 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1750-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047005 issn: 1750-1326 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1750-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047005 issn: 1750-1326 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Health and Medical Complete customDbUrl: eissn: 1750-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047005 issn: 1750-1326 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1750-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047005 issn: 1750-1326 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1750-1326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047005 issn: 1750-1326 databaseCode: RSV dateStart: 20061201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagcOCCgLKklJGREBeIGjuO7RynqBVIMBqVRcMp8loiNRk0yVQqP4sfwm_CSzJlWC9cInlJZPl9z--92P4eAE8IzZ1lkDwV0tqUYCKczmGZIqTywjgVEyKw679msxlfLMr5D6m-_JmwSA8cJ-7AGkpKKlQmqSUZ10IQpDwVt897KLX1q6_zesZgKq7BhDlwjVdkOD3o_PYcSZ19Sr1NLlK8ZYYCW__vXMxfT0r-tF0arNDxLXBzcB_hNA77Nrhi2jtgd9q60Lm5gE9hONAZ_pTvgi8OAvB03cOmjmxLjYGrmHredFB0vbNdF72vi5cbYL-E029foWhcEF_rZVd3cEjjEz9xeubACse0uT0UrYZ1e1lujL9GXHdNdxe8Pz569-JlOqRaSFVBUJ8SbnLLhHASlajUOUKWI8V1Lm2mCyUoswwpanKZE6sziznNRVFKpk0mbKHze2CnXbbmAYBYUlpqK0gpLRGISlwypQqpiEZYW5kANM58pQYecp8O46wK8QinVZRW5aRVBWlVOAHPNu98jiwcf-196AW66ekZtEOFw1U14Kr6F64SsD_CoRrUuqucL8YZpxSjBDzeNDuF9LssojXLdehTYOcVsjIB9yN6NiPJvf_mYtIE8C1cbQ11u6WtPwXSb098SFx8noDnIwQvx_Xnudj7H3PxENzAQXf8Scl9sNOv1uYRuK7O-7pbTcBVtmDhySfg2uHRbH4yCdroSvNXb-YfXenk7Yfvft49VA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGAQk2vIZHYAAjARuIJnYcx1kgVB6jGU2pWAxSdxk_S6Q2GZoUVD6KBR_CN2E7SavymN0sWDZxI9c9597r3Ot7AHhCaGw9g2AhF8aEBBNuOYdFiJCME20pxrnvrj9MRyM2HmcftsD3_iyMK6vsbaI31KqS7h35nnWDLGWUYvTq9HPoVKNcdrWX0GhhcaSXX-2WrX55-Nb-v08x3n93_OYg7FQFQpkQ1ISE6diknNvJC5SpGCHDkGQqFiZSieQ0NSmSVMciJkZFBjMa8yQTqdIRN4mK7XMvgIvWjqeuhCwdrzZ4JLWQ7g_mMLpXu6QgCa1XDF0kkIR4w_l5jYC_BbZ_1mf-lqT1vm__2v-2atfB1S7KhoOWFjfAli5vgp1ByZtqtoTPoK979QmFHfDNMgVOFg2cFW1TqpmGcz1xsma6hrxurItfNu5aewYENhUc_PwB-Ww5rQpV1UUNO7Wj9hGTqeU07NWFG8hLBYty_Xmm3Wnrop7Vt8DHc1mF22C7rEp9F0AsKM2U4SQThnBEhcWTlImQRCGsjAgA6qGSy65du1MNmeZ-28Zo3sIrt_DKPbxyHIDnq--cts1Kzhz92iFwNdI1GvcXqvkk7-xWbjQlGeUyEtSQiCnOCZKuE76THRXKBGC3B17eWb86X6MuAI9Xt63dcskoXupq4cck2AbPaRaAOy3cVzOJXZhrt-4BYBtE2Jjq5p2y-OR7o7v-kASjKAAves6s5_Xvtbh39s94BC4fHL8f5sPD0dF9cAV7Sruy0V2w3cwX-gG4JL80RT1_6A0CBCfnzaVf77ekbg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFA6yivjibb1UV40gvmjZSZOm6eN4GRSXYcEL-xZyHQvTdpl2hPFn-UP8TebSzjq6CuJj05OSpt_JOafJ-Q4ATwjFzjJIlgppbUoyIpzOZTJFSOHcOBUTIrDrHxXzOTs5KY9_yuIPp93HLcmY0-BZmpr-8FTbqOKMHnZ-u42kzt6k3sbmqVuELxJfNMjH6-8_jWsxKRzIxlSZc_vtmKPA2n-eq_n7iclftk2DNZpd-__3uA6uDp4onEbo3AAXTHMT7E8bF4XXG_gUhrOh4af7Pvjq0AQX6x7WVSRuqg1cxSr2poOi650Z3PS-LeZJwL6F0-_foKg3y7bSbVd1cKgIFB-xWDrcw7ECbw9Fo2HVnF3XxmckV13d3QIfZ68_vHyTDlUbUpUT1KeEGWwLIRw4JCo1RsgypJjG0k50rgQtbIEUNVhiYvXEZoxikZey0GYibK7xbbDXtI25C2AmKS21FaSUlghEZVYWSuVSEY0ybWUC0PjxuBoozX1ljSUPoQ2jPE4wdxPMwwTzLAHPtn1OI6HHX6VfeExsJT0Zd2hoVws-6Da3hpKSCjWR1JIJ00IQpDxbvC_NKbVNwMGIKD6sEB13bh0rGKUZSsDj7W2n237DRjSmXQeZPHMOZlEm4E4E4HYk2LuCLrxNANuB5s5Qd-801efAH-45FIkL9RPwfETo2bj-PBf3_k38Ebh8_GrGj97O390HV7KAcX_S8gDs9au1eQAuqS991a0eBo39AQYoRZo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gut+microbiome+regulates+astrocyte+reaction+to+A%CE%B2+amyloidosis+through+microglial+dependent+and+independent+mechanisms&rft.jtitle=Molecular+neurodegeneration&rft.au=Chandra%2C+Sidhanth&rft.au=Di+Meco%2C+Antonio&rft.au=Dodiya%2C+Hemraj+B.&rft.au=Popovic%2C+Jelena&rft.date=2023-07-06&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=18&rft_id=info:doi/10.1186%2Fs13024-023-00635-2&rft.externalDocID=PMC10324210 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon |