Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime
Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy...
Saved in:
| Published in: | Nature communications Vol. 15; no. 1; pp. 6600 - 10 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
04.08.2024
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.
The aim of polaritonic chemistry is to control photochemical reactions by placing molecules inside optical cavities. Here, the authors show that this is not directly possible due to thermal disorder, which is unavoidable in real experiments, and polaritons mostly channel molecular excitations. |
|---|---|
| AbstractList | Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.
The aim of polaritonic chemistry is to control photochemical reactions by placing molecules inside optical cavities. Here, the authors show that this is not directly possible due to thermal disorder, which is unavoidable in real experiments, and polaritons mostly channel molecular excitations. Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction. Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction. Abstract Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction. Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.The aim of polaritonic chemistry is to control photochemical reactions by placing molecules inside optical cavities. Here, the authors show that this is not directly possible due to thermal disorder, which is unavoidable in real experiments, and polaritons mostly channel molecular excitations. |
| ArticleNumber | 6600 |
| Author | Groenhof, Gerrit Duarte, Luís Toppari, J. Jussi Sokolovskii, Ilia Qureshi, Hassan A. Markešević, Nemanja Morozov, Dmitry Pikker, Siim Dutta, Arpan Tiainen, Ville |
| Author_xml | – sequence: 1 givenname: Arpan surname: Dutta fullname: Dutta, Arpan organization: Nanoscience Center and Department of Physics, University of Jyväskylä, Department of Mechanical and Materials Engineering, University of Turku – sequence: 2 givenname: Ville surname: Tiainen fullname: Tiainen, Ville organization: Nanoscience Center and Department of Physics, University of Jyväskylä – sequence: 3 givenname: Ilia surname: Sokolovskii fullname: Sokolovskii, Ilia organization: Nanoscience Center and Department of Chemistry, University of Jyväskylä – sequence: 4 givenname: Luís orcidid: 0000-0001-9391-3041 surname: Duarte fullname: Duarte, Luís organization: Nanoscience Center and Department of Physics, University of Jyväskylä, Department of Chemistry, University of Helsinki – sequence: 5 givenname: Nemanja orcidid: 0009-0007-4402-6332 surname: Markešević fullname: Markešević, Nemanja organization: Nanoscience Center and Department of Physics, University of Jyväskylä, CNR-INO Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche and LENS European Laboratory for Nonlinear Spectroscopy – sequence: 6 givenname: Dmitry orcidid: 0000-0001-9524-948X surname: Morozov fullname: Morozov, Dmitry organization: Nanoscience Center and Department of Chemistry, University of Jyväskylä – sequence: 7 givenname: Hassan A. orcidid: 0000-0002-9065-2525 surname: Qureshi fullname: Qureshi, Hassan A. organization: Nanoscience Center and Department of Physics, University of Jyväskylä, Department of Mechanical and Materials Engineering, University of Turku – sequence: 8 givenname: Siim orcidid: 0000-0003-2260-7594 surname: Pikker fullname: Pikker, Siim organization: Nanoscience Center and Department of Physics, University of Jyväskylä, Institute of Physics, University of Tartu – sequence: 9 givenname: Gerrit orcidid: 0000-0001-8148-5334 surname: Groenhof fullname: Groenhof, Gerrit email: gerrit.x.groenhof@jyu.fi organization: Nanoscience Center and Department of Chemistry, University of Jyväskylä – sequence: 10 givenname: J. Jussi orcidid: 0000-0002-1698-5591 surname: Toppari fullname: Toppari, J. Jussi email: j.jussi.toppari@jyu.fi organization: Nanoscience Center and Department of Physics, University of Jyväskylä |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39097575$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Ustu3SAUtKpUTZrmB7qoLHXTjVteNmZVVVHbRIrUTbpGGB9srrBxAEfK35d7naRJFmEDHGaG4TDvi6PZz1AUHzH6ihFtv0WGWcMrRFhVo5qSqn5TnBDEcIU5oUdP1sfFWYw7lAcVuGXsXXFMBRK85vVJcXM9QpiUK3sbfeghlEuAW5hTLNMIZVyXvI_R-rn0plxdCqoyKqZyGX3yeoTJxhTuSjtv-BT8PJTODmOqJpVSFtR-XZzN1QCDneBD8dYoF-Hsfj4t_v76eX1-UV39-X15_uOq0jXDqWIcGywM0W3PiIC-BdwIKihWpu25MapjvMcctZ3WzDDDhdak64XKbzRN3dLT4nLT7b3aySXYSYU76ZWVh4IPg1QhWe1ANkxRqnsGqhGMYOiIaloMrOaKGHTQ-r5pLWs3Qa9zf4Jyz0Sfn8x2lIO_lRgTwQURWeHLvULwNyvEJHPjNDinZvBrlBS1vBGCkv1ln19Ad34Nc-7VhsKcc5pRn55aevTy8LUZ0G4AHXyMAYzUNqmUfzI7tE5iJPdBkluQZA6SPARJ7qnkBfVB_VUS3Ugxg-cBwn_br7D-AYRY3Ok |
| CitedBy_id | crossref_primary_10_1038_s42004_025_01588_x crossref_primary_10_1063_5_0270892 crossref_primary_10_1038_s41565_025_01996_z crossref_primary_10_1103_x5q3_tm1q crossref_primary_10_1021_acs_jpclett_5c01117 crossref_primary_10_1021_acs_jpclett_4c02687 crossref_primary_10_1039_D4CS01024H crossref_primary_10_1038_s41467_025_58045_5 crossref_primary_10_1103_PhysRevX_15_021040 crossref_primary_10_1021_acs_jpclett_5c01480 crossref_primary_10_1038_s41565_025_01995_0 crossref_primary_10_1126_science_adx3137 crossref_primary_10_1021_acs_jpca_5c01166 crossref_primary_10_1063_5_0258786 crossref_primary_10_1021_acs_jpclett_5c01391 crossref_primary_10_1038_s41467_025_60025_8 crossref_primary_10_1039_D4SC07053D crossref_primary_10_1039_D5SC01911G crossref_primary_10_1126_science_aea1538 |
| Cites_doi | 10.1126/science.aau7742 10.1103/PhysRevB.106.245424 10.1002/anie.201908876 10.1021/acs.jctc.6b00187 10.1021/acs.jpclett.3c03546 10.1021/ct700301q 10.1016/S0009-2614(99)01149-5 10.1016/0022-2836(76)90311-9 10.1103/RevModPhys.91.025005 10.1021/acs.jpclett.2c00826 10.1063/1.4978646 10.1021/jp311884b 10.1063/1.464304 10.1038/25692 10.1063/1.448118 10.1038/s41467-018-04736-1 10.1021/acs.jpcc.1c06881 10.1002/adfm.202010737 10.1021/acs.jctc.7b00388 10.1080/00107514.2022.2101749 10.1021/acs.jpclett.3c01082 10.1126/sciadv.aax4482 10.1088/0034-4885/78/1/013901 10.1126/science.abd0336 10.1103/PhysRevB.37.785 10.1063/5.0188613 10.1002/anie.201107033 10.1038/s42005-022-00892-5 10.1021/acs.biochem.7b01114 10.1016/j.physleta.2008.02.062 10.1021/acs.jpclett.9b02192 10.1103/PhysRevLett.130.213602 10.1103/PhysRev.188.692 10.1103/PhysRevB.75.075302 10.1038/s41467-023-42067-y 10.1088/1367-2630/17/5/053040 10.1021/acs.jpca.9b07404 10.1016/S0038-1098(96)00433-4 10.1021/jacs.3c04254 10.1002/anie.201605504 10.1021/jacs.3c11292 10.1109/PROC.1963.1664 10.1126/science.288.5471.1620 10.1039/b915768a 10.1002/anie.201905407 10.1103/PhysRevLett.52.997 10.1103/PhysRevA.53.2711 10.1021/ja039557f 10.1103/PhysRevB.67.085311 10.1063/1.1674408 10.1103/PhysRevResearch.6.013222 10.1088/2633-1357/abec2b 10.1103/PhysRevLett.121.253001 10.1002/advs.202105569 10.1038/s41467-021-23481-6 10.1126/sciadv.aas9552 10.1063/5.0037868 10.1021/acs.chemmater.2c02761 10.1063/1.5100192 10.1073/pnas.1615509114 10.1002/adma.201102046 10.1038/ncomms13841 10.1002/adom.202302387 10.23729/11673bf8-3094-4a11-9b8c-604bef025f76 10.1002/adma.202309393 10.1103/PhysRev.69.37 10.1016/j.cplett.2004.06.011 10.5281/zenodo.8312817 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
| DOI | 10.1038/s41467-024-50532-5 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_64a33cd4ea69421eb2a681e457a2f058 PMC11297929 39097575 10_1038_s41467_024_50532_5 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Academy of Finland (Suomen Akatemia) grantid: 323996 funderid: 501100002341 – fundername: Academy of Finland (Suomen Akatemia) grantid: 332743 funderid: 501100002341 – fundername: Academy of Finland (Suomen Akatemia) grantid: 332743 – fundername: Academy of Finland (Suomen Akatemia) grantid: 323996 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-471f19f2c8d429ed8e1693931af8d7ffab47d1708bcc4f4f79cc2bd9a918f6583 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284835300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:52:19 EDT 2025 Tue Nov 04 02:05:58 EST 2025 Wed Oct 01 14:34:19 EDT 2025 Tue Oct 07 07:24:06 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Sat Nov 29 03:55:10 EST 2025 Tue Nov 18 20:59:25 EST 2025 Fri Feb 21 02:37:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-471f19f2c8d429ed8e1693931af8d7ffab47d1708bcc4f4f79cc2bd9a918f6583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0007-4402-6332 0000-0001-9524-948X 0000-0003-2260-7594 0000-0002-9065-2525 0000-0002-1698-5591 0000-0001-9391-3041 0000-0001-8148-5334 |
| OpenAccessLink | https://www.proquest.com/docview/3087617773?pq-origsite=%requestingapplication% |
| PMID | 39097575 |
| PQID | 3087617773 |
| PQPubID | 546298 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_64a33cd4ea69421eb2a681e457a2f058 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11297929 proquest_miscellaneous_3087699328 proquest_journals_3087617773 pubmed_primary_39097575 crossref_citationtrail_10_1038_s41467_024_50532_5 crossref_primary_10_1038_s41467_024_50532_5 springer_journals_10_1038_s41467_024_50532_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-04 |
| PublicationDateYYYYMMDD | 2024-08-04 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Aroeira, Kairys, Ribeiro (CR54) 2023; 14 del Pino, Feist, Garcia-Vidal (CR27) 2015; 17 Vergauwe (CR4) 2019; 58 Wellnitz, Pupillo, Schachenmayer (CR52) 2022; 5 Groenhof (CR67) 2004; 124 George (CR46) 2024; 0 Engelhardt, Cao (CR55) 2023; 130 Agranovich, Litinskaia, Lidzey (CR17) 2003; 67 CR30 Lather, Bhatt, Thomas, Ebbesen, George (CR5) 2019; 58 CR72 Houdré, Stanley, Ilegems (CR26) 1996; 53 CR71 CR70 Sokolovskii, Tichauer, Morozov, Feist, Groenhof (CR56) 2023; 14 Zeng (CR32) 2023; 145 Stranius, Herzog, Börjesson (CR7) 2018; 9 Litinskaya (CR51) 2008; 372 Puro (CR44) 2021; 125 Tichauer, Feist, Groenhof (CR34) 2021; 154 Törmä, Barnes (CR13) 2015; 78 Vendrell (CR35) 2018; 121 Jaynes, Cummings (CR60) 1963; 51 Lee, Melton, Xu, Delor (CR40) 2024; 146 Luk, Feist, Toppari, Groenhof (CR33) 2017; 13 Pandya (CR48) 2022; 9 Mix (CR57) 2017; 57 Agranovich, Gartstein (CR50) 2007; 75 Rider, Barnes (CR14) 2022; 62 Thomas (CR3) 2019; 363 Yu, Mallick, Wang, Börjesson (CR6) 2021; 12 Warshel, Levitt (CR62) 1976; 103 Thomas, Barnes (CR31) 2024; 15 Thomas (CR2) 2016; 55 Lidzey (CR12) 1998; 395 Tang, Stuart, van Laan, Lakhwani (CR45) 2024; 0 Hutchison, Schwartz, Genet, Devaux, Ebbesen (CR1) 2012; 51 Sokolovskii, Goenhof (CR69) 2024; 160 Munkhbat, Wersäll, Baranov, Antosiewicz, Shegai (CR8) 2018; 4 Tropf (CR10) 2017; 110 Purcell (CR42) 1946; 69 Runge, Gross (CR66) 1984; 52 Hess, Kutzner, van der Spoel, Lindahl (CR68) 2008; 4 Hirata, Head-Gordon (CR21) 1999; 314 Tichauer, Morozov, Sokolovskii, Toppari, Groenhof (CR37) 2022; 13 Allard, Weick (CR53) 2022; 106 Mony (CR9) 2021; 31 Tavis, Cummings (CR61) 1969; 188 Berendsen, Postma, van Gunsteren, la, Haak (CR25) 1984; 81 Agranovich, Benisty, Weisbuch (CR11) 1997; 102 Groenhof, Climent, Feist, Morozov, Toppari (CR18) 2019; 10 Pérez-Sánchez, Mellini, Giebink, Yuen-Zhou (CR39) 2024; 6 Garcia-Vidal, Ciuti, Ebbesen (CR16) 2021; 373 Eizner, Martínez-Martínez, Yuen-zhou, Kéna-Cohen (CR28) 2019; 5 Martínez-Martínez, Eizner, Kéna-Cohen, Yuen-Zhou (CR29) 2019; 151 Dutta, Tiainen, Toppari (CR41) 2021; 2 Horta (CR65) 2016; 12 Lee, Yang, Parr (CR64) 1988; 37 Forn-Díaz, Lamata, Rico, Kono, Solano (CR59) 2019; 91 Lee, Kim, Joo (CR20) 2013; 117 Dunning (CR24) 1970; 53 Lidzey, Bradley, Armitage, Walker, Skolnick (CR43) 2000; 288 Schäfer, Hultmark, Yang, Müller, Börjesson (CR49) 2022; 34 Galego, Garcia-Vidal, Feist (CR58) 2015; 5 Flick, Ruggenthaler, Appel, Rubio (CR38) 2017; 114 Kwon, Park (CR47) 2011; 23 CR22 Kim, Joo (CR19) 2009; 11 Ulusoy, Gomez, Vendrell (CR36) 2019; 123 Galego, Garcia-Vidal, Feist (CR15) 2016; 7 Groenhof (CR63) 2013; 924 Becke (CR23) 1993; 98 50532_CR30 J Mony (50532_CR9) 2021; 31 50532_CR72 RMA Vergauwe (50532_CR4) 2019; 58 RH Tichauer (50532_CR37) 2022; 13 GJR Aroeira (50532_CR54) 2023; 14 EM Purcell (50532_CR42) 1946; 69 D Wellnitz (50532_CR52) 2022; 5 O Vendrell (50532_CR35) 2018; 121 V Agranovich (50532_CR50) 2007; 75 CH Kim (50532_CR19) 2009; 11 LA Martínez-Martínez (50532_CR29) 2019; 151 PA Thomas (50532_CR31) 2024; 15 R Houdré (50532_CR26) 1996; 53 ET Jaynes (50532_CR60) 1963; 51 JE Kwon (50532_CR47) 2011; 23 B Hess (50532_CR68) 2008; 4 50532_CR70 50532_CR71 J Lather (50532_CR5) 2019; 58 J del Pino (50532_CR27) 2015; 17 M Litinskaya (50532_CR51) 2008; 372 P Törmä (50532_CR13) 2015; 78 M Tavis (50532_CR61) 1969; 188 A Thomas (50532_CR2) 2016; 55 50532_CR22 Y Tang (50532_CR45) 2024; 0 BAC Horta (50532_CR65) 2016; 12 JA Hutchison (50532_CR1) 2012; 51 IS Ulusoy (50532_CR36) 2019; 123 J Galego (50532_CR58) 2015; 5 H Zeng (50532_CR32) 2023; 145 DG Lidzey (50532_CR12) 1998; 395 I Sokolovskii (50532_CR69) 2024; 160 S Hirata (50532_CR21) 1999; 314 R Pandya (50532_CR48) 2022; 9 G Groenhof (50532_CR18) 2019; 10 AD Becke (50532_CR23) 1993; 98 J Galego (50532_CR15) 2016; 7 G Groenhof (50532_CR63) 2013; 924 A Dutta (50532_CR41) 2021; 2 I Sokolovskii (50532_CR56) 2023; 14 V Agranovich (50532_CR11) 1997; 102 E Eizner (50532_CR28) 2019; 5 H-L Luk (50532_CR33) 2017; 13 K Stranius (50532_CR7) 2018; 9 R Puro (50532_CR44) 2021; 125 P Forn-Díaz (50532_CR59) 2019; 91 TF Allard (50532_CR53) 2022; 106 G Groenhof (50532_CR67) 2004; 124 I Lee (50532_CR40) 2024; 146 RH Tichauer (50532_CR34) 2021; 154 FJ Garcia-Vidal (50532_CR16) 2021; 373 H Berendsen (50532_CR25) 1984; 81 J Flick (50532_CR38) 2017; 114 A Thomas (50532_CR3) 2019; 363 J Lee (50532_CR20) 2013; 117 LT Mix (50532_CR57) 2017; 57 A Warshel (50532_CR62) 1976; 103 CT Lee (50532_CR64) 1988; 37 L Tropf (50532_CR10) 2017; 110 VM Agranovich (50532_CR17) 2003; 67 MS Rider (50532_CR14) 2022; 62 JB Pérez-Sánchez (50532_CR39) 2024; 6 E Runge (50532_CR66) 1984; 52 A George (50532_CR46) 2024; 0 G Engelhardt (50532_CR55) 2023; 130 C Schäfer (50532_CR49) 2022; 34 B Munkhbat (50532_CR8) 2018; 4 Y Yu (50532_CR6) 2021; 12 TH Dunning (50532_CR24) 1970; 53 D Lidzey (50532_CR43) 2000; 288 |
| References_xml | – volume: 363 start-page: 615 year: 2019 end-page: 619 ident: CR3 article-title: Tilting a ground-state reactivity landscape by vibrational strong coupling publication-title: Science doi: 10.1126/science.aau7742 – ident: CR70 – ident: CR22 – volume: 106 start-page: 245424 year: 2022 ident: CR53 article-title: Disorder-enhanced transport in a chain of lossy dipoles strongly coupled to cavity photons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.245424 – volume: 58 start-page: 15324 year: 2019 end-page: 15328 ident: CR4 article-title: Modification of enzyme activity by vibrational strong coupling of water publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908876 – volume: 12 start-page: 3825 year: 2016 end-page: 3850 ident: CR65 article-title: A gromos-compatible force field for small organic molecules in the condensed phase: the 2016H66 parameter set publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00187 – volume: 15 start-page: 1708 year: 2024 end-page: 1710 ident: CR31 article-title: Selection bias in strong coupling experiments publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.3c03546 – volume: 4 start-page: 435 year: 2008 end-page: 447 ident: CR68 article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 314 start-page: 291 year: 1999 end-page: 299 ident: CR21 article-title: Time-dependent density functional theory within the Tamm-Dancoff approximation publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01149-5 – volume: 103 start-page: 227 year: 1976 end-page: 249 ident: CR62 article-title: Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of carbonium ion in the reaction of lysozyme publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(76)90311-9 – volume: 91 start-page: 025005 year: 2019 ident: CR59 article-title: Ultrastrong coupling regimes of light-matter interaction publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.025005 – volume: 13 start-page: 6259 year: 2022 ident: CR37 article-title: Identifying vibrations that control non-adiabatic relaxation of polaritons in strongly coupled molecule-cavity systems publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00826 – volume: 110 start-page: 153302 year: 2017 ident: CR10 article-title: Influence of optical material properties on strong coupling in organic semiconductor based microcavities publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978646 – volume: 117 start-page: 1400 year: 2013 end-page: 1405 ident: CR20 article-title: Active role of proton in excited state intramolecular proton transfer reaction publication-title: J. Phys. Chem. A doi: 10.1021/jp311884b – volume: 98 start-page: 1372 year: 1993 ident: CR23 article-title: A new mixing of Hartree-Fock and local density-functional theories publication-title: J. Chem. Phys. doi: 10.1063/1.464304 – volume: 395 start-page: 53 year: 1998 end-page: 55 ident: CR12 article-title: Strong exciton-photon coupling in an organic semiconductor microcavity publication-title: Nature doi: 10.1038/25692 – volume: 81 start-page: 3684 year: 1984 end-page: 3690 ident: CR25 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 9 start-page: 2273 year: 2018 ident: CR7 article-title: Selective manipulation of electronically excited states through strong light-matter interactions publication-title: Nat. Comm. doi: 10.1038/s41467-018-04736-1 – volume: 125 start-page: 27072 year: 2021 end-page: 27083 ident: CR44 article-title: Exciton polariton-enhanced photodimerization of functionalized tetracene publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c06881 – volume: 31 start-page: 2010737 year: 2021 ident: CR9 article-title: Photoisomerization efficiency of a solar thermal fuel in the strong coupling regime publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010737 – volume: 0 start-page: 0 year: 2024 ident: CR45 article-title: Strong light-matter coupling leads to a longer charge carrier lifetime in cavity organic solar cells publication-title: ACS Photonics – ident: CR71 – volume: 13 start-page: 4324 year: 2017 end-page: 4335 ident: CR33 article-title: Multiscale molecular dynamics simulations of polaritonic chemistry publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00388 – volume: 5 start-page: 041022 year: 2015 ident: CR58 article-title: Cavity-induced modifications of molecular structure in the strong-coupling regime publication-title: Phys. Rev. X – volume: 62 start-page: 217 year: 2022 end-page: 232 ident: CR14 article-title: Something from nothing: linking molecules with virtual light publication-title: Contemp. Phys. doi: 10.1080/00107514.2022.2101749 – volume: 14 start-page: 5681 year: 2023 end-page: 5691 ident: CR54 article-title: Theoretical analysis of exciton wave packet dynamics in polaritonic wires publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.3c01082 – volume: 5 start-page: eaax4482 year: 2019 ident: CR28 article-title: Inverting singlet and triplet excited states using strong light-matter coupling publication-title: Sci. Adv. doi: 10.1126/sciadv.aax4482 – volume: 78 start-page: 013901 year: 2015 ident: CR13 article-title: Strong coupling between surface plasmon polaritons and emitters: a review publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/1/013901 – volume: 373 start-page: eabd0336 year: 2021 ident: CR16 article-title: Manipulating matter by strong coupling to vacuum fields publication-title: Science doi: 10.1126/science.abd0336 – volume: 37 start-page: 785 year: 1988 end-page: 789 ident: CR64 article-title: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 160 start-page: 092501 year: 2024 ident: CR69 article-title: Non-Hermitian molecular dynamics simulations of exciton-polaritons in lossy cavities publication-title: J. Chem. Phys. doi: 10.1063/5.0188613 – volume: 51 start-page: 1592 year: 2012 end-page: 1596 ident: CR1 article-title: Modifying chemical landscapes by coupling to vacuum fields publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107033 – volume: 5 start-page: 120 year: 2022 ident: CR52 article-title: Disorder enhanced vibrational entanglement and dynamics in polaritonic chemistry publication-title: Comm. Phys. doi: 10.1038/s42005-022-00892-5 – volume: 57 start-page: 1733 year: 2017 end-page: 1747 ident: CR57 article-title: Excitation-wavelength-dependent photocycle initiation dynamics resolve heterogeneity in the photoactive yellow protein from halorhodospira halophila publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01114 – volume: 372 start-page: 3898 year: 2008 end-page: 3903 ident: CR51 article-title: Propagation and localization of polaritons in disordered organic microcavities publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.02.062 – volume: 10 start-page: 5476 year: 2019 end-page: 5483 ident: CR18 article-title: Tracking polariton relaxation with multiscale molecular dynamics simulations publication-title: J. Chem. Phys. Lett. doi: 10.1021/acs.jpclett.9b02192 – volume: 130 start-page: 213602 year: 2023 ident: CR55 article-title: Polariton localization and dispersion properties of disordered quantum emitters in multimode microcavities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.213602 – volume: 188 start-page: 692 year: 1969 end-page: 695 ident: CR61 article-title: Approximate solutions for an n-molecule radiation-field Hamiltonian publication-title: Phys. Rev. doi: 10.1103/PhysRev.188.692 – volume: 75 start-page: 075302 year: 2007 ident: CR50 article-title: Nature and dynamics of low-energy exciton polaritons in semiconductor microcavities publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.075302 – ident: CR72 – volume: 14 year: 2023 ident: CR56 article-title: Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling publication-title: Nat. Commun. doi: 10.1038/s41467-023-42067-y – volume: 17 start-page: 053040 year: 2015 ident: CR27 article-title: Quantum theory of collective strong coupling of molecular vibrations with a microcavity mode publication-title: N. J. Phys. doi: 10.1088/1367-2630/17/5/053040 – ident: CR30 – volume: 123 start-page: 8832 year: 2019 end-page: 8844 ident: CR36 article-title: Modifying the nonradiative decay dynamics through conical intersections via collective coupling to a cavity mode publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b07404 – volume: 102 start-page: 631 year: 1997 end-page: 636 ident: CR11 article-title: Organic and inorganic quantum wells in a microcavity: Frenkel-Wannier-Mott excitons hybridization and energy transformation publication-title: Solid State Commun. doi: 10.1016/S0038-1098(96)00433-4 – volume: 145 start-page: 19655 year: 2023 end-page: 19661 ident: CR32 article-title: Control of photoswitching kinetics with strong light-matter coupling in a cavity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c04254 – volume: 55 start-page: 11462 year: 2016 end-page: 11466 ident: CR2 article-title: Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605504 – volume: 146 start-page: 9544 year: 2024 end-page: 9553 ident: CR40 article-title: Controlling molecular photoisomerization in photonic cavities through polariton funneling publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c11292 – volume: 51 start-page: 89 year: 1963 end-page: 109 ident: CR60 article-title: Comparison of quantum and semiclassical radiation theories with to the beam maser publication-title: Proc. IEEE doi: 10.1109/PROC.1963.1664 – volume: 288 start-page: 1620 year: 2000 end-page: 1623 ident: CR43 article-title: Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities publication-title: Science doi: 10.1126/science.288.5471.1620 – volume: 69 start-page: 681 year: 1946 ident: CR42 article-title: Spontaneous emission probabilities at radio frequencies publication-title: Phys. Rev. – volume: 11 start-page: 10266 year: 2009 end-page: 10269 ident: CR19 article-title: Coherent excited state intramolecular proton transfer probed by time-resolved fluorescence publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b915768a – volume: 58 start-page: 10635 year: 2019 end-page: 10638 ident: CR5 article-title: Cavity catalysis by cooperative vibrational strong coupling of reactant and solvent molecules publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905407 – volume: 52 start-page: 997 year: 1984 end-page: 1000 ident: CR66 article-title: Density-functional theory for time-dependent systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.997 – volume: 53 start-page: 2711 year: 1996 end-page: 2715 ident: CR26 article-title: Vacuum-field rabi splitting in the presence of inhomogeneous broadening: resolution of a homogeneous linewidth in an inhomogeneously broadened system publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.53.2711 – volume: 124 start-page: 4228 year: 2004 end-page: 4232 ident: CR67 article-title: Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039557f – volume: 67 start-page: 085311 year: 2003 ident: CR17 article-title: Cavity polaritons in microcavities containing disordered organic semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.085311 – volume: 53 start-page: 2823 year: 1970 end-page: 2833 ident: CR24 article-title: Basis functions for use in molecular calculations. I. Contractions of (9s5p) atomic basis sets for the first-row atoms publication-title: J. Chem. Phys. doi: 10.1063/1.1674408 – volume: 6 start-page: 013222 year: 2024 ident: CR39 article-title: Collective polaritonic effects on chemical dynamics suppressed by disorder publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.6.013222 – volume: 2 start-page: 015205 year: 2021 ident: CR41 article-title: Optimizing geometry of low-Q all-metal fabry-pérot microcavity for fluorescence spectroscopy publication-title: IOP SciNotes doi: 10.1088/2633-1357/abec2b – volume: 121 start-page: 253001 year: 2018 ident: CR35 article-title: Collective Jahn-Teller interactions through light-matter coupling in a cavity publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.253001 – volume: 9 start-page: 2105569 year: 2022 ident: CR48 article-title: Tuning the coherent propagation of organic exciton-polaritons through dark state delocalization publication-title: Adv. Sci. doi: 10.1002/advs.202105569 – volume: 12 year: 2021 ident: CR6 article-title: Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling publication-title: Nat. Commun. doi: 10.1038/s41467-021-23481-6 – volume: 4 start-page: eaas9552 year: 2018 ident: CR8 article-title: Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9552 – volume: 154 start-page: 104112 year: 2021 ident: CR34 article-title: Multiscale simulations of molecular polaritons: the effect of multiple cavity modes on polariton relaxation publication-title: J. Chem. Phys. doi: 10.1063/5.0037868 – volume: 34 start-page: 9294 year: 2022 end-page: 9302 ident: CR49 article-title: Room temperature dye glasses: a guideline toward the fabrication of amorphous dye films with monomeric absorption and emission publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c02761 – volume: 151 start-page: 054106 year: 2019 ident: CR29 article-title: Triplet harvesting in the polaritonic regime: a variational polaron approach publication-title: J. Chem. Phys. doi: 10.1063/1.5100192 – volume: 114 start-page: 3026 year: 2017 end-page: 3034 ident: CR38 article-title: Atoms and molecules in cavities: from weak to strong coupling in QED chemistry publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1615509114 – volume: 23 start-page: 3615 year: 2011 end-page: 3642 ident: CR47 article-title: Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process publication-title: Adv. Mater. doi: 10.1002/adma.201102046 – volume: 924 start-page: 12489 year: 2013 end-page: 12491 ident: CR63 article-title: Introduction to qm/mm simulations publication-title: Methods Mol. Biol. – volume: 7 start-page: 13841 year: 2016 ident: CR15 article-title: Suppressing photochemical reactions with quantized light fields publication-title: Nat. Comm. doi: 10.1038/ncomms13841 – volume: 0 start-page: 2302387 year: 2024 ident: CR46 article-title: Controlling the manifold of polariton states through molecular disorder publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202302387 – volume: 395 start-page: 53 year: 1998 ident: 50532_CR12 publication-title: Nature doi: 10.1038/25692 – volume: 53 start-page: 2711 year: 1996 ident: 50532_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.53.2711 – volume: 13 start-page: 6259 year: 2022 ident: 50532_CR37 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00826 – volume: 91 start-page: 025005 year: 2019 ident: 50532_CR59 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.025005 – volume: 13 start-page: 4324 year: 2017 ident: 50532_CR33 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00388 – volume: 106 start-page: 245424 year: 2022 ident: 50532_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.245424 – volume: 23 start-page: 3615 year: 2011 ident: 50532_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.201102046 – ident: 50532_CR71 doi: 10.23729/11673bf8-3094-4a11-9b8c-604bef025f76 – volume: 373 start-page: eabd0336 year: 2021 ident: 50532_CR16 publication-title: Science doi: 10.1126/science.abd0336 – volume: 0 start-page: 0 year: 2024 ident: 50532_CR45 publication-title: ACS Photonics – volume: 9 start-page: 2273 year: 2018 ident: 50532_CR7 publication-title: Nat. Comm. doi: 10.1038/s41467-018-04736-1 – volume: 12 start-page: 3825 year: 2016 ident: 50532_CR65 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00187 – volume: 4 start-page: 435 year: 2008 ident: 50532_CR68 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – ident: 50532_CR30 doi: 10.1002/adma.202309393 – volume: 924 start-page: 12489 year: 2013 ident: 50532_CR63 publication-title: Methods Mol. Biol. – volume: 62 start-page: 217 year: 2022 ident: 50532_CR14 publication-title: Contemp. Phys. doi: 10.1080/00107514.2022.2101749 – volume: 372 start-page: 3898 year: 2008 ident: 50532_CR51 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.02.062 – volume: 81 start-page: 3684 year: 1984 ident: 50532_CR25 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 57 start-page: 1733 year: 2017 ident: 50532_CR57 publication-title: Biochemistry doi: 10.1021/acs.biochem.7b01114 – volume: 78 start-page: 013901 year: 2015 ident: 50532_CR13 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/78/1/013901 – volume: 69 start-page: 681 year: 1946 ident: 50532_CR42 publication-title: Phys. Rev. doi: 10.1103/PhysRev.69.37 – volume: 10 start-page: 5476 year: 2019 ident: 50532_CR18 publication-title: J. Chem. Phys. Lett. doi: 10.1021/acs.jpclett.9b02192 – volume: 102 start-page: 631 year: 1997 ident: 50532_CR11 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(96)00433-4 – volume: 188 start-page: 692 year: 1969 ident: 50532_CR61 publication-title: Phys. Rev. doi: 10.1103/PhysRev.188.692 – volume: 151 start-page: 054106 year: 2019 ident: 50532_CR29 publication-title: J. Chem. Phys. doi: 10.1063/1.5100192 – ident: 50532_CR22 doi: 10.1016/j.cplett.2004.06.011 – volume: 103 start-page: 227 year: 1976 ident: 50532_CR62 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(76)90311-9 – volume: 123 start-page: 8832 year: 2019 ident: 50532_CR36 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.9b07404 – volume: 11 start-page: 10266 year: 2009 ident: 50532_CR19 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b915768a – volume: 6 start-page: 013222 year: 2024 ident: 50532_CR39 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.6.013222 – volume: 130 start-page: 213602 year: 2023 ident: 50532_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.213602 – volume: 363 start-page: 615 year: 2019 ident: 50532_CR3 publication-title: Science doi: 10.1126/science.aau7742 – ident: 50532_CR72 doi: 10.5281/zenodo.8312817 – volume: 7 start-page: 13841 year: 2016 ident: 50532_CR15 publication-title: Nat. Comm. doi: 10.1038/ncomms13841 – volume: 53 start-page: 2823 year: 1970 ident: 50532_CR24 publication-title: J. Chem. Phys. doi: 10.1063/1.1674408 – volume: 114 start-page: 3026 year: 2017 ident: 50532_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1615509114 – volume: 5 start-page: 041022 year: 2015 ident: 50532_CR58 publication-title: Phys. Rev. X – volume: 125 start-page: 27072 year: 2021 ident: 50532_CR44 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c06881 – volume: 51 start-page: 1592 year: 2012 ident: 50532_CR1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107033 – volume: 9 start-page: 2105569 year: 2022 ident: 50532_CR48 publication-title: Adv. Sci. doi: 10.1002/advs.202105569 – volume: 160 start-page: 092501 year: 2024 ident: 50532_CR69 publication-title: J. Chem. Phys. doi: 10.1063/5.0188613 – volume: 55 start-page: 11462 year: 2016 ident: 50532_CR2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605504 – volume: 75 start-page: 075302 year: 2007 ident: 50532_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.075302 – volume: 34 start-page: 9294 year: 2022 ident: 50532_CR49 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c02761 – volume: 2 start-page: 015205 year: 2021 ident: 50532_CR41 publication-title: IOP SciNotes doi: 10.1088/2633-1357/abec2b – volume: 14 year: 2023 ident: 50532_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-023-42067-y – volume: 124 start-page: 4228 year: 2004 ident: 50532_CR67 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja039557f – volume: 58 start-page: 10635 year: 2019 ident: 50532_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905407 – volume: 121 start-page: 253001 year: 2018 ident: 50532_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.253001 – volume: 67 start-page: 085311 year: 2003 ident: 50532_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.085311 – volume: 15 start-page: 1708 year: 2024 ident: 50532_CR31 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.3c03546 – volume: 0 start-page: 2302387 year: 2024 ident: 50532_CR46 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202302387 – volume: 5 start-page: 120 year: 2022 ident: 50532_CR52 publication-title: Comm. Phys. doi: 10.1038/s42005-022-00892-5 – volume: 117 start-page: 1400 year: 2013 ident: 50532_CR20 publication-title: J. Phys. Chem. A doi: 10.1021/jp311884b – volume: 154 start-page: 104112 year: 2021 ident: 50532_CR34 publication-title: J. Chem. Phys. doi: 10.1063/5.0037868 – volume: 14 start-page: 5681 year: 2023 ident: 50532_CR54 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.3c01082 – volume: 5 start-page: eaax4482 year: 2019 ident: 50532_CR28 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax4482 – volume: 31 start-page: 2010737 year: 2021 ident: 50532_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010737 – volume: 52 start-page: 997 year: 1984 ident: 50532_CR66 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.52.997 – volume: 58 start-page: 15324 year: 2019 ident: 50532_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908876 – volume: 98 start-page: 1372 year: 1993 ident: 50532_CR23 publication-title: J. Chem. Phys. doi: 10.1063/1.464304 – volume: 37 start-page: 785 year: 1988 ident: 50532_CR64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 146 start-page: 9544 year: 2024 ident: 50532_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c11292 – volume: 51 start-page: 89 year: 1963 ident: 50532_CR60 publication-title: Proc. IEEE doi: 10.1109/PROC.1963.1664 – volume: 145 start-page: 19655 year: 2023 ident: 50532_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c04254 – volume: 288 start-page: 1620 year: 2000 ident: 50532_CR43 publication-title: Science doi: 10.1126/science.288.5471.1620 – volume: 314 start-page: 291 year: 1999 ident: 50532_CR21 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01149-5 – volume: 110 start-page: 153302 year: 2017 ident: 50532_CR10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4978646 – volume: 12 year: 2021 ident: 50532_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23481-6 – volume: 4 start-page: eaas9552 year: 2018 ident: 50532_CR8 publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9552 – ident: 50532_CR70 – volume: 17 start-page: 053040 year: 2015 ident: 50532_CR27 publication-title: N. J. Phys. doi: 10.1088/1367-2630/17/5/053040 |
| SSID | ssj0000391844 |
| Score | 2.5853646 |
| Snippet | Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect... Abstract Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6600 |
| SubjectTerms | 639/638/439/890 639/638/440/949 639/638/563/606 639/766/400/2797 639/766/94 Absorption spectra Atmospheric chemistry Cavities Coupling (molecular) Excitation spectra Holes Humanities and Social Sciences Molecular modelling multidisciplinary Photochemical reactions Photochemicals Photochemistry Polaritons Potential energy Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQBRIXxJtAQUbiBlbj2IntIyAqThUHkHqzHD_albbJtkmQ-PeMH7t0eV64JpPEmhl7Psf29yH0StUuxEJFqBeBcOcpMR01BIof7Tnzsu1lEpsQJyfy9FR9uib1FfeEZXrg7LijjhvGrOPedIo3FCaCppPU81aYJtRtOuZbC3VtMpXGYKZg6sLLKZmayaOJpzEBShJpoxoCafcqUSLs_x3K_HWz5E8rpqkQHd9FdwqCxG9zy--hG364j25lTclvD9AlBB4G2zV2hVcTbzJL04QB6-Fp2ZStrwMeA17W8DUSzDTjzfk4R_msrP-GV0O2j7_Kz_A68Y1cJDJObMclnuM9w1HV4cI_RF-OP3x-_5EUXQViW05nAvUoUBUaKx1UI--kj4wsilETpBMhmJ4LR0Ute2t54EEoa5veKQM-DYBY2CN0MIyDf4KwsT082rimtYYHZWG-KSiYBtG4QPuuQnTrY20L6XjUvljrtPjNpM5x0RAXneKi2wq93j2zyZQbf7V-F0O3s4x02ekCJJEuSaT_lUQVOtwGXpc-POnIlQj4TghWoZe72xCEuKRiBj8uxQYgXgOveJzzZNcSpmolAA1XSO5l0F5T9-8Mq_PE8B1BsADgWqE322T70a4_--Lp__DFM3S7ib0kbovhh-hgvlr8c3TTfp1X09WL1M2-A21ZLAc priority: 102 providerName: Directory of Open Access Journals |
| Title | Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime |
| URI | https://link.springer.com/article/10.1038/s41467-024-50532-5 https://www.ncbi.nlm.nih.gov/pubmed/39097575 https://www.proquest.com/docview/3087617773 https://www.proquest.com/docview/3087699328 https://pubmed.ncbi.nlm.nih.gov/PMC11297929 https://doaj.org/article/64a33cd4ea69421eb2a681e457a2f058 |
| Volume | 15 |
| WOSCitedRecordID | wos001284835300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoCxKX8oZAWRmJG1hdO07snBBFreDAKkIgLVwix4_tSttku9lU4t8zdrxbLY9euOQQTyInM56ZjCffh9DrYmycD1SEWuEIN5YSlVNFIPjRmqdWZrUMZBNiMpHTaVHGglsX2yo3PjE4atNqXyM_9sh1EG2FSN8tL4lnjfK7q5FCYw8deJQEFlr3ym2NxaOfS87jvzLjVB53PHgGCEwk85wIJNuJRwG2_2-55p8tk7_tm4ZwdHbvfx_kPjqMiSh-P1jOA3TLNg_RnYGa8ucjdAn2Az57gU2E58TLAeypw5Ay4q5fxg7aBrcO9wuYLnGqW-Plebv2LFwDjRyeN4O8r7jP8CLAllwETE-s297_DjzDnhziwj5G385Ov374SCI9A9EZp2sCYc3RwjEtDQQ1a6T1wC5FSpWTRjinai4MFWNZa80dd6LQmtWmUKAUB4lP-gTtN21jnyGsdA2XMsMyrbgrNHy2CgqiTjDjaJ0niG6UVOmIXe4pNBZV2ENPZTUotgLFVkGxVZagN9trlgNyx43SJ173W0mPuh1OtKtZFRdxlXOVptpwq_KCM2prpnJJLc-EYm6cyQQdbVReRVfQVdf6TtCr7TAowe_MqMa2fZSBTJHBLZ4OhradSVqMCwFJdYLkjgnuTHV3pJmfB6Bwn0sLyH8T9HZjrdfz-ve7eH7zY7xAd5lfQL5vhh-h_fWqty_RbX21nnerEdoTUxGOcoQOTk4n5ZdRKHSMwtqEY5n9gJHy0-fy-y-o70GQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwGP1UpiC4sC-BAkaCE0SNHWfsHBBiqzpqO5pDkcrJOF6mI02T6WQG1D_Fb8R2kqmGpbceuCZO5DjvW2x_fg_gZZ5o6wNVjA2zMdUGx7KPZeyCHy5oanhW8CA2wYZDfnSUjzbgZ3cWxpdVdj4xOGpdKb9Gvu2Z61y0ZSx9NzuNvWqU313tJDQaWOyZsx9uyla_HXxy__cVITufDz_uxq2qQKwyihex88YW55Yorp0vNpobz0eSp1harpm1sqBMY5bwQilqqWW5UqTQucwxty5ep-69V2CTerD3YHM0OBh9Xa3qeL51Tml7OidJ-XZNgy9yoTDOvApDnK1FwCAU8Lfs9s8izd92akMA3Ln1vw3dbbjZptrofWMbd2DDlHfhWiO-eXYPTp2FuKg0RbolIEWzhs6qRi4pRvVy1tYIl6iyaDl1wxNbWS_Q7LhaeJ2xRigPTcqmvd9TGKNpIGY5CaylSFVLf-B5jLz8xYm5D18u5XsfQK-sSvMIkFSFe5RokilJba7cxJxh19Qyoi0u-hHgDhRCtezsXiRkKkKVQMpFAyThgCQCkEQWwevVM7OGm-TC1h881lYtPa94uFDNx6J1U6JPZZoqTY3s55RgUxDZ59jQjElik4xHsNVBTLTOrhbn-Irgxeq2-wl-70mWplq2bVwuTNwrHjbAXvUkzZOcuWlDBHwN8mtdXb9TTo4DFbqfLTCX4UfwprOO8379eyweX_wZz-H67uHBvtgfDPeewA3ijddXCdEt6C3mS_MUrqrvi0k9f9baP4Jvl203vwCqoJo2 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgX7pfAACPBE1itHad2HhACRsU0VPUBpIkXz_Glq9QlXdOC9tf4dRw7Sady2dseeE1OIsc5V_v4-xB6kfetD4GKUCc84dZRogdUEwh-tOCpk1khI9mEGI3kwUE-3kI_u7Mwoa2y84nRUdvKhDXyXkCug2grRNrzbVvEeHf4dn5CAoNU2Gnt6DQaFdl3pz-gfKvf7O3Cv37J2PDjlw-fSMswQEzG6ZKAZ_Y098xIC37ZWekCNkmeUu2lFd7rggtLRV8WxnDPvciNYYXNdU6lh9idwnsvocsCaszQTjjOvq3XdwLyuuS8PafTT2Wv5tErQVAkWeBjINlGLIyUAX_Lc_9s1_xtzzaGwuHN_3kSb6EbbQKO3zUWcxttufIOutpQcp7eRSdgNxCrZti2sKR43oBc1RhSZVyv5m3ncIkrj1czmCridb3E86NqGdjHGvo8PC0b-bDTMMGzCNdyHLFMsalW4Rj0BAdSjGN3D329kO-9j7bLqnQPEdamgEeZZZnR3OcGynVBQdQLZj0tBgminYIo02K2B-qQmYq9A6lUjVIpUCoVlUplCXq1fmbeIJacK_0-6N1aMqCNxwvVYqJa56UGXKepsdzpQc4ZdQXTA0kdz4Rmvp_JBO106qZaF1irM11L0PP1bfgJYUdKl65atTKQITN4xYNGydcjSfN-LqCYSJDcUP-NoW7eKadHESA91BAC8v4Eve4s5Wxc_56LR-d_xjN0DYxFfd4b7T9G11mw49A6xHfQ9nKxck_QFfN9Oa0XT6MjwOjwoo3mF97toZk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+disorder+prevents+the+suppression+of+ultra-fast+photochemistry+in+the+strong+light-matter+coupling+regime&rft.jtitle=Nature+communications&rft.au=Dutta%2C+Arpan&rft.au=Tiainen%2C+Ville&rft.au=Sokolovskii%2C+Ilia&rft.au=Duarte%2C+Lu%C3%ADs&rft.date=2024-08-04&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-50532-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_50532_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |