Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias
The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years...
Uloženo v:
| Vydáno v: | Scientific reports Ročník 14; číslo 1; s. 17444 - 13 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
29.07.2024
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening. |
|---|---|
| AbstractList | Abstract The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening. The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening. The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening. The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening. |
| ArticleNumber | 17444 |
| Author | Zhang, Jiaqing Libon, David J. Kimmet, Faith Khezeli, Kia Rashidi, Parisa Wittmayer, Jack Bandyopadhyay, Sabyasachi Price, Catherine C. |
| Author_xml | – sequence: 1 givenname: Jiaqing surname: Zhang fullname: Zhang, Jiaqing organization: Department of Electrical and Computer Engineering, University of Florida, Intelligent Critical Care Center (IC3), University of Florida, Perioperative Cognitive Anesthesia Network(SM), University of Florida – sequence: 2 givenname: Sabyasachi surname: Bandyopadhyay fullname: Bandyopadhyay, Sabyasachi organization: Department of Medicine, Stanford University – sequence: 3 givenname: Faith surname: Kimmet fullname: Kimmet, Faith organization: Perioperative Cognitive Anesthesia Network(SM), University of Florida, Department of Anesthesiology, College of Medicine, University of Florida – sequence: 4 givenname: Jack surname: Wittmayer fullname: Wittmayer, Jack organization: Intelligent Critical Care Center (IC3), University of Florida – sequence: 5 givenname: Kia surname: Khezeli fullname: Khezeli, Kia organization: Intelligent Critical Care Center (IC3), University of Florida – sequence: 6 givenname: David J. surname: Libon fullname: Libon, David J. organization: Department of Geriatrics and Gerontology, Department of Psychology, School of Osteopathic Medicine, New Jersey Institute for Successful Aging, Rowan University – sequence: 7 givenname: Catherine C. surname: Price fullname: Price, Catherine C. email: cep23@phhp.ufl.edu organization: Perioperative Cognitive Anesthesia Network(SM), University of Florida, Department of Anesthesiology, College of Medicine, University of Florida, Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida – sequence: 8 givenname: Parisa surname: Rashidi fullname: Rashidi, Parisa email: parisa.rashidi@bme.ufl.edu organization: Intelligent Critical Care Center (IC3), University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39075127$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UstuFDEQHKEg8iA_wAFZ4sJlwM_x-IRQIBApEhc4Wx5Pe-PFay_2bFb5ezyZBJIcYh_caleVSt113BzEFKFp3hD8gWDWfyycCNW3mPK263lP2v2L5ohiLlrKKD14UB82p6WscT2CKk7Uq-aQKSwFofKoufkC1xDS1scVMsgZn5GJI_JxgrzNMJkhAMpQywJxMpNPESWHpitANiT7G43Z7GfyBGVCLmW08ZNfVWDthbRHMO7sQpt1s7HeBDR4U143L50JBU7v3pPm1_nXn2ff28sf3y7OPl-2VnAytdQwCaxe3Ek7EGutJGIcpJNGCcxHbrAwCivOoLMAklCFhWXCUQ7UDZSdNBeL7pjMWm-z35h8o5Px-raR8kqbPHkbQI8wWOnIIBgn3BI2SCWIk4qxvnPATdX6tGhtd8MGRltHkk14JPr4J_orvUrXmhDad70SVeH9nUJOf3Z1Znrji4UQTIS0K5rhvsMd7fhs_N0T6DrtcqyzmlFCcinwjHr70NI_L_crroB-AdicSsngtPXLIqtDHzTBeg6UXgKla6D0baD0vlLpE-q9-rMktpBKBccV5P-2n2H9BYN937E |
| CitedBy_id | crossref_primary_10_1038_s41746_025_01667_2 |
| Cites_doi | 10.1093/arclin/11.3.193 10.1097/01.anes.0000296072.02527.18 10.1136/jnnp.64.5.588 10.1097/JGP.0b013e31819431d5 10.1213/XAA.0000000000001364 10.1093/ije/dyz109 10.1017/S1355617722000662 10.1213/ANE.0000000000004190 10.3233/JAD-170444 10.1609/aaai.v35i18.18008 10.3389/fneur.2022.896403 10.1159/000131895 10.1147/JRD.2019.2942287 10.3389/fpsyg.2023.1280593 10.1177/0891988710373597 10.1097/01.mlr.0000245182.36914.4a 10.1097/01.anes.0000296071.19434.1e 10.1089/lap.2018.0093 10.1016/j.neuropsychologia.2009.03.004 10.1038/s41598-020-74710-9 10.1002/14651858.CD010783.pub3 10.1097/01.JGP.0000192478.82189.a8 10.1038/s41598-023-34518-9 10.1007/s13311-021-01180-w 10.1213/ANE.0000000000004212 10.3390/s21155239 10.3233/JAD-201249 10.1016/0022-3956(75)90026-6 10.1097/01.ASM.0000935232.57361.7f 10.1016/j.jalz.2016.03.001 10.1093/arclin/8.5.405 10.1037/neu0000141 10.1016/0003-4975(95)00076-W 10.1177/1529100620920576 10.1016/j.jclinane.2020.109724 10.1046/j.1532-5415.2001.49185.x 10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U 10.1007/s10115-011-0463-8 10.1016/j.jalz.2019.01.010 10.1037/0894-4105.7.3.273 10.1080/13854040590945210 10.1038/s41598-022-12024-8 10.1037/0022-006X.52.5.885 10.1097/01.wnn.0000119564.08162.46 10.1080/13854046.2020.1730444 10.1097/01.mlr.0000245181.96133.db 10.1076/clin.14.4.496.7196 10.1076/clin.12.1.43.1726 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-024-68481-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Education |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_debc7f1b53414c13b7951f793386fe4a PMC11286895 39075127 10_1038_s41598_024_68481_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: #1750192 funderid: http://dx.doi.org/10.13039/100000001 – fundername: National Institutes of Health grantid: R01AG055337 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Science Foundation grantid: #1750192 – fundername: NIA NIH HHS grantid: K07 AG066813 – fundername: NIH HHS grantid: R01AG055337 – fundername: NIA NIH HHS grantid: R01 AG055337 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c541t-2a37e3e3e067cb1ccc715db7f7a9504d4a05a90943e6cee712905c35f24e2fb23 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280635000079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:24:12 EST 2025 Tue Nov 04 02:06:14 EST 2025 Fri Sep 05 13:47:13 EDT 2025 Tue Oct 07 07:47:01 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Tue Nov 18 21:31:48 EST 2025 Sat Nov 29 02:13:41 EST 2025 Fri Feb 21 02:37:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Mini-mental state examination Semi-supervised deep learning Relevance factor variational autoencoder AI Fairness Memory Attention |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-2a37e3e3e067cb1ccc715db7f7a9504d4a05a90943e6cee712905c35f24e2fb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3085747502?pq-origsite=%requestingapplication% |
| PMID | 39075127 |
| PQID | 3085747502 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_debc7f1b53414c13b7951f793386fe4a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11286895 proquest_miscellaneous_3086062642 proquest_journals_3085747502 pubmed_primary_39075127 crossref_citationtrail_10_1038_s41598_024_68481_w crossref_primary_10_1038_s41598_024_68481_w springer_journals_10_1038_s41598_024_68481_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-29 |
| PublicationDateYYYYMMDD | 2024-07-29 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Kim, M., Wang, Y., Sahu, P. & Pavlovic, V. Relevance factor vae: Learning and identifying disentangled factors. arXiv preprint arXiv:1902.01568 (2019). SatzPBrain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theoryNeuropsychology1993727310.1037/0894-4105.7.3.273 SternYCognitive reserveNeuropsychologia2009472015202819467352273959110.1016/j.neuropsychologia.2009.03.004 PriceCColeDJAdding ‘formal years of education’ to patients’ preoperative screeningASA Monit.2023871410.1097/01.ASM.0000935232.57361.7f BandyopadhyaySExplainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed handsSci. Rep.20231373842023NatSR..13.7384B1:CAS:528:DC%2BB3sXps12htrw%3D371496701016416110.1038/s41598-023-34518-9 LibonDJSwensonRABarnoskiEJSandsLPClock drawing as an assessment tool for dementiaArch. Clin. Neuropsychol.199384054151:STN:280:DC%2BD3srhtlyqtQ%3D%3D1458971010.1093/arclin/8.5.405 MatallanaDThe relationship between education level and mini-mental state examination domains among older Mexican AmericansJ. Geriatr. Psychiatry Neurol.2011249182053896910.1177/0891988710373597 BenedictRHSchretlenDGroningerLBrandtJHopkins verbal learning test–revised: Normative data and analysis of inter-form and test-retest reliabilityClin. Neuropsychol.199812435510.1076/clin.12.1.43.1726 AminiSFeasibility and rationale for incorporating frailty and cognitive screening protocols in a preoperative anesthesia clinicAnesth. Analg.201912983031425227692724510.1213/ANE.0000000000004190 LövdénMFratiglioniLGlymourMMLindenbergerUTucker-DrobEMEducation and cognitive functioning across the life spanPsychol. Sci. Public Interest20202164132772803742537710.1177/1529100620920576 LibonDJMalamutBLSwensonRSandsLPCloudBSFurther analyses of clock drawings among demented and nondemented older subjectsArch. Clin. Neuropsychol.1996111932051:STN:280:DC%2BD3srht1Wquw%3D%3D1458892310.1093/arclin/11.3.193 WigginsMEProof of concept: Digital clock drawing behaviors prior to transcatheter aortic valve replacement may predict length of hospital stay and cost of careExplor. Med.20212110342632578276939 DavoudiANormative references for graphomotor and latency digital clock drawing metrics for adults age 55 and older: Operationalizing the production of a normal appearing clockJ. Alzheimer’s Dis.202182597010.3233/JAD-201249 RoyallDRCordesJAPolkMCLOX: An executive clock drawing taskJ. Neurol. Neurosurg. Psychiatry1998645885941:STN:280:DyaK1c3lvVKiuw%3D%3D9598672217006910.1136/jnnp.64.5.588 DoransNJKulickEDifferential item functioning on the mini-mental state examination: An application of the Mantel-Haenszel and standardization proceduresMed. Care200644S107S1141706081710.1097/01.mlr.0000245182.36914.4a Association, A. s. 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia12, 459–509 (2016). Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Advances in neural information processing systems30 (2017). ShulmanKIClock-drawing: Is it the ideal cognitive screening test?Int. J. Geriatr. Psychiatry2000155485611:STN:280:DC%2BD3cvjsVahtw%3D%3D1086192310.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U MahoneySTTawfik-SextonDStrasslePDFarrellTMDukeMCEffects of education and health literacy on postoperative hospital visits in bariatric surgeryJ. Laparoendosc. Adv. Surg. Tech.2018281100110410.1089/lap.2018.0093 TombaughTNKozakJReesLNormative data stratified by age and education for two measures of verbal fluency: FAS and animal namingArch. Clin. Neuropsychol.1999141671771:STN:280:DC%2BD3srht1GlsQ%3D%3D14590600 Wechsler, D. Wechsler adult intelligence scale. Frontiers in Psychology (1955). FreedmanVAKasperJDCohort profile: The national health and aging trends study (NHATS)Int. J. Epidemiol.20194810441045g31237935693403010.1093/ije/dyz109 BandyopadhyaySVariational autoencoder provides proof of concept that compressing CDT to extremely low-dimensional space retains its ability of distinguishing dementiaSci. Rep.20221211010.1038/s41598-022-12024-8 Arevalo-RodriguezIMini-mental state examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI)Cochrane Database Syst. Rev.202110.1002/14651858.CD010783.pub3343133318406467 Ortman, J. M., Velkoff, V. A. & Hogan, H. An aging nation: the older population in the United States. (2014). PiersRJAge and graphomotor decision making assessed with the digital clock drawing test: The Framingham Heart StudyJ. Alzheimer’s Dis.2017601611162010.3233/JAD-170444 CosentinoSJeffersonAChuteDLKaplanELibonDJClock drawing errors in dementia: neuropsychological and neuroanatomical considerationsCogn. Behav. Neurol.20041774841545351510.1097/01.wnn.0000119564.08162.46 Jiang, H. et al. Mobile-based Clock Drawing Test for Detecting Early Signs of Dementia. Proceedings of the AAAI Conference on Artificial Intelligence 16048–16050 (2021). ParkILeeUAutomatic, qualitative scoring of the clock drawing test (CDT) based on u-net CNN and mobile sensor dataSensors20212152392021Senso..21.5239P34372476834872310.3390/s21155239 RamirezMTeresiJAHolmesDGurlandBLantiguaRDifferential item functioning (DIF) and the mini-mental state examination (MMSE): Overview, sample, and issues of translationMed. Care200644S95S1061706084010.1097/01.mlr.0000245181.96133.db AriasFRapid in-person cognitive screening in the preoperative setting: Test considerations and recommendations from the society for perioperative assessment and quality improvement (SPAQI)J. Clin. Anesth.20206210972432018131840242010.1016/j.jclinane.2020.109724 AriasFPilot study: Neurocognitive disorders and colonoscopy in older adultsAnesth. Analg.2019129e89e9331425226677426110.1213/ANE.0000000000004212 HamletKPerioperative multidisciplinary delirium prevention: A longitudinal case reportA&A Pract.202115e0136410.1213/XAA.0000000000001364 Association, A. s. 2019 Alzheimer’s disease facts and figures. Alzheimer’s & dementia15, 321–387 (2019). BaronaAReynoldsCRChastainRA demographically based index of premorbid intelligence for the WAIS—RJ. Consult. Clin. Psychol.19845288510.1037/0022-006X.52.5.885 Paganini-HillAClarkLJHendersonVWBirgeSJClock drawing: Analysis in a retirement communityJ. Am. Geriatr. Soc.2001499419471:STN:280:DC%2BD3MvosVyjtg%3D%3D1152748610.1046/j.1532-5415.2001.49185.x ZahodneLBSternYManlyJJDiffering effects of education on cognitive decline in diverse elders with low versus high educational attainmentNeuropsychology2015296492522219910.1037/neu0000141 FreedmanMLeachLKaplanEShulmanKDelisDCClock drawing: A neuropsychological analysis1994Oxford University Press NewmanMFPredictors of cognitive decline after cardiac operationAnn. Thorac. Surg.199559132613301:STN:280:DyaK2M3ltFCrtA%3D%3D773376210.1016/0003-4975(95)00076-W SteinbergBABieliauskasLASmithGEIvnikRJMayo’s older Americans normative studies: Age-and IQ-adjusted norms for the trail-making test, the stroop test, and MAE controlled oral word association testClin Neuropsychol.2005193293771612053510.1080/13854040590945210 PriceCCThe new frontier of perioperative cognitive medicine for Alzheimer’s disease and related dementiasNeurotherapeutics20231913214210.1007/s13311-021-01180-w PerneczkyRMapping scores onto stages: Mini-mental state examination and clinical dementia ratingAm. J. Geriatr. Psychiatry2006141391441647397810.1097/01.JGP.0000192478.82189.a8 ChenSAutomatic dementia screening and scoring by applying deep learning on clock-drawing testsSci. Rep.202010208542020NatSR..1020854C1:CAS:528:DC%2BB3cXisFWlurjJ10.1038/s41598-020-74710-9332577447704614 PriceCCGarvanCWMonkTGType and severity of cognitive decline in older adults after noncardiac surgeryJ. Am. Soc. Anesthesiol.200810881710.1097/01.anes.0000296072.02527.18 MonkTGPredictors of cognitive dysfunction after major noncardiac surgeryJ. Am. Soc. Anesthesiol.2008108183010.1097/01.anes.0000296071.19434.1e Program, G. S. V. Q. I. Optimal Resources for Geriatric Surgery: 2019 Standards. (2019). FolsteinMFFolsteinSEMcHughPR“Mini-mental state”: A practical method for grading the cognitive state of patients for the clinicianJ. Psychiatry. Research1975121891981:STN:280:DyaE28%2FntFKjtw%3D%3D10.1016/0022-3956(75)90026-6 BellamyRKAI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic biasIBM J. Res. Dev.201910.1147/JRD.2019.2942287 Sherrill-PattisonSDondersJThompsonEInfluence of demographic variables on neuropsychological test performance after traumatic brain injuryClin. Neuropsychol.2000144965031:STN:280:DC%2BD3M7mt1KrtQ%3D%3D1126271910.1076/clin.14.4.496.7196 JakAJQuantification of five neuropsychological approaches to defining mild cognitive impairmentAm. J. Geriatr. Psychiatry20091736837519390294274317510.1097/JGP.0b013e31819431d5 Von GuntenAClock-drawing test performance in the normal elderly and its dependence on age and educationEur. Neurol.200860737810.1159/000131895 RyanJNormative performance of older individuals on the hopkins verbal learning test-revised (HVLT-R) according to ethno-racial group, gender, age and education levelClin. Neuropsychol.202135117411903210061910.1080/13854046.2020.1730444 LibonDJUsing digital assessment technology to detect neuropsychological problems in primary care settingsFront. Psychol.2023141280593380461261069333210.3389/fpsyg.2023.1280593 MaestriGCultural influence on clock drawing test: A systematic reviewJ. Int. Neuropsychol. Soc.2022297047143642657910.1017/S1355617722000662 KamiranFCaldersTData preprocessing techniques for classification without discriminationKnowl. Inf. Syst.20123313310.1007/s10115-011-0463-8 SatoKNiimiYManoTIwataAIwatsuboTAutomated evaluation of conventional clock-drawing test using deep neural network: Potential as a mass screening tool to detect individuals with cognitive declineFront. Neurol.20221389640389640335592474911069310.3389/fneur.2022.896403 S Cosentino (68481_CR8) 2004; 17 68481_CR22 A Von Gunten (68481_CR26) 2008; 60 ST Mahoney (68481_CR20) 2018; 28 CC Price (68481_CR53) 2008; 108 DJ Libon (68481_CR10) 2023; 14 K Hamlet (68481_CR37) 2021; 15 ME Wiggins (68481_CR11) 2021; 2 K Sato (68481_CR31) 2022; 13 I Park (68481_CR33) 2021; 21 AJ Jak (68481_CR52) 2009; 17 LB Zahodne (68481_CR14) 2015; 29 TG Monk (68481_CR18) 2008; 108 VA Freedman (68481_CR54) 2019; 48 S Bandyopadhyay (68481_CR34) 2022; 12 M Ramirez (68481_CR43) 2006; 44 J Ryan (68481_CR45) 2021; 35 68481_CR32 68481_CR35 F Arias (68481_CR4) 2020; 62 RJ Piers (68481_CR28) 2017; 60 68481_CR40 DJ Libon (68481_CR6) 1996; 11 DJ Libon (68481_CR9) 1993; 8 A Davoudi (68481_CR27) 2021; 82 RH Benedict (68481_CR49) 1998; 12 G Maestri (68481_CR24) 2022; 29 M Freedman (68481_CR7) 1994 M Lövdén (68481_CR17) 2020; 21 S Sherrill-Pattison (68481_CR23) 2000; 14 A Barona (68481_CR13) 1984; 52 C Price (68481_CR21) 2023; 87 CC Price (68481_CR36) 2023; 19 MF Newman (68481_CR19) 1995; 59 MF Folstein (68481_CR48) 1975; 12 F Arias (68481_CR38) 2019; 129 Y Stern (68481_CR15) 2009; 47 S Amini (68481_CR12) 2019; 129 68481_CR50 KI Shulman (68481_CR5) 2000; 15 D Matallana (68481_CR42) 2011; 24 NJ Dorans (68481_CR44) 2006; 44 DR Royall (68481_CR41) 1998; 64 I Arevalo-Rodriguez (68481_CR51) 2021 BA Steinberg (68481_CR47) 2005; 19 P Satz (68481_CR16) 1993; 7 68481_CR2 68481_CR1 S Bandyopadhyay (68481_CR29) 2023; 13 RK Bellamy (68481_CR39) 2019 R Perneczky (68481_CR55) 2006; 14 F Kamiran (68481_CR56) 2012; 33 TN Tombaugh (68481_CR46) 1999; 14 68481_CR3 A Paganini-Hill (68481_CR25) 2001; 49 S Chen (68481_CR30) 2020; 10 37886534 - Res Sq. 2023 Oct 09:rs.3.rs-3398970. doi: 10.21203/rs.3.rs-3398970/v1 |
| References_xml | – reference: Jiang, H. et al. Mobile-based Clock Drawing Test for Detecting Early Signs of Dementia. Proceedings of the AAAI Conference on Artificial Intelligence 16048–16050 (2021). – reference: Paganini-HillAClarkLJHendersonVWBirgeSJClock drawing: Analysis in a retirement communityJ. Am. Geriatr. Soc.2001499419471:STN:280:DC%2BD3MvosVyjtg%3D%3D1152748610.1046/j.1532-5415.2001.49185.x – reference: DavoudiANormative references for graphomotor and latency digital clock drawing metrics for adults age 55 and older: Operationalizing the production of a normal appearing clockJ. Alzheimer’s Dis.202182597010.3233/JAD-201249 – reference: Arevalo-RodriguezIMini-mental state examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI)Cochrane Database Syst. Rev.202110.1002/14651858.CD010783.pub3343133318406467 – reference: Ortman, J. M., Velkoff, V. A. & Hogan, H. An aging nation: the older population in the United States. (2014). – reference: PriceCColeDJAdding ‘formal years of education’ to patients’ preoperative screeningASA Monit.2023871410.1097/01.ASM.0000935232.57361.7f – reference: MahoneySTTawfik-SextonDStrasslePDFarrellTMDukeMCEffects of education and health literacy on postoperative hospital visits in bariatric surgeryJ. Laparoendosc. Adv. Surg. Tech.2018281100110410.1089/lap.2018.0093 – reference: BandyopadhyaySVariational autoencoder provides proof of concept that compressing CDT to extremely low-dimensional space retains its ability of distinguishing dementiaSci. Rep.20221211010.1038/s41598-022-12024-8 – reference: LibonDJMalamutBLSwensonRSandsLPCloudBSFurther analyses of clock drawings among demented and nondemented older subjectsArch. Clin. Neuropsychol.1996111932051:STN:280:DC%2BD3srht1Wquw%3D%3D1458892310.1093/arclin/11.3.193 – reference: PriceCCThe new frontier of perioperative cognitive medicine for Alzheimer’s disease and related dementiasNeurotherapeutics20231913214210.1007/s13311-021-01180-w – reference: Von GuntenAClock-drawing test performance in the normal elderly and its dependence on age and educationEur. Neurol.200860737810.1159/000131895 – reference: KamiranFCaldersTData preprocessing techniques for classification without discriminationKnowl. Inf. Syst.20123313310.1007/s10115-011-0463-8 – reference: LibonDJSwensonRABarnoskiEJSandsLPClock drawing as an assessment tool for dementiaArch. Clin. Neuropsychol.199384054151:STN:280:DC%2BD3srhtlyqtQ%3D%3D1458971010.1093/arclin/8.5.405 – reference: Program, G. S. V. Q. I. Optimal Resources for Geriatric Surgery: 2019 Standards. (2019). – reference: LibonDJUsing digital assessment technology to detect neuropsychological problems in primary care settingsFront. Psychol.2023141280593380461261069333210.3389/fpsyg.2023.1280593 – reference: SatoKNiimiYManoTIwataAIwatsuboTAutomated evaluation of conventional clock-drawing test using deep neural network: Potential as a mass screening tool to detect individuals with cognitive declineFront. Neurol.20221389640389640335592474911069310.3389/fneur.2022.896403 – reference: PriceCCGarvanCWMonkTGType and severity of cognitive decline in older adults after noncardiac surgeryJ. Am. Soc. Anesthesiol.200810881710.1097/01.anes.0000296072.02527.18 – reference: AriasFRapid in-person cognitive screening in the preoperative setting: Test considerations and recommendations from the society for perioperative assessment and quality improvement (SPAQI)J. Clin. Anesth.20206210972432018131840242010.1016/j.jclinane.2020.109724 – reference: SatzPBrain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theoryNeuropsychology1993727310.1037/0894-4105.7.3.273 – reference: SteinbergBABieliauskasLASmithGEIvnikRJMayo’s older Americans normative studies: Age-and IQ-adjusted norms for the trail-making test, the stroop test, and MAE controlled oral word association testClin Neuropsychol.2005193293771612053510.1080/13854040590945210 – reference: AminiSFeasibility and rationale for incorporating frailty and cognitive screening protocols in a preoperative anesthesia clinicAnesth. Analg.201912983031425227692724510.1213/ANE.0000000000004190 – reference: Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Advances in neural information processing systems30 (2017). – reference: BaronaAReynoldsCRChastainRA demographically based index of premorbid intelligence for the WAIS—RJ. Consult. Clin. Psychol.19845288510.1037/0022-006X.52.5.885 – reference: PiersRJAge and graphomotor decision making assessed with the digital clock drawing test: The Framingham Heart StudyJ. Alzheimer’s Dis.2017601611162010.3233/JAD-170444 – reference: ShulmanKIClock-drawing: Is it the ideal cognitive screening test?Int. J. Geriatr. Psychiatry2000155485611:STN:280:DC%2BD3cvjsVahtw%3D%3D1086192310.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U – reference: RyanJNormative performance of older individuals on the hopkins verbal learning test-revised (HVLT-R) according to ethno-racial group, gender, age and education levelClin. Neuropsychol.202135117411903210061910.1080/13854046.2020.1730444 – reference: AriasFPilot study: Neurocognitive disorders and colonoscopy in older adultsAnesth. Analg.2019129e89e9331425226677426110.1213/ANE.0000000000004212 – reference: Kim, M., Wang, Y., Sahu, P. & Pavlovic, V. Relevance factor vae: Learning and identifying disentangled factors. arXiv preprint arXiv:1902.01568 (2019). – reference: Association, A. s. 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia12, 459–509 (2016). – reference: ZahodneLBSternYManlyJJDiffering effects of education on cognitive decline in diverse elders with low versus high educational attainmentNeuropsychology2015296492522219910.1037/neu0000141 – reference: BellamyRKAI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic biasIBM J. Res. Dev.201910.1147/JRD.2019.2942287 – reference: BenedictRHSchretlenDGroningerLBrandtJHopkins verbal learning test–revised: Normative data and analysis of inter-form and test-retest reliabilityClin. Neuropsychol.199812435510.1076/clin.12.1.43.1726 – reference: PerneczkyRMapping scores onto stages: Mini-mental state examination and clinical dementia ratingAm. J. Geriatr. Psychiatry2006141391441647397810.1097/01.JGP.0000192478.82189.a8 – reference: BandyopadhyaySExplainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed handsSci. Rep.20231373842023NatSR..13.7384B1:CAS:528:DC%2BB3sXps12htrw%3D371496701016416110.1038/s41598-023-34518-9 – reference: WigginsMEProof of concept: Digital clock drawing behaviors prior to transcatheter aortic valve replacement may predict length of hospital stay and cost of careExplor. Med.20212110342632578276939 – reference: DoransNJKulickEDifferential item functioning on the mini-mental state examination: An application of the Mantel-Haenszel and standardization proceduresMed. Care200644S107S1141706081710.1097/01.mlr.0000245182.36914.4a – reference: FreedmanVAKasperJDCohort profile: The national health and aging trends study (NHATS)Int. J. Epidemiol.20194810441045g31237935693403010.1093/ije/dyz109 – reference: ParkILeeUAutomatic, qualitative scoring of the clock drawing test (CDT) based on u-net CNN and mobile sensor dataSensors20212152392021Senso..21.5239P34372476834872310.3390/s21155239 – reference: MaestriGCultural influence on clock drawing test: A systematic reviewJ. Int. Neuropsychol. Soc.2022297047143642657910.1017/S1355617722000662 – reference: ChenSAutomatic dementia screening and scoring by applying deep learning on clock-drawing testsSci. Rep.202010208542020NatSR..1020854C1:CAS:528:DC%2BB3cXisFWlurjJ10.1038/s41598-020-74710-9332577447704614 – reference: FreedmanMLeachLKaplanEShulmanKDelisDCClock drawing: A neuropsychological analysis1994Oxford University Press – reference: Association, A. s. 2019 Alzheimer’s disease facts and figures. Alzheimer’s & dementia15, 321–387 (2019). – reference: JakAJQuantification of five neuropsychological approaches to defining mild cognitive impairmentAm. J. Geriatr. Psychiatry20091736837519390294274317510.1097/JGP.0b013e31819431d5 – reference: Sherrill-PattisonSDondersJThompsonEInfluence of demographic variables on neuropsychological test performance after traumatic brain injuryClin. Neuropsychol.2000144965031:STN:280:DC%2BD3M7mt1KrtQ%3D%3D1126271910.1076/clin.14.4.496.7196 – reference: FolsteinMFFolsteinSEMcHughPR“Mini-mental state”: A practical method for grading the cognitive state of patients for the clinicianJ. Psychiatry. Research1975121891981:STN:280:DyaE28%2FntFKjtw%3D%3D10.1016/0022-3956(75)90026-6 – reference: RoyallDRCordesJAPolkMCLOX: An executive clock drawing taskJ. Neurol. Neurosurg. Psychiatry1998645885941:STN:280:DyaK1c3lvVKiuw%3D%3D9598672217006910.1136/jnnp.64.5.588 – reference: CosentinoSJeffersonAChuteDLKaplanELibonDJClock drawing errors in dementia: neuropsychological and neuroanatomical considerationsCogn. Behav. Neurol.20041774841545351510.1097/01.wnn.0000119564.08162.46 – reference: Wechsler, D. Wechsler adult intelligence scale. Frontiers in Psychology (1955). – reference: HamletKPerioperative multidisciplinary delirium prevention: A longitudinal case reportA&A Pract.202115e0136410.1213/XAA.0000000000001364 – reference: TombaughTNKozakJReesLNormative data stratified by age and education for two measures of verbal fluency: FAS and animal namingArch. Clin. Neuropsychol.1999141671771:STN:280:DC%2BD3srht1GlsQ%3D%3D14590600 – reference: MonkTGPredictors of cognitive dysfunction after major noncardiac surgeryJ. Am. Soc. Anesthesiol.2008108183010.1097/01.anes.0000296071.19434.1e – reference: SternYCognitive reserveNeuropsychologia2009472015202819467352273959110.1016/j.neuropsychologia.2009.03.004 – reference: RamirezMTeresiJAHolmesDGurlandBLantiguaRDifferential item functioning (DIF) and the mini-mental state examination (MMSE): Overview, sample, and issues of translationMed. Care200644S95S1061706084010.1097/01.mlr.0000245181.96133.db – reference: NewmanMFPredictors of cognitive decline after cardiac operationAnn. Thorac. Surg.199559132613301:STN:280:DyaK2M3ltFCrtA%3D%3D773376210.1016/0003-4975(95)00076-W – reference: LövdénMFratiglioniLGlymourMMLindenbergerUTucker-DrobEMEducation and cognitive functioning across the life spanPsychol. Sci. Public Interest20202164132772803742537710.1177/1529100620920576 – reference: MatallanaDThe relationship between education level and mini-mental state examination domains among older Mexican AmericansJ. Geriatr. Psychiatry Neurol.2011249182053896910.1177/0891988710373597 – volume: 11 start-page: 193 year: 1996 ident: 68481_CR6 publication-title: Arch. Clin. Neuropsychol. doi: 10.1093/arclin/11.3.193 – volume: 108 start-page: 8 year: 2008 ident: 68481_CR53 publication-title: J. Am. Soc. Anesthesiol. doi: 10.1097/01.anes.0000296072.02527.18 – ident: 68481_CR3 – volume: 64 start-page: 588 year: 1998 ident: 68481_CR41 publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.64.5.588 – ident: 68481_CR35 – volume: 17 start-page: 368 year: 2009 ident: 68481_CR52 publication-title: Am. J. Geriatr. Psychiatry doi: 10.1097/JGP.0b013e31819431d5 – volume: 15 start-page: e01364 year: 2021 ident: 68481_CR37 publication-title: A&A Pract. doi: 10.1213/XAA.0000000000001364 – volume: 48 start-page: 1044 year: 2019 ident: 68481_CR54 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyz109 – volume: 29 start-page: 704 year: 2022 ident: 68481_CR24 publication-title: J. Int. Neuropsychol. Soc. doi: 10.1017/S1355617722000662 – volume: 129 start-page: 830 year: 2019 ident: 68481_CR12 publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000004190 – volume: 60 start-page: 1611 year: 2017 ident: 68481_CR28 publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-170444 – ident: 68481_CR22 – ident: 68481_CR32 doi: 10.1609/aaai.v35i18.18008 – volume: 13 start-page: 896403 year: 2022 ident: 68481_CR31 publication-title: Front. Neurol. doi: 10.3389/fneur.2022.896403 – volume: 60 start-page: 73 year: 2008 ident: 68481_CR26 publication-title: Eur. Neurol. doi: 10.1159/000131895 – year: 2019 ident: 68481_CR39 publication-title: IBM J. Res. Dev. doi: 10.1147/JRD.2019.2942287 – volume: 14 start-page: 1280593 year: 2023 ident: 68481_CR10 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2023.1280593 – volume: 24 start-page: 9 year: 2011 ident: 68481_CR42 publication-title: J. Geriatr. Psychiatry Neurol. doi: 10.1177/0891988710373597 – volume: 44 start-page: S107 year: 2006 ident: 68481_CR44 publication-title: Med. Care doi: 10.1097/01.mlr.0000245182.36914.4a – volume: 108 start-page: 18 year: 2008 ident: 68481_CR18 publication-title: J. Am. Soc. Anesthesiol. doi: 10.1097/01.anes.0000296071.19434.1e – volume: 28 start-page: 1100 year: 2018 ident: 68481_CR20 publication-title: J. Laparoendosc. Adv. Surg. Tech. doi: 10.1089/lap.2018.0093 – volume: 14 start-page: 167 year: 1999 ident: 68481_CR46 publication-title: Arch. Clin. Neuropsychol. – volume: 47 start-page: 2015 year: 2009 ident: 68481_CR15 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2009.03.004 – volume: 10 start-page: 20854 year: 2020 ident: 68481_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-020-74710-9 – year: 2021 ident: 68481_CR51 publication-title: Cochrane Database Syst. Rev. doi: 10.1002/14651858.CD010783.pub3 – volume: 14 start-page: 139 year: 2006 ident: 68481_CR55 publication-title: Am. J. Geriatr. Psychiatry doi: 10.1097/01.JGP.0000192478.82189.a8 – volume: 13 start-page: 7384 year: 2023 ident: 68481_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-023-34518-9 – volume: 19 start-page: 132 year: 2023 ident: 68481_CR36 publication-title: Neurotherapeutics doi: 10.1007/s13311-021-01180-w – volume: 129 start-page: e89 year: 2019 ident: 68481_CR38 publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000004212 – volume: 21 start-page: 5239 year: 2021 ident: 68481_CR33 publication-title: Sensors doi: 10.3390/s21155239 – volume: 82 start-page: 59 year: 2021 ident: 68481_CR27 publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-201249 – volume: 12 start-page: 189 year: 1975 ident: 68481_CR48 publication-title: J. Psychiatry. Research doi: 10.1016/0022-3956(75)90026-6 – volume: 87 start-page: 1 year: 2023 ident: 68481_CR21 publication-title: ASA Monit. doi: 10.1097/01.ASM.0000935232.57361.7f – ident: 68481_CR1 doi: 10.1016/j.jalz.2016.03.001 – volume: 8 start-page: 405 year: 1993 ident: 68481_CR9 publication-title: Arch. Clin. Neuropsychol. doi: 10.1093/arclin/8.5.405 – volume: 29 start-page: 649 year: 2015 ident: 68481_CR14 publication-title: Neuropsychology doi: 10.1037/neu0000141 – volume: 59 start-page: 1326 year: 1995 ident: 68481_CR19 publication-title: Ann. Thorac. Surg. doi: 10.1016/0003-4975(95)00076-W – volume: 21 start-page: 6 year: 2020 ident: 68481_CR17 publication-title: Psychol. Sci. Public Interest doi: 10.1177/1529100620920576 – volume: 62 start-page: 109724 year: 2020 ident: 68481_CR4 publication-title: J. Clin. Anesth. doi: 10.1016/j.jclinane.2020.109724 – volume: 49 start-page: 941 year: 2001 ident: 68481_CR25 publication-title: J. Am. Geriatr. Soc. doi: 10.1046/j.1532-5415.2001.49185.x – volume: 15 start-page: 548 year: 2000 ident: 68481_CR5 publication-title: Int. J. Geriatr. Psychiatry doi: 10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U – volume-title: Clock drawing: A neuropsychological analysis year: 1994 ident: 68481_CR7 – volume: 33 start-page: 1 year: 2012 ident: 68481_CR56 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-011-0463-8 – ident: 68481_CR2 doi: 10.1016/j.jalz.2019.01.010 – volume: 7 start-page: 273 year: 1993 ident: 68481_CR16 publication-title: Neuropsychology doi: 10.1037/0894-4105.7.3.273 – volume: 19 start-page: 329 year: 2005 ident: 68481_CR47 publication-title: Clin Neuropsychol. doi: 10.1080/13854040590945210 – volume: 2 start-page: 110 year: 2021 ident: 68481_CR11 publication-title: Explor. Med. – ident: 68481_CR40 – volume: 12 start-page: 1 year: 2022 ident: 68481_CR34 publication-title: Sci. Rep. doi: 10.1038/s41598-022-12024-8 – volume: 52 start-page: 885 year: 1984 ident: 68481_CR13 publication-title: J. Consult. Clin. Psychol. doi: 10.1037/0022-006X.52.5.885 – volume: 17 start-page: 74 year: 2004 ident: 68481_CR8 publication-title: Cogn. Behav. Neurol. doi: 10.1097/01.wnn.0000119564.08162.46 – volume: 35 start-page: 1174 year: 2021 ident: 68481_CR45 publication-title: Clin. Neuropsychol. doi: 10.1080/13854046.2020.1730444 – volume: 44 start-page: S95 year: 2006 ident: 68481_CR43 publication-title: Med. Care doi: 10.1097/01.mlr.0000245181.96133.db – ident: 68481_CR50 – volume: 14 start-page: 496 year: 2000 ident: 68481_CR23 publication-title: Clin. Neuropsychol. doi: 10.1076/clin.14.4.496.7196 – volume: 12 start-page: 43 year: 1998 ident: 68481_CR49 publication-title: Clin. Neuropsychol. doi: 10.1076/clin.12.1.43.1726 – reference: 37886534 - Res Sq. 2023 Oct 09:rs.3.rs-3398970. doi: 10.21203/rs.3.rs-3398970/v1 |
| SSID | ssj0000529419 |
| Score | 2.4374647 |
| Snippet | The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and... The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and... Abstract The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17444 |
| SubjectTerms | 631/378/1595/1636 631/378/1595/1637 631/378/2649 631/378/2649/1310 631/553/117 692/617/375 692/699/375/132/1283 Aged Aged, 80 and over AI Fairness Attention Cognition - physiology Cognitive ability Cognitive Dysfunction - diagnosis Deep Learning Education Educational Status Female Humanities and Social Sciences Humans Male Memory Mental Status and Dementia Tests Middle Aged Mini-mental state examination multidisciplinary Neuropsychological Tests Neuropsychology Racism Relevance factor variational autoencoder Science Science (multidisciplinary) Semi-supervised deep learning Standard scores |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiPIMLchI3MBq_IrjYwtUnCoOIPVm-RURsWTR7pZV_33HdhK6PC8oN3ucjOxx5rM9_gahl8EBCvC2JiGKhginJLGcKxJszXloA3fe5WQT6vy8vbjQH26k-koxYYUeuHTccYjOq446Cb9b4Sl3CjBBB1bF26aLIkOjWukbi6nC6s20oHq8JVPz9ngNnirdJmOCNIlCnmx3PFEm7P8dyvw1WPKnE9PsiM7uobsjgsQnRfMDdCsO99HtklPy6gG6ejtfg8IWp-MabIeA-zm40C0izlSW07WjAS87DDgQe3BsX3BY2W1qDBh0gwHS4q994eGAssVyi-MUEpLfu7Jpzx273q4fok9n7z6-eU_G_ArES0E3hFmuIocHPJZ31HuvqAxOdcpqWYsgbC2tTqGHsQFfqtKWlfRcdkxE1jnGH6G9YTnEJwh7rxsrI8jJILjjuvEuwmqTwRdo0zYVolNfGz-Sj6ccGAuTD8F5a8r4GBgfk8fHbCv0am7zrVBv_FX6NA3hLJlos3MBGJMZjcn8y5gqdDQZgBnn8trwlARAALJiFXoxV8MsTEcrdojLyywDK0EAlyDzuNjLrAnXAMsoUxVqdyxpR9XdmqH_nJm-AQy3TatlhV5PRvdDrz_3xdP_0ReH6A5Ls6VWhOkjtLdZXcZnaN9_3_Tr1fM83a4Be0QvpA priority: 102 providerName: Directory of Open Access Journals |
| Title | Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias |
| URI | https://link.springer.com/article/10.1038/s41598-024-68481-w https://www.ncbi.nlm.nih.gov/pubmed/39075127 https://www.proquest.com/docview/3085747502 https://www.proquest.com/docview/3086062642 https://pubmed.ncbi.nlm.nih.gov/PMC11286895 https://doaj.org/article/debc7f1b53414c13b7951f793386fe4a |
| Volume | 14 |
| WOSCitedRecordID | wos001280635000079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoF6ReeJRXoKyMxA2sJn7EyQlRaAWHriIE0nKK_AqsWJI2u2XVf8_YeVTLoxe0kg_JZOPEY8-XmfE3CL2wGlCAUTGxjqeEaymIYkwSq2LGbGaZNjoUm5CzWTaf50XvcFv1aZXDmhgWatsY7yM_ZJ6KnYN9o6_PzomvGuWjq30JjR00AWST-JSuU1qMPhYfxeJJ3u-ViVl2uAJ75feUUU5STyRPNlv2KND2_w1r_pky-VvcNJijkzv_-yB30e0eiOI3nebcQzdcvY9udaUpL_d9Nec-8-M-unw37qzCCvsIEFa1xYsxX1EvHQ7smMNOpho3FQZoiQ3Yyu_YtmrjLwZYu8aAkvGPRUftAceWzQa74V7hf1vl3fhYL9TqAfp8cvzp7XvSl2wgRvBkTahi0jH4gRE0OjHGyERYLSupchFzy1UsVO6zGV0K5ll6L5gwTFSUO1ppyh6i3bqp3WOEjclTJRzICcuZZnlqtIMPWAp3SNIsjVAyDFxpej5zX1ZjWYa4OsvKbrBLGOwyDHa5idDL8Zqzjs3jWukjrw-jpGfiDgea9mvZT-zSOm1klWgBcICbhGkJmLWCVY9laeW4itDBoAZlvzysyisdiNDz8TRMbB-tUbVrLoIMfFwCXgWZR53yjT1hOSC9hMoIZVtqudXV7TP14lsgDwd8naVZLiL0atDgq379-108uf4xnqI96idVLAnND9Duur1wz9BN83O9WLVTtCPnMrTZFE2OjmfFx2lwfkzDfPWthHZSfDgtvvwCCiVIRQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB5VBQQXlrIZCgwSnGBUexaPfUAIKFWrlqiHIvU2zGaICHZJUqL8KX4jb8ZLFZbeekC52c_xZPKW783bEHrmDKAAq1PiPM8JN1IQzZgkTqeMucIxY00cNiFHo-L4uDxcQz_7WpiQVtnrxKioXWPDGfkWC63YOdg3-vrkOwlTo0J0tR-h0bLFvl8uwGWbvdrbhv_3OaU774_e7ZJuqgCxgmdzQjWTnsEH9LQ1mbVWZsIZWUldipQ7rlOhy5Bw53OwIDIc1AjLREW5p5UJjQ5A5V_iobNYSBWkh8OZToia8azsanNSVmzNwD6GGjbKSR4a15PFiv2LYwL-hm3_TNH8LU4bzd_Ojf9t426i6x3Qxm9aybiF1ny9ga60ozeXG2FadZfZchstt4fKMaxxiHBhXTs8HvIxzcTj2P2zr9SqcVNhgM7YAhb4it1UL8LDANvnGLwA_G3cti6Ba5NmgX3_rvi9Ux3CFNiM9ewO-nghe3AXrddN7e8jbG2Za-GBTjjODCtzazw46BTekOVFnqCsZxRlu37tYWzIRMW8AVaolrkUMJeKzKUWCXoxPHPSdis5l_pt4L-BMnQajxea6WfVKS7lvLGyyowAuMNtxowETF6BVmdFXnmuE7TZs53q1N9MnfFcgp4Ot0FxhWiUrn1zGmnAeQY8DjT3WmYfVsJKQLIZlQkqVsRgZamrd-rxl9gcHfyHIi9KkaCXvcScrevfe_Hg_J_xBF3dPfpwoA72RvsP0TUaBDqVhJabaH0-PfWP0GX7Yz6eTR9HjYDRp4uWpF9Jnp49 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB5VKSAuLGUzFBgkOIEVexaPfUAICBFRIcoBpHKazmaICHZJUqz8NX4db7xVYemtB5Sb_RxPJm_53rwNocdWAwowKgqtY0nItOCholSEVkWU2tRSbXQ9bEJMp-nhYTbbQT-7WhifVtnpxFpR29L4M_Ih9a3YGdg3MszbtIjZaPzi-HvoJ0j5SGs3TqNhkQO3qcB9Wz2fjOC_fkLI-M2H12_DdsJAaDiL1yFRVDgKH9DZRsfGGBFzq0UuVMYjZpmKuMp88p1LwJoIf2jDDeU5YY7k2jc9APW_C-tiZIB2Z5P3s0_9CY-PobE4ayt1IpoOV2AtfUUbYWHi29iH1ZY1rIcG_A3p_pmw-VvUtjaG46v_8zZeQ1daCI5fNjJzHe24Yg9dbIZybvb8HOs25-UG2oz6mjKssI99YVVYPO8zNfXC4bovaFfDVeAyxwCqsQGU8BXbpar8wwDo1xj8A_xt3jQ1gWuLssKue1f9vUvlAxhYz9XqJvp4LntwCw2KsnB3EDYmSxR3QMcto5pmidEOXHcCb4iTNAlQ3DGNNG0ndz9QZCHrjAKayobRJDCarBlNVgF62j9z3PQxOZP6lefFntL3IK8vlMvPslVp0jptRB5rDkCImZhqAWg9B31P0yR3TAVov2NB2SrGlTzlvwA96m-DSvNxKlW48qSmAbcakDrQ3G4Yv18JzQDjxkQEKN0Sia2lbt8p5l_qtungWaRJmvEAPeuk53Rd_96Lu2f_jIfoEgiQfDeZHtxDl4mX7UiEJNtHg_XyxN1HF8yP9Xy1fNCqB4yOzluUfgF1T6iG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+fair+and+interpretable+representation+of+the+clock+drawing+test+for+mitigating+low+education+and+racial+bias&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Jiaqing&rft.au=Bandyopadhyay%2C+Sabyasachi&rft.au=Kimmet%2C+Faith&rft.au=Wittmayer%2C+Jack&rft.date=2024-07-29&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=17444&rft_id=info:doi/10.1038%2Fs41598-024-68481-w&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |