Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias

The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 17444 - 13
Main Authors: Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J., Price, Catherine C., Rashidi, Parisa
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.07.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.
AbstractList Abstract The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.
The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.
The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.
The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.
ArticleNumber 17444
Author Zhang, Jiaqing
Libon, David J.
Kimmet, Faith
Khezeli, Kia
Rashidi, Parisa
Wittmayer, Jack
Bandyopadhyay, Sabyasachi
Price, Catherine C.
Author_xml – sequence: 1
  givenname: Jiaqing
  surname: Zhang
  fullname: Zhang, Jiaqing
  organization: Department of Electrical and Computer Engineering, University of Florida, Intelligent Critical Care Center (IC3), University of Florida, Perioperative Cognitive Anesthesia Network(SM), University of Florida
– sequence: 2
  givenname: Sabyasachi
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Sabyasachi
  organization: Department of Medicine, Stanford University
– sequence: 3
  givenname: Faith
  surname: Kimmet
  fullname: Kimmet, Faith
  organization: Perioperative Cognitive Anesthesia Network(SM), University of Florida, Department of Anesthesiology, College of Medicine, University of Florida
– sequence: 4
  givenname: Jack
  surname: Wittmayer
  fullname: Wittmayer, Jack
  organization: Intelligent Critical Care Center (IC3), University of Florida
– sequence: 5
  givenname: Kia
  surname: Khezeli
  fullname: Khezeli, Kia
  organization: Intelligent Critical Care Center (IC3), University of Florida
– sequence: 6
  givenname: David J.
  surname: Libon
  fullname: Libon, David J.
  organization: Department of Geriatrics and Gerontology, Department of Psychology, School of Osteopathic Medicine, New Jersey Institute for Successful Aging, Rowan University
– sequence: 7
  givenname: Catherine C.
  surname: Price
  fullname: Price, Catherine C.
  email: cep23@phhp.ufl.edu
  organization: Perioperative Cognitive Anesthesia Network(SM), University of Florida, Department of Anesthesiology, College of Medicine, University of Florida, Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida
– sequence: 8
  givenname: Parisa
  surname: Rashidi
  fullname: Rashidi, Parisa
  email: parisa.rashidi@bme.ufl.edu
  organization: Intelligent Critical Care Center (IC3), University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39075127$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEg8iA_wAFZ4sJlwM_x-IRQIBApEhc4Wx5Pe-PFay_2bFb5ezyZBJIcYh_caleVSt113BzEFKFp3hD8gWDWfyycCNW3mPK263lP2v2L5ohiLlrKKD14UB82p6WscT2CKk7Uq-aQKSwFofKoufkC1xDS1scVMsgZn5GJI_JxgrzNMJkhAMpQywJxMpNPESWHpitANiT7G43Z7GfyBGVCLmW08ZNfVWDthbRHMO7sQpt1s7HeBDR4U143L50JBU7v3pPm1_nXn2ff28sf3y7OPl-2VnAytdQwCaxe3Ek7EGutJGIcpJNGCcxHbrAwCivOoLMAklCFhWXCUQ7UDZSdNBeL7pjMWm-z35h8o5Px-raR8kqbPHkbQI8wWOnIIBgn3BI2SCWIk4qxvnPATdX6tGhtd8MGRltHkk14JPr4J_orvUrXmhDad70SVeH9nUJOf3Z1Znrji4UQTIS0K5rhvsMd7fhs_N0T6DrtcqyzmlFCcinwjHr70NI_L_crroB-AdicSsngtPXLIqtDHzTBeg6UXgKla6D0baD0vlLpE-q9-rMktpBKBccV5P-2n2H9BYN937E
CitedBy_id crossref_primary_10_1038_s41746_025_01667_2
Cites_doi 10.1093/arclin/11.3.193
10.1097/01.anes.0000296072.02527.18
10.1136/jnnp.64.5.588
10.1097/JGP.0b013e31819431d5
10.1213/XAA.0000000000001364
10.1093/ije/dyz109
10.1017/S1355617722000662
10.1213/ANE.0000000000004190
10.3233/JAD-170444
10.1609/aaai.v35i18.18008
10.3389/fneur.2022.896403
10.1159/000131895
10.1147/JRD.2019.2942287
10.3389/fpsyg.2023.1280593
10.1177/0891988710373597
10.1097/01.mlr.0000245182.36914.4a
10.1097/01.anes.0000296071.19434.1e
10.1089/lap.2018.0093
10.1016/j.neuropsychologia.2009.03.004
10.1038/s41598-020-74710-9
10.1002/14651858.CD010783.pub3
10.1097/01.JGP.0000192478.82189.a8
10.1038/s41598-023-34518-9
10.1007/s13311-021-01180-w
10.1213/ANE.0000000000004212
10.3390/s21155239
10.3233/JAD-201249
10.1016/0022-3956(75)90026-6
10.1097/01.ASM.0000935232.57361.7f
10.1016/j.jalz.2016.03.001
10.1093/arclin/8.5.405
10.1037/neu0000141
10.1016/0003-4975(95)00076-W
10.1177/1529100620920576
10.1016/j.jclinane.2020.109724
10.1046/j.1532-5415.2001.49185.x
10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U
10.1007/s10115-011-0463-8
10.1016/j.jalz.2019.01.010
10.1037/0894-4105.7.3.273
10.1080/13854040590945210
10.1038/s41598-022-12024-8
10.1037/0022-006X.52.5.885
10.1097/01.wnn.0000119564.08162.46
10.1080/13854046.2020.1730444
10.1097/01.mlr.0000245181.96133.db
10.1076/clin.14.4.496.7196
10.1076/clin.12.1.43.1726
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-68481-w
DatabaseName Springer Nature Link
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Education
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_debc7f1b53414c13b7951f793386fe4a
PMC11286895
39075127
10_1038_s41598_024_68481_w
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: #1750192
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: National Institutes of Health
  grantid: R01AG055337
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Science Foundation
  grantid: #1750192
– fundername: NIA NIH HHS
  grantid: K07 AG066813
– fundername: NIH HHS
  grantid: R01AG055337
– fundername: NIA NIH HHS
  grantid: R01 AG055337
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-2a37e3e3e067cb1ccc715db7f7a9504d4a05a90943e6cee712905c35f24e2fb23
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001280635000079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:24:12 EST 2025
Tue Nov 04 02:06:14 EST 2025
Fri Sep 05 13:47:13 EDT 2025
Tue Oct 07 07:47:01 EDT 2025
Mon Jul 21 06:05:04 EDT 2025
Tue Nov 18 21:31:48 EST 2025
Sat Nov 29 02:13:41 EST 2025
Fri Feb 21 02:37:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mini-mental state examination
Semi-supervised deep learning
Relevance factor variational autoencoder
AI Fairness
Memory
Attention
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-2a37e3e3e067cb1ccc715db7f7a9504d4a05a90943e6cee712905c35f24e2fb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/debc7f1b53414c13b7951f793386fe4a
PMID 39075127
PQID 3085747502
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_debc7f1b53414c13b7951f793386fe4a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11286895
proquest_miscellaneous_3086062642
proquest_journals_3085747502
pubmed_primary_39075127
crossref_citationtrail_10_1038_s41598_024_68481_w
crossref_primary_10_1038_s41598_024_68481_w
springer_journals_10_1038_s41598_024_68481_w
PublicationCentury 2000
PublicationDate 2024-07-29
PublicationDateYYYYMMDD 2024-07-29
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kim, M., Wang, Y., Sahu, P. & Pavlovic, V. Relevance factor vae: Learning and identifying disentangled factors. arXiv preprint arXiv:1902.01568 (2019).
SatzPBrain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theoryNeuropsychology1993727310.1037/0894-4105.7.3.273
SternYCognitive reserveNeuropsychologia2009472015202819467352273959110.1016/j.neuropsychologia.2009.03.004
PriceCColeDJAdding ‘formal years of education’ to patients’ preoperative screeningASA Monit.2023871410.1097/01.ASM.0000935232.57361.7f
BandyopadhyaySExplainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed handsSci. Rep.20231373842023NatSR..13.7384B1:CAS:528:DC%2BB3sXps12htrw%3D371496701016416110.1038/s41598-023-34518-9
LibonDJSwensonRABarnoskiEJSandsLPClock drawing as an assessment tool for dementiaArch. Clin. Neuropsychol.199384054151:STN:280:DC%2BD3srhtlyqtQ%3D%3D1458971010.1093/arclin/8.5.405
MatallanaDThe relationship between education level and mini-mental state examination domains among older Mexican AmericansJ. Geriatr. Psychiatry Neurol.2011249182053896910.1177/0891988710373597
BenedictRHSchretlenDGroningerLBrandtJHopkins verbal learning test–revised: Normative data and analysis of inter-form and test-retest reliabilityClin. Neuropsychol.199812435510.1076/clin.12.1.43.1726
AminiSFeasibility and rationale for incorporating frailty and cognitive screening protocols in a preoperative anesthesia clinicAnesth. Analg.201912983031425227692724510.1213/ANE.0000000000004190
LövdénMFratiglioniLGlymourMMLindenbergerUTucker-DrobEMEducation and cognitive functioning across the life spanPsychol. Sci. Public Interest20202164132772803742537710.1177/1529100620920576
LibonDJMalamutBLSwensonRSandsLPCloudBSFurther analyses of clock drawings among demented and nondemented older subjectsArch. Clin. Neuropsychol.1996111932051:STN:280:DC%2BD3srht1Wquw%3D%3D1458892310.1093/arclin/11.3.193
WigginsMEProof of concept: Digital clock drawing behaviors prior to transcatheter aortic valve replacement may predict length of hospital stay and cost of careExplor. Med.20212110342632578276939
DavoudiANormative references for graphomotor and latency digital clock drawing metrics for adults age 55 and older: Operationalizing the production of a normal appearing clockJ. Alzheimer’s Dis.202182597010.3233/JAD-201249
RoyallDRCordesJAPolkMCLOX: An executive clock drawing taskJ. Neurol. Neurosurg. Psychiatry1998645885941:STN:280:DyaK1c3lvVKiuw%3D%3D9598672217006910.1136/jnnp.64.5.588
DoransNJKulickEDifferential item functioning on the mini-mental state examination: An application of the Mantel-Haenszel and standardization proceduresMed. Care200644S107S1141706081710.1097/01.mlr.0000245182.36914.4a
Association, A. s. 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia12, 459–509 (2016).
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Advances in neural information processing systems30 (2017).
ShulmanKIClock-drawing: Is it the ideal cognitive screening test?Int. J. Geriatr. Psychiatry2000155485611:STN:280:DC%2BD3cvjsVahtw%3D%3D1086192310.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U
MahoneySTTawfik-SextonDStrasslePDFarrellTMDukeMCEffects of education and health literacy on postoperative hospital visits in bariatric surgeryJ. Laparoendosc. Adv. Surg. Tech.2018281100110410.1089/lap.2018.0093
TombaughTNKozakJReesLNormative data stratified by age and education for two measures of verbal fluency: FAS and animal namingArch. Clin. Neuropsychol.1999141671771:STN:280:DC%2BD3srht1GlsQ%3D%3D14590600
Wechsler, D. Wechsler adult intelligence scale. Frontiers in Psychology (1955).
FreedmanVAKasperJDCohort profile: The national health and aging trends study (NHATS)Int. J. Epidemiol.20194810441045g31237935693403010.1093/ije/dyz109
BandyopadhyaySVariational autoencoder provides proof of concept that compressing CDT to extremely low-dimensional space retains its ability of distinguishing dementiaSci. Rep.20221211010.1038/s41598-022-12024-8
Arevalo-RodriguezIMini-mental state examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI)Cochrane Database Syst. Rev.202110.1002/14651858.CD010783.pub3343133318406467
Ortman, J. M., Velkoff, V. A. & Hogan, H. An aging nation: the older population in the United States. (2014).
PiersRJAge and graphomotor decision making assessed with the digital clock drawing test: The Framingham Heart StudyJ. Alzheimer’s Dis.2017601611162010.3233/JAD-170444
CosentinoSJeffersonAChuteDLKaplanELibonDJClock drawing errors in dementia: neuropsychological and neuroanatomical considerationsCogn. Behav. Neurol.20041774841545351510.1097/01.wnn.0000119564.08162.46
Jiang, H. et al. Mobile-based Clock Drawing Test for Detecting Early Signs of Dementia. Proceedings of the AAAI Conference on Artificial Intelligence 16048–16050 (2021).
ParkILeeUAutomatic, qualitative scoring of the clock drawing test (CDT) based on u-net CNN and mobile sensor dataSensors20212152392021Senso..21.5239P34372476834872310.3390/s21155239
RamirezMTeresiJAHolmesDGurlandBLantiguaRDifferential item functioning (DIF) and the mini-mental state examination (MMSE): Overview, sample, and issues of translationMed. Care200644S95S1061706084010.1097/01.mlr.0000245181.96133.db
AriasFRapid in-person cognitive screening in the preoperative setting: Test considerations and recommendations from the society for perioperative assessment and quality improvement (SPAQI)J. Clin. Anesth.20206210972432018131840242010.1016/j.jclinane.2020.109724
AriasFPilot study: Neurocognitive disorders and colonoscopy in older adultsAnesth. Analg.2019129e89e9331425226677426110.1213/ANE.0000000000004212
HamletKPerioperative multidisciplinary delirium prevention: A longitudinal case reportA&A Pract.202115e0136410.1213/XAA.0000000000001364
Association, A. s. 2019 Alzheimer’s disease facts and figures. Alzheimer’s & dementia15, 321–387 (2019).
BaronaAReynoldsCRChastainRA demographically based index of premorbid intelligence for the WAIS—RJ. Consult. Clin. Psychol.19845288510.1037/0022-006X.52.5.885
Paganini-HillAClarkLJHendersonVWBirgeSJClock drawing: Analysis in a retirement communityJ. Am. Geriatr. Soc.2001499419471:STN:280:DC%2BD3MvosVyjtg%3D%3D1152748610.1046/j.1532-5415.2001.49185.x
ZahodneLBSternYManlyJJDiffering effects of education on cognitive decline in diverse elders with low versus high educational attainmentNeuropsychology2015296492522219910.1037/neu0000141
FreedmanMLeachLKaplanEShulmanKDelisDCClock drawing: A neuropsychological analysis1994Oxford University Press
NewmanMFPredictors of cognitive decline after cardiac operationAnn. Thorac. Surg.199559132613301:STN:280:DyaK2M3ltFCrtA%3D%3D773376210.1016/0003-4975(95)00076-W
SteinbergBABieliauskasLASmithGEIvnikRJMayo’s older Americans normative studies: Age-and IQ-adjusted norms for the trail-making test, the stroop test, and MAE controlled oral word association testClin Neuropsychol.2005193293771612053510.1080/13854040590945210
PriceCCThe new frontier of perioperative cognitive medicine for Alzheimer’s disease and related dementiasNeurotherapeutics20231913214210.1007/s13311-021-01180-w
PerneczkyRMapping scores onto stages: Mini-mental state examination and clinical dementia ratingAm. J. Geriatr. Psychiatry2006141391441647397810.1097/01.JGP.0000192478.82189.a8
ChenSAutomatic dementia screening and scoring by applying deep learning on clock-drawing testsSci. Rep.202010208542020NatSR..1020854C1:CAS:528:DC%2BB3cXisFWlurjJ10.1038/s41598-020-74710-9332577447704614
PriceCCGarvanCWMonkTGType and severity of cognitive decline in older adults after noncardiac surgeryJ. Am. Soc. Anesthesiol.200810881710.1097/01.anes.0000296072.02527.18
MonkTGPredictors of cognitive dysfunction after major noncardiac surgeryJ. Am. Soc. Anesthesiol.2008108183010.1097/01.anes.0000296071.19434.1e
Program, G. S. V. Q. I. Optimal Resources for Geriatric Surgery: 2019 Standards. (2019).
FolsteinMFFolsteinSEMcHughPR“Mini-mental state”: A practical method for grading the cognitive state of patients for the clinicianJ. Psychiatry. Research1975121891981:STN:280:DyaE28%2FntFKjtw%3D%3D10.1016/0022-3956(75)90026-6
BellamyRKAI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic biasIBM J. Res. Dev.201910.1147/JRD.2019.2942287
Sherrill-PattisonSDondersJThompsonEInfluence of demographic variables on neuropsychological test performance after traumatic brain injuryClin. Neuropsychol.2000144965031:STN:280:DC%2BD3M7mt1KrtQ%3D%3D1126271910.1076/clin.14.4.496.7196
JakAJQuantification of five neuropsychological approaches to defining mild cognitive impairmentAm. J. Geriatr. Psychiatry20091736837519390294274317510.1097/JGP.0b013e31819431d5
Von GuntenAClock-drawing test performance in the normal elderly and its dependence on age and educationEur. Neurol.200860737810.1159/000131895
RyanJNormative performance of older individuals on the hopkins verbal learning test-revised (HVLT-R) according to ethno-racial group, gender, age and education levelClin. Neuropsychol.202135117411903210061910.1080/13854046.2020.1730444
LibonDJUsing digital assessment technology to detect neuropsychological problems in primary care settingsFront. Psychol.2023141280593380461261069333210.3389/fpsyg.2023.1280593
MaestriGCultural influence on clock drawing test: A systematic reviewJ. Int. Neuropsychol. Soc.2022297047143642657910.1017/S1355617722000662
KamiranFCaldersTData preprocessing techniques for classification without discriminationKnowl. Inf. Syst.20123313310.1007/s10115-011-0463-8
SatoKNiimiYManoTIwataAIwatsuboTAutomated evaluation of conventional clock-drawing test using deep neural network: Potential as a mass screening tool to detect individuals with cognitive declineFront. Neurol.20221389640389640335592474911069310.3389/fneur.2022.896403
S Cosentino (68481_CR8) 2004; 17
68481_CR22
A Von Gunten (68481_CR26) 2008; 60
ST Mahoney (68481_CR20) 2018; 28
CC Price (68481_CR53) 2008; 108
DJ Libon (68481_CR10) 2023; 14
K Hamlet (68481_CR37) 2021; 15
ME Wiggins (68481_CR11) 2021; 2
K Sato (68481_CR31) 2022; 13
I Park (68481_CR33) 2021; 21
AJ Jak (68481_CR52) 2009; 17
LB Zahodne (68481_CR14) 2015; 29
TG Monk (68481_CR18) 2008; 108
VA Freedman (68481_CR54) 2019; 48
S Bandyopadhyay (68481_CR34) 2022; 12
M Ramirez (68481_CR43) 2006; 44
J Ryan (68481_CR45) 2021; 35
68481_CR32
68481_CR35
F Arias (68481_CR4) 2020; 62
RJ Piers (68481_CR28) 2017; 60
68481_CR40
DJ Libon (68481_CR6) 1996; 11
DJ Libon (68481_CR9) 1993; 8
A Davoudi (68481_CR27) 2021; 82
RH Benedict (68481_CR49) 1998; 12
G Maestri (68481_CR24) 2022; 29
M Freedman (68481_CR7) 1994
M Lövdén (68481_CR17) 2020; 21
S Sherrill-Pattison (68481_CR23) 2000; 14
A Barona (68481_CR13) 1984; 52
C Price (68481_CR21) 2023; 87
CC Price (68481_CR36) 2023; 19
MF Newman (68481_CR19) 1995; 59
MF Folstein (68481_CR48) 1975; 12
F Arias (68481_CR38) 2019; 129
Y Stern (68481_CR15) 2009; 47
S Amini (68481_CR12) 2019; 129
68481_CR50
KI Shulman (68481_CR5) 2000; 15
D Matallana (68481_CR42) 2011; 24
NJ Dorans (68481_CR44) 2006; 44
DR Royall (68481_CR41) 1998; 64
I Arevalo-Rodriguez (68481_CR51) 2021
BA Steinberg (68481_CR47) 2005; 19
P Satz (68481_CR16) 1993; 7
68481_CR2
68481_CR1
S Bandyopadhyay (68481_CR29) 2023; 13
RK Bellamy (68481_CR39) 2019
R Perneczky (68481_CR55) 2006; 14
F Kamiran (68481_CR56) 2012; 33
TN Tombaugh (68481_CR46) 1999; 14
68481_CR3
A Paganini-Hill (68481_CR25) 2001; 49
S Chen (68481_CR30) 2020; 10
37886534 - Res Sq. 2023 Oct 09:rs.3.rs-3398970. doi: 10.21203/rs.3.rs-3398970/v1
References_xml – reference: Jiang, H. et al. Mobile-based Clock Drawing Test for Detecting Early Signs of Dementia. Proceedings of the AAAI Conference on Artificial Intelligence 16048–16050 (2021).
– reference: Paganini-HillAClarkLJHendersonVWBirgeSJClock drawing: Analysis in a retirement communityJ. Am. Geriatr. Soc.2001499419471:STN:280:DC%2BD3MvosVyjtg%3D%3D1152748610.1046/j.1532-5415.2001.49185.x
– reference: DavoudiANormative references for graphomotor and latency digital clock drawing metrics for adults age 55 and older: Operationalizing the production of a normal appearing clockJ. Alzheimer’s Dis.202182597010.3233/JAD-201249
– reference: Arevalo-RodriguezIMini-mental state examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI)Cochrane Database Syst. Rev.202110.1002/14651858.CD010783.pub3343133318406467
– reference: Ortman, J. M., Velkoff, V. A. & Hogan, H. An aging nation: the older population in the United States. (2014).
– reference: PriceCColeDJAdding ‘formal years of education’ to patients’ preoperative screeningASA Monit.2023871410.1097/01.ASM.0000935232.57361.7f
– reference: MahoneySTTawfik-SextonDStrasslePDFarrellTMDukeMCEffects of education and health literacy on postoperative hospital visits in bariatric surgeryJ. Laparoendosc. Adv. Surg. Tech.2018281100110410.1089/lap.2018.0093
– reference: BandyopadhyaySVariational autoencoder provides proof of concept that compressing CDT to extremely low-dimensional space retains its ability of distinguishing dementiaSci. Rep.20221211010.1038/s41598-022-12024-8
– reference: LibonDJMalamutBLSwensonRSandsLPCloudBSFurther analyses of clock drawings among demented and nondemented older subjectsArch. Clin. Neuropsychol.1996111932051:STN:280:DC%2BD3srht1Wquw%3D%3D1458892310.1093/arclin/11.3.193
– reference: PriceCCThe new frontier of perioperative cognitive medicine for Alzheimer’s disease and related dementiasNeurotherapeutics20231913214210.1007/s13311-021-01180-w
– reference: Von GuntenAClock-drawing test performance in the normal elderly and its dependence on age and educationEur. Neurol.200860737810.1159/000131895
– reference: KamiranFCaldersTData preprocessing techniques for classification without discriminationKnowl. Inf. Syst.20123313310.1007/s10115-011-0463-8
– reference: LibonDJSwensonRABarnoskiEJSandsLPClock drawing as an assessment tool for dementiaArch. Clin. Neuropsychol.199384054151:STN:280:DC%2BD3srhtlyqtQ%3D%3D1458971010.1093/arclin/8.5.405
– reference: Program, G. S. V. Q. I. Optimal Resources for Geriatric Surgery: 2019 Standards. (2019).
– reference: LibonDJUsing digital assessment technology to detect neuropsychological problems in primary care settingsFront. Psychol.2023141280593380461261069333210.3389/fpsyg.2023.1280593
– reference: SatoKNiimiYManoTIwataAIwatsuboTAutomated evaluation of conventional clock-drawing test using deep neural network: Potential as a mass screening tool to detect individuals with cognitive declineFront. Neurol.20221389640389640335592474911069310.3389/fneur.2022.896403
– reference: PriceCCGarvanCWMonkTGType and severity of cognitive decline in older adults after noncardiac surgeryJ. Am. Soc. Anesthesiol.200810881710.1097/01.anes.0000296072.02527.18
– reference: AriasFRapid in-person cognitive screening in the preoperative setting: Test considerations and recommendations from the society for perioperative assessment and quality improvement (SPAQI)J. Clin. Anesth.20206210972432018131840242010.1016/j.jclinane.2020.109724
– reference: SatzPBrain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theoryNeuropsychology1993727310.1037/0894-4105.7.3.273
– reference: SteinbergBABieliauskasLASmithGEIvnikRJMayo’s older Americans normative studies: Age-and IQ-adjusted norms for the trail-making test, the stroop test, and MAE controlled oral word association testClin Neuropsychol.2005193293771612053510.1080/13854040590945210
– reference: AminiSFeasibility and rationale for incorporating frailty and cognitive screening protocols in a preoperative anesthesia clinicAnesth. Analg.201912983031425227692724510.1213/ANE.0000000000004190
– reference: Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Advances in neural information processing systems30 (2017).
– reference: BaronaAReynoldsCRChastainRA demographically based index of premorbid intelligence for the WAIS—RJ. Consult. Clin. Psychol.19845288510.1037/0022-006X.52.5.885
– reference: PiersRJAge and graphomotor decision making assessed with the digital clock drawing test: The Framingham Heart StudyJ. Alzheimer’s Dis.2017601611162010.3233/JAD-170444
– reference: ShulmanKIClock-drawing: Is it the ideal cognitive screening test?Int. J. Geriatr. Psychiatry2000155485611:STN:280:DC%2BD3cvjsVahtw%3D%3D1086192310.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U
– reference: RyanJNormative performance of older individuals on the hopkins verbal learning test-revised (HVLT-R) according to ethno-racial group, gender, age and education levelClin. Neuropsychol.202135117411903210061910.1080/13854046.2020.1730444
– reference: AriasFPilot study: Neurocognitive disorders and colonoscopy in older adultsAnesth. Analg.2019129e89e9331425226677426110.1213/ANE.0000000000004212
– reference: Kim, M., Wang, Y., Sahu, P. & Pavlovic, V. Relevance factor vae: Learning and identifying disentangled factors. arXiv preprint arXiv:1902.01568 (2019).
– reference: Association, A. s. 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia12, 459–509 (2016).
– reference: ZahodneLBSternYManlyJJDiffering effects of education on cognitive decline in diverse elders with low versus high educational attainmentNeuropsychology2015296492522219910.1037/neu0000141
– reference: BellamyRKAI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic biasIBM J. Res. Dev.201910.1147/JRD.2019.2942287
– reference: BenedictRHSchretlenDGroningerLBrandtJHopkins verbal learning test–revised: Normative data and analysis of inter-form and test-retest reliabilityClin. Neuropsychol.199812435510.1076/clin.12.1.43.1726
– reference: PerneczkyRMapping scores onto stages: Mini-mental state examination and clinical dementia ratingAm. J. Geriatr. Psychiatry2006141391441647397810.1097/01.JGP.0000192478.82189.a8
– reference: BandyopadhyaySExplainable semi-supervised deep learning shows that dementia is associated with small, avocado-shaped clocks with irregularly placed handsSci. Rep.20231373842023NatSR..13.7384B1:CAS:528:DC%2BB3sXps12htrw%3D371496701016416110.1038/s41598-023-34518-9
– reference: WigginsMEProof of concept: Digital clock drawing behaviors prior to transcatheter aortic valve replacement may predict length of hospital stay and cost of careExplor. Med.20212110342632578276939
– reference: DoransNJKulickEDifferential item functioning on the mini-mental state examination: An application of the Mantel-Haenszel and standardization proceduresMed. Care200644S107S1141706081710.1097/01.mlr.0000245182.36914.4a
– reference: FreedmanVAKasperJDCohort profile: The national health and aging trends study (NHATS)Int. J. Epidemiol.20194810441045g31237935693403010.1093/ije/dyz109
– reference: ParkILeeUAutomatic, qualitative scoring of the clock drawing test (CDT) based on u-net CNN and mobile sensor dataSensors20212152392021Senso..21.5239P34372476834872310.3390/s21155239
– reference: MaestriGCultural influence on clock drawing test: A systematic reviewJ. Int. Neuropsychol. Soc.2022297047143642657910.1017/S1355617722000662
– reference: ChenSAutomatic dementia screening and scoring by applying deep learning on clock-drawing testsSci. Rep.202010208542020NatSR..1020854C1:CAS:528:DC%2BB3cXisFWlurjJ10.1038/s41598-020-74710-9332577447704614
– reference: FreedmanMLeachLKaplanEShulmanKDelisDCClock drawing: A neuropsychological analysis1994Oxford University Press
– reference: Association, A. s. 2019 Alzheimer’s disease facts and figures. Alzheimer’s & dementia15, 321–387 (2019).
– reference: JakAJQuantification of five neuropsychological approaches to defining mild cognitive impairmentAm. J. Geriatr. Psychiatry20091736837519390294274317510.1097/JGP.0b013e31819431d5
– reference: Sherrill-PattisonSDondersJThompsonEInfluence of demographic variables on neuropsychological test performance after traumatic brain injuryClin. Neuropsychol.2000144965031:STN:280:DC%2BD3M7mt1KrtQ%3D%3D1126271910.1076/clin.14.4.496.7196
– reference: FolsteinMFFolsteinSEMcHughPR“Mini-mental state”: A practical method for grading the cognitive state of patients for the clinicianJ. Psychiatry. Research1975121891981:STN:280:DyaE28%2FntFKjtw%3D%3D10.1016/0022-3956(75)90026-6
– reference: RoyallDRCordesJAPolkMCLOX: An executive clock drawing taskJ. Neurol. Neurosurg. Psychiatry1998645885941:STN:280:DyaK1c3lvVKiuw%3D%3D9598672217006910.1136/jnnp.64.5.588
– reference: CosentinoSJeffersonAChuteDLKaplanELibonDJClock drawing errors in dementia: neuropsychological and neuroanatomical considerationsCogn. Behav. Neurol.20041774841545351510.1097/01.wnn.0000119564.08162.46
– reference: Wechsler, D. Wechsler adult intelligence scale. Frontiers in Psychology (1955).
– reference: HamletKPerioperative multidisciplinary delirium prevention: A longitudinal case reportA&A Pract.202115e0136410.1213/XAA.0000000000001364
– reference: TombaughTNKozakJReesLNormative data stratified by age and education for two measures of verbal fluency: FAS and animal namingArch. Clin. Neuropsychol.1999141671771:STN:280:DC%2BD3srht1GlsQ%3D%3D14590600
– reference: MonkTGPredictors of cognitive dysfunction after major noncardiac surgeryJ. Am. Soc. Anesthesiol.2008108183010.1097/01.anes.0000296071.19434.1e
– reference: SternYCognitive reserveNeuropsychologia2009472015202819467352273959110.1016/j.neuropsychologia.2009.03.004
– reference: RamirezMTeresiJAHolmesDGurlandBLantiguaRDifferential item functioning (DIF) and the mini-mental state examination (MMSE): Overview, sample, and issues of translationMed. Care200644S95S1061706084010.1097/01.mlr.0000245181.96133.db
– reference: NewmanMFPredictors of cognitive decline after cardiac operationAnn. Thorac. Surg.199559132613301:STN:280:DyaK2M3ltFCrtA%3D%3D773376210.1016/0003-4975(95)00076-W
– reference: LövdénMFratiglioniLGlymourMMLindenbergerUTucker-DrobEMEducation and cognitive functioning across the life spanPsychol. Sci. Public Interest20202164132772803742537710.1177/1529100620920576
– reference: MatallanaDThe relationship between education level and mini-mental state examination domains among older Mexican AmericansJ. Geriatr. Psychiatry Neurol.2011249182053896910.1177/0891988710373597
– volume: 11
  start-page: 193
  year: 1996
  ident: 68481_CR6
  publication-title: Arch. Clin. Neuropsychol.
  doi: 10.1093/arclin/11.3.193
– volume: 108
  start-page: 8
  year: 2008
  ident: 68481_CR53
  publication-title: J. Am. Soc. Anesthesiol.
  doi: 10.1097/01.anes.0000296072.02527.18
– ident: 68481_CR3
– volume: 64
  start-page: 588
  year: 1998
  ident: 68481_CR41
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.64.5.588
– ident: 68481_CR35
– volume: 17
  start-page: 368
  year: 2009
  ident: 68481_CR52
  publication-title: Am. J. Geriatr. Psychiatry
  doi: 10.1097/JGP.0b013e31819431d5
– volume: 15
  start-page: e01364
  year: 2021
  ident: 68481_CR37
  publication-title: A&A Pract.
  doi: 10.1213/XAA.0000000000001364
– volume: 48
  start-page: 1044
  year: 2019
  ident: 68481_CR54
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyz109
– volume: 29
  start-page: 704
  year: 2022
  ident: 68481_CR24
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617722000662
– volume: 129
  start-page: 830
  year: 2019
  ident: 68481_CR12
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000004190
– volume: 60
  start-page: 1611
  year: 2017
  ident: 68481_CR28
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-170444
– ident: 68481_CR22
– ident: 68481_CR32
  doi: 10.1609/aaai.v35i18.18008
– volume: 13
  start-page: 896403
  year: 2022
  ident: 68481_CR31
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2022.896403
– volume: 60
  start-page: 73
  year: 2008
  ident: 68481_CR26
  publication-title: Eur. Neurol.
  doi: 10.1159/000131895
– year: 2019
  ident: 68481_CR39
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2019.2942287
– volume: 14
  start-page: 1280593
  year: 2023
  ident: 68481_CR10
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2023.1280593
– volume: 24
  start-page: 9
  year: 2011
  ident: 68481_CR42
  publication-title: J. Geriatr. Psychiatry Neurol.
  doi: 10.1177/0891988710373597
– volume: 44
  start-page: S107
  year: 2006
  ident: 68481_CR44
  publication-title: Med. Care
  doi: 10.1097/01.mlr.0000245182.36914.4a
– volume: 108
  start-page: 18
  year: 2008
  ident: 68481_CR18
  publication-title: J. Am. Soc. Anesthesiol.
  doi: 10.1097/01.anes.0000296071.19434.1e
– volume: 28
  start-page: 1100
  year: 2018
  ident: 68481_CR20
  publication-title: J. Laparoendosc. Adv. Surg. Tech.
  doi: 10.1089/lap.2018.0093
– volume: 14
  start-page: 167
  year: 1999
  ident: 68481_CR46
  publication-title: Arch. Clin. Neuropsychol.
– volume: 47
  start-page: 2015
  year: 2009
  ident: 68481_CR15
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2009.03.004
– volume: 10
  start-page: 20854
  year: 2020
  ident: 68481_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-74710-9
– year: 2021
  ident: 68481_CR51
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD010783.pub3
– volume: 14
  start-page: 139
  year: 2006
  ident: 68481_CR55
  publication-title: Am. J. Geriatr. Psychiatry
  doi: 10.1097/01.JGP.0000192478.82189.a8
– volume: 13
  start-page: 7384
  year: 2023
  ident: 68481_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-34518-9
– volume: 19
  start-page: 132
  year: 2023
  ident: 68481_CR36
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-021-01180-w
– volume: 129
  start-page: e89
  year: 2019
  ident: 68481_CR38
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000004212
– volume: 21
  start-page: 5239
  year: 2021
  ident: 68481_CR33
  publication-title: Sensors
  doi: 10.3390/s21155239
– volume: 82
  start-page: 59
  year: 2021
  ident: 68481_CR27
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-201249
– volume: 12
  start-page: 189
  year: 1975
  ident: 68481_CR48
  publication-title: J. Psychiatry. Research
  doi: 10.1016/0022-3956(75)90026-6
– volume: 87
  start-page: 1
  year: 2023
  ident: 68481_CR21
  publication-title: ASA Monit.
  doi: 10.1097/01.ASM.0000935232.57361.7f
– ident: 68481_CR1
  doi: 10.1016/j.jalz.2016.03.001
– volume: 8
  start-page: 405
  year: 1993
  ident: 68481_CR9
  publication-title: Arch. Clin. Neuropsychol.
  doi: 10.1093/arclin/8.5.405
– volume: 29
  start-page: 649
  year: 2015
  ident: 68481_CR14
  publication-title: Neuropsychology
  doi: 10.1037/neu0000141
– volume: 59
  start-page: 1326
  year: 1995
  ident: 68481_CR19
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/0003-4975(95)00076-W
– volume: 21
  start-page: 6
  year: 2020
  ident: 68481_CR17
  publication-title: Psychol. Sci. Public Interest
  doi: 10.1177/1529100620920576
– volume: 62
  start-page: 109724
  year: 2020
  ident: 68481_CR4
  publication-title: J. Clin. Anesth.
  doi: 10.1016/j.jclinane.2020.109724
– volume: 49
  start-page: 941
  year: 2001
  ident: 68481_CR25
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1046/j.1532-5415.2001.49185.x
– volume: 15
  start-page: 548
  year: 2000
  ident: 68481_CR5
  publication-title: Int. J. Geriatr. Psychiatry
  doi: 10.1002/1099-1166(200006)15:6<548::AID-GPS242>3.0.CO;2-U
– volume-title: Clock drawing: A neuropsychological analysis
  year: 1994
  ident: 68481_CR7
– volume: 33
  start-page: 1
  year: 2012
  ident: 68481_CR56
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-011-0463-8
– ident: 68481_CR2
  doi: 10.1016/j.jalz.2019.01.010
– volume: 7
  start-page: 273
  year: 1993
  ident: 68481_CR16
  publication-title: Neuropsychology
  doi: 10.1037/0894-4105.7.3.273
– volume: 19
  start-page: 329
  year: 2005
  ident: 68481_CR47
  publication-title: Clin Neuropsychol.
  doi: 10.1080/13854040590945210
– volume: 2
  start-page: 110
  year: 2021
  ident: 68481_CR11
  publication-title: Explor. Med.
– ident: 68481_CR40
– volume: 12
  start-page: 1
  year: 2022
  ident: 68481_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12024-8
– volume: 52
  start-page: 885
  year: 1984
  ident: 68481_CR13
  publication-title: J. Consult. Clin. Psychol.
  doi: 10.1037/0022-006X.52.5.885
– volume: 17
  start-page: 74
  year: 2004
  ident: 68481_CR8
  publication-title: Cogn. Behav. Neurol.
  doi: 10.1097/01.wnn.0000119564.08162.46
– volume: 35
  start-page: 1174
  year: 2021
  ident: 68481_CR45
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854046.2020.1730444
– volume: 44
  start-page: S95
  year: 2006
  ident: 68481_CR43
  publication-title: Med. Care
  doi: 10.1097/01.mlr.0000245181.96133.db
– ident: 68481_CR50
– volume: 14
  start-page: 496
  year: 2000
  ident: 68481_CR23
  publication-title: Clin. Neuropsychol.
  doi: 10.1076/clin.14.4.496.7196
– volume: 12
  start-page: 43
  year: 1998
  ident: 68481_CR49
  publication-title: Clin. Neuropsychol.
  doi: 10.1076/clin.12.1.43.1726
– reference: 37886534 - Res Sq. 2023 Oct 09:rs.3.rs-3398970. doi: 10.21203/rs.3.rs-3398970/v1
SSID ssj0000529419
Score 2.437546
Snippet The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and...
The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual's cognitive ability. In this study, we developed a Fair and...
Abstract The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17444
SubjectTerms 631/378/1595/1636
631/378/1595/1637
631/378/2649
631/378/2649/1310
631/553/117
692/617/375
692/699/375/132/1283
Aged
Aged, 80 and over
AI Fairness
Attention
Cognition - physiology
Cognitive ability
Cognitive Dysfunction - diagnosis
Deep Learning
Education
Educational Status
Female
Humanities and Social Sciences
Humans
Male
Memory
Mental Status and Dementia Tests
Middle Aged
Mini-mental state examination
multidisciplinary
Neuropsychological Tests
Neuropsychology
Racism
Relevance factor variational autoencoder
Science
Science (multidisciplinary)
Semi-supervised deep learning
Standard scores
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELaggMSFpWyBgozEDaI-by_OCbFVHKDqAaTeLNtxIOKRlOSVp_57Zhwn1WPpBeWWTBInnvF8npWQZ5WWzjMX8qAdbFCCqnPntM1L4CY0jalgY9eSD8XhoT4-Lo-SwW1IYZXTmhgX6qrzaCPfF1iKXYJ-4y9PfuTYNQq9q6mFxmVyBZANw5Cuj_xotrGgF0uyMuXKLITeH0BfYU4Zl_kSC8nnmy19FMv2_w1r_hky-ZvfNKqjg5v_-yG3yI0EROmrkXNuk0uh3SXXxtaUZ7vYzTlFftwhZ2_nzCpqKXqAqG0r2szxim4VaKyOOWUytbSrKUBL6kFXfqNVbzd4M8DaNQWUTL83Y2kPOLfqNjRM74rP7S2a8alr7HCXfD549-nN-zy1bMi9kmydcyuKIOAAJegd894XTFWuqAtbqoWspF0oW2I0Y1iCei7QCqa8UDWXgdeOi3tkp-3a8IBQK2RgEvN0YcsTZKV9ibQOWCnwquIZYdPEGZ_qmWNbjZWJfnWhzTjZBibbxMk2m4w8n-85Gat5XEj9GvlhpsRK3PFE138xSbBNFZwvauYUwAHpmXAFYNYaVj2hl3WQNiN7ExuYtDwM5pwHMvJ0vgyCjd4a24buNNLA5hLwKtDcH5lvHokoQYoYLzKit9hya6jbV9rmayweDvhaL3WpMvJi4uDzcf37Xzy8-DMekeschWpR5LzcIzvr_jQ8Jlf9z3Uz9E-iVP4C1HlBJQ
  priority: 102
  providerName: ProQuest
Title Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias
URI https://link.springer.com/article/10.1038/s41598-024-68481-w
https://www.ncbi.nlm.nih.gov/pubmed/39075127
https://www.proquest.com/docview/3085747502
https://www.proquest.com/docview/3086062642
https://pubmed.ncbi.nlm.nih.gov/PMC11286895
https://doaj.org/article/debc7f1b53414c13b7951f793386fe4a
Volume 14
WOSCitedRecordID wos001280635000079&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgFyQuiDeBpTISN4g2ftX2kYVdgcRWEQKpnCzbcbQRJUVtl2r_PWPnwZbnBVXyIZlUjmec-WzPfIPQs0px54kLeVAOFihB1LlzyuYarClujYlgU9WSd3I2U_O5Li-V-ooxYR09cDdwh1VwXtbECfjcck-Yk4AJarAqpqZ14AkaFVJfWkx1rN5Uc6L7LJmCqcM1eKqYTUZ5Po0U8vl2xxMlwv7focxfgyV_OjFNjujkFrrZI0j8suv5bXQltHfQ9a6m5MVddPF6TIPCFsfjGmzbCjdjcKFbBJyoLIe0oxYvaww4EHtwbJ9xtbLb-DBg0A0GSIu_NB0PB1xbLLc4DCEh6X9XNu65Y9fY9T308eT4w6s3eV9fIfeCk01OLZOBwQ88lnfEey-JqJyspdWi4BW3hbA6hh6GKfhSGbeshGeipjzQ2lF2H-21yzY8RNgyHgiPSbWwPgm8Ul5HWQd6D7SqaIbIMNbG9-TjsQbGwqRDcKZMpx8D-jFJP2aboefjM1876o2_Sh9FFY6SkTY7XQBjMr0xmX8ZU4YOBgMw_VxeGxaLAHBAVvAWT8fbMAvj0Yptw_I8ycBKEMAlyDzo7GXsCdNg8oTKDKkdS9rp6u6dtjlLTN8AhtVUaZGhF4PR_ejXn8fi0f8Yi8foBo2zpZA51Qdob7M6D0_QNf9t06xXE3RVzmVq1QTtHx3PyveTNAWhPaVlbCW0--Xb0_LTd_KMNok
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH6qCoheWMpmKDBIcAKr8Xgcjw8IAaVq1RD1UKTehpnxGKIGuzgpUf4Uv5H3xksVlt56QLnZz8l48r1t3gbwPJfC2Mi40EmDDopLitAYqcMM0URHY4nTfmrJKB2P5fFxdrgGP7taGEqr7GSiF9R5ZemMfDumVuwC9Rt_c_o9pKlRFF3tRmg0sDhwywW6bLPX-zv4_77gfPfD0fu9sJ0qENpERPOQ6zh1MX5QTlsTWWvTKMlNWqQ6SwYiF3qQ6IwS7twQNUhKBzWJjZOCC8cLQ40OUORfEdRZjFIF-WF_pkNRMxFlbW3OIJbbM9SPVMPGRTikxvXhYkX_-TEBf7Nt_0zR_C1O69Xf7s3_beNuwY3W0GZvG864DWuu3IRrzejN5SZNq24zW-7AcqevHGOaUYSL6TJnkz4f00wd890_u0qtklUFQ9OZWbQFTlhe6wU9jGb7nKEXwL5NmtYleG1aLZjrfst_b60pTMHMRM_uwqdL2YN7sF5WpXsATMfCRYLqkNGlcyKXNiNag6zieJ7zAKIOKMq2_dppbMhU-byBWKoGXArBpTy41CKAl_0zp023kgup3xH-ekrqNO4vVPUX1QoulTtj0yIyCZo7wkaxSdEmL1Cqx3JYOKED2Opgp1rxN1PnmAvgWX8bBRdFo3TpqjNPg84z2uNIc78Be7-SOEMpEfE0ALnCBitLXb1TTr765ujoP8ihzJIAXnUcc76uf-_Fw4tf4ylc3zv6OFKj_fHBI9jgxNCDNOTZFqzP6zP3GK7aH_PJrH7iJQKDz5fNSb8AoU2eIg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tuoC48FhegQWMBCeI2jhO4xwQAkpFtUvVA0jLydiOAxUlWdouUf8av46ZvFblsbc9oN6SSeu4M9_MeF4Aj1MpjA2M85006KC4KPONkdpPkJvoaCxyuppachhPp_LoKJntwM-2FobSKltMrIA6LSydkfdDasUuUL_xftakRcxG4xfH332aIEWR1nacRs0iB25Tovu2ej4Z4X_9hPPxm_ev3_rNhAHfRiJY-1yHsQvxg5htTWCtjYMoNXEW6yQaiFToQaQTSr5zQ9QmMR3aRDaMMi4czww1PUD438V1Cd6D3dnk3exjd8JDMTQRJE2lziCU_RVqS6po48IfUht7v9zShtXQgL9Zun8mbP4Wta2U4fjq_7yN1-BKY4Kzl7XMXIcdl-_BxXoo52aP5lg3OS83YDPqasqYZhT7YjpP2bzL1DQLx6q-oG0NV86KjKFRzSxaCV9ZutQlPYwG_Zqhf8C-zeumJnhtUZTMtb9Vfe9SUwCDmble3YQP57IHt6CXF7m7A0yHwgWCKpTR2XMilTYhWoNC5Hiacg-ClmmUbTq500CRhaoyCkKpakZTyGiqYjRVevC0e-a47mNyJvUr4sWOknqQVxeK5WfVQJpKnbFxFpgIDSFhg9DEaK1niPehHGZOaA_2WxZUDTCu1Cn_efCou42QRnEqnbvipKJBtxotdaS5XTN-t5IwQfwIeOyB3BKJraVu38nnX6q26ehZyKFMIg-etdJzuq5_78Xds1_jIVxCAVKHk-nBPbjMSbYHsc-TfeitlyfuPlywP9bz1fJBAw8MPp23KP0CyYmoaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+a+fair+and+interpretable+representation+of+the+clock+drawing+test+for+mitigating+low+education+and+racial+bias&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Jiaqing&rft.au=Bandyopadhyay%2C+Sabyasachi&rft.au=Kimmet%2C+Faith&rft.au=Wittmayer%2C+Jack&rft.date=2024-07-29&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=17444&rft_id=info:doi/10.1038%2Fs41598-024-68481-w&rft_id=info%3Apmid%2F39075127&rft.externalDocID=39075127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon