CDMO: Chaotic Dwarf Mongoose Optimization Algorithm for feature selection

In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm intelligence algorithms which mimic the foraging behavior of the Dwarf Mongoose. The developed method, named Chaotic DMO (CDMO), is considered a w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 14; číslo 1; s. 701 - 18
Hlavní autoři: Abdelrazek, Mohammed, Abd Elaziz, Mohamed, El-Baz, A. H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 06.01.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm intelligence algorithms which mimic the foraging behavior of the Dwarf Mongoose. The developed method, named Chaotic DMO (CDMO), is considered a wrapper-based model which selects optimal features that give higher classification accuracy. To speed up the convergence and increase the effectiveness of DMO, ten chaotic maps were used to modify the key elements of Dwarf Mongoose movement during the optimization process. To evaluate the efficiency of the CDMO, ten different UCI datasets are used and compared against the original DMO and other well-known Meta-heuristic techniques, namely Ant Colony optimization (ACO), Whale optimization algorithm (WOA), Artificial rabbit optimization (ARO), Harris hawk optimization (HHO), Equilibrium optimizer (EO), Ring theory based harmony search (RTHS), Random switching serial gray-whale optimizer (RSGW), Salp swarm algorithm based on particle swarm optimization (SSAPSO), Binary genetic algorithm (BGA), Adaptive switching gray-whale optimizer (ASGW) and Particle Swarm optimization (PSO). The experimental results show that the CDMO gives higher performance than the other methods used in feature selection. High value of accuracy (91.9–100%), sensitivity (77.6–100%), precision (91.8–96.08%), specificity (91.6–100%) and F-Score (90–100%) for all ten UCI datasets are obtained. In addition, the proposed method is further assessed against CEC’2022 benchmarks functions.
AbstractList In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm intelligence algorithms which mimic the foraging behavior of the Dwarf Mongoose. The developed method, named Chaotic DMO (CDMO), is considered a wrapper-based model which selects optimal features that give higher classification accuracy. To speed up the convergence and increase the effectiveness of DMO, ten chaotic maps were used to modify the key elements of Dwarf Mongoose movement during the optimization process. To evaluate the efficiency of the CDMO, ten different UCI datasets are used and compared against the original DMO and other well-known Meta-heuristic techniques, namely Ant Colony optimization (ACO), Whale optimization algorithm (WOA), Artificial rabbit optimization (ARO), Harris hawk optimization (HHO), Equilibrium optimizer (EO), Ring theory based harmony search (RTHS), Random switching serial gray-whale optimizer (RSGW), Salp swarm algorithm based on particle swarm optimization (SSAPSO), Binary genetic algorithm (BGA), Adaptive switching gray-whale optimizer (ASGW) and Particle Swarm optimization (PSO). The experimental results show that the CDMO gives higher performance than the other methods used in feature selection. High value of accuracy (91.9-100%), sensitivity (77.6-100%), precision (91.8-96.08%), specificity (91.6-100%) and F-Score (90-100%) for all ten UCI datasets are obtained. In addition, the proposed method is further assessed against CEC'2022 benchmarks functions.In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm intelligence algorithms which mimic the foraging behavior of the Dwarf Mongoose. The developed method, named Chaotic DMO (CDMO), is considered a wrapper-based model which selects optimal features that give higher classification accuracy. To speed up the convergence and increase the effectiveness of DMO, ten chaotic maps were used to modify the key elements of Dwarf Mongoose movement during the optimization process. To evaluate the efficiency of the CDMO, ten different UCI datasets are used and compared against the original DMO and other well-known Meta-heuristic techniques, namely Ant Colony optimization (ACO), Whale optimization algorithm (WOA), Artificial rabbit optimization (ARO), Harris hawk optimization (HHO), Equilibrium optimizer (EO), Ring theory based harmony search (RTHS), Random switching serial gray-whale optimizer (RSGW), Salp swarm algorithm based on particle swarm optimization (SSAPSO), Binary genetic algorithm (BGA), Adaptive switching gray-whale optimizer (ASGW) and Particle Swarm optimization (PSO). The experimental results show that the CDMO gives higher performance than the other methods used in feature selection. High value of accuracy (91.9-100%), sensitivity (77.6-100%), precision (91.8-96.08%), specificity (91.6-100%) and F-Score (90-100%) for all ten UCI datasets are obtained. In addition, the proposed method is further assessed against CEC'2022 benchmarks functions.
In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm intelligence algorithms which mimic the foraging behavior of the Dwarf Mongoose. The developed method, named Chaotic DMO (CDMO), is considered a wrapper-based model which selects optimal features that give higher classification accuracy. To speed up the convergence and increase the effectiveness of DMO, ten chaotic maps were used to modify the key elements of Dwarf Mongoose movement during the optimization process. To evaluate the efficiency of the CDMO, ten different UCI datasets are used and compared against the original DMO and other well-known Meta-heuristic techniques, namely Ant Colony optimization (ACO), Whale optimization algorithm (WOA), Artificial rabbit optimization (ARO), Harris hawk optimization (HHO), Equilibrium optimizer (EO), Ring theory based harmony search (RTHS), Random switching serial gray-whale optimizer (RSGW), Salp swarm algorithm based on particle swarm optimization (SSAPSO), Binary genetic algorithm (BGA), Adaptive switching gray-whale optimizer (ASGW) and Particle Swarm optimization (PSO). The experimental results show that the CDMO gives higher performance than the other methods used in feature selection. High value of accuracy (91.9–100%), sensitivity (77.6–100%), precision (91.8–96.08%), specificity (91.6–100%) and F-Score (90–100%) for all ten UCI datasets are obtained. In addition, the proposed method is further assessed against CEC’2022 benchmarks functions.
Abstract In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm intelligence algorithms which mimic the foraging behavior of the Dwarf Mongoose. The developed method, named Chaotic DMO (CDMO), is considered a wrapper-based model which selects optimal features that give higher classification accuracy. To speed up the convergence and increase the effectiveness of DMO, ten chaotic maps were used to modify the key elements of Dwarf Mongoose movement during the optimization process. To evaluate the efficiency of the CDMO, ten different UCI datasets are used and compared against the original DMO and other well-known Meta-heuristic techniques, namely Ant Colony optimization (ACO), Whale optimization algorithm (WOA), Artificial rabbit optimization (ARO), Harris hawk optimization (HHO), Equilibrium optimizer (EO), Ring theory based harmony search (RTHS), Random switching serial gray-whale optimizer (RSGW), Salp swarm algorithm based on particle swarm optimization (SSAPSO), Binary genetic algorithm (BGA), Adaptive switching gray-whale optimizer (ASGW) and Particle Swarm optimization (PSO). The experimental results show that the CDMO gives higher performance than the other methods used in feature selection. High value of accuracy (91.9–100%), sensitivity (77.6–100%), precision (91.8–96.08%), specificity (91.6–100%) and F-Score (90–100%) for all ten UCI datasets are obtained. In addition, the proposed method is further assessed against CEC’2022 benchmarks functions.
ArticleNumber 701
Author Abdelrazek, Mohammed
Abd Elaziz, Mohamed
El-Baz, A. H.
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Abdelrazek
  fullname: Abdelrazek, Mohammed
  organization: Department of Mathematics, Faculty of Science, Damietta University
– sequence: 2
  givenname: Mohamed
  surname: Abd Elaziz
  fullname: Abd Elaziz, Mohamed
  organization: Department of Mathematics, Faculty of Science, Zagazig University, Artificial Intelligence Research Center (AIRC), Ajman University, MEU Research Unit, Middle East University, Department of Electrical and Computer Engineering, Lebanese American University
– sequence: 3
  givenname: A. H.
  surname: El-Baz
  fullname: El-Baz, A. H.
  email: elbaz@du.edu.eg
  organization: Department of Computer Science, Faculty of Computers and Artificial Intelligence, Damietta University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38184680$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFvFCEUxompsbX2H_BgJvHiZZQHAwNeTLOtukmbveiZMAzMspkdVpip0b--7E6rbQ_lAuF93y8fvPcaHQ1hsAi9BfwRMBWfUgVMihITWjIsmSzFC3RCcMVKQgk5enA-RmcpbXBejMgK5Ct0TAWIigt8gpaLi-vV52Kx1mH0prj4raMrrsPQhZBssdqNfuv_6tGHoTjvuxD9uN4WLsTCWT1O0RbJ9tbs62_QS6f7ZM_u9lP08-vlj8X38mr1bbk4vyoNq2AswQrOLMGS0IZxVusaOOYNptjwllsOrCGSc06s466lDgTUvBHaQCNozQw9RcuZ2wa9Ubvotzr-UUF7dbgIsVM65rf0VhmX6ZRwENhWRhOpa9JWDDvjhGSOZtaXmbWbmq1tjR3GqPtH0MeVwa9VF24U4LoGBlUmfLgjxPBrsmlUW5-M7Xs92DAlRSQQRlhdkyx9_0S6CVMc8l_tVQAEGN4D3z2M9C_LfcuyQMwCE0NK0Tpl_HjoUE7o-xxN7QdEzQOi8oCow4Aoka3kifWe_qyJzqaUxUNn4__Yz7huAU3Eywk
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124882
crossref_primary_10_1109_LSENS_2025_3539186
crossref_primary_10_3390_biomimetics9110662
crossref_primary_10_1007_s00521_025_11016_9
crossref_primary_10_3390_biomimetics10010057
crossref_primary_10_1007_s41870_024_01867_1
crossref_primary_10_1038_s41598_024_63188_4
crossref_primary_10_3390_a18010016
crossref_primary_10_1016_j_rineng_2025_107127
crossref_primary_10_3390_math13040675
crossref_primary_10_1016_j_knosys_2024_112347
crossref_primary_10_3390_math13132175
crossref_primary_10_1016_j_eswa_2024_126186
crossref_primary_10_1016_j_chaos_2024_115636
crossref_primary_10_1007_s10586_025_05228_w
crossref_primary_10_1016_j_bspc_2024_107210
crossref_primary_10_1038_s41598_024_77115_0
crossref_primary_10_1002_oca_3284
crossref_primary_10_1007_s10462_024_10857_5
crossref_primary_10_1016_j_knosys_2025_113918
crossref_primary_10_1007_s40747_025_01791_2
crossref_primary_10_1007_s42235_024_00524_4
crossref_primary_10_1038_s41598_025_17346_x
crossref_primary_10_1016_j_ijepes_2025_110778
crossref_primary_10_1016_j_jestch_2025_101982
crossref_primary_10_1016_j_knosys_2025_113062
crossref_primary_10_1038_s41598_024_76010_y
crossref_primary_10_1007_s10489_024_06026_4
crossref_primary_10_3390_math13040668
crossref_primary_10_1002_dac_6089
crossref_primary_10_1038_s41598_024_77120_3
Cites_doi 10.1016/j.neucom.2016.03.101
10.1016/j.engappai.2018.04.012
10.1016/j.neucom.2022.04.083
10.1142/S0218488523500241
10.4018/IJAMC.292517
10.1016/j.knosys.2021.107283
10.1007/s12559-019-09668-6
10.1016/j.matpr.2017.07.055
10.1007/s10044-018-0695-2
10.1016/j.chaos.2006.04.057
10.1007/s11042-023-15467-x
10.1109/ACCESS.2021.3133286
10.1007/s10489-018-1261-8
10.4249/scholarpedia.1883
10.1109/TSMCB.2012.2227469
10.1007/s12652-018-1031-9
10.1109/ACCESS.2020.2999093
10.1002/cem.1180080107
10.1016/j.cie.2021.107408
10.1016/j.eswa.2022.117217
10.1080/25742558.2018.1483565
10.1016/j.swevo.2011.02.002
10.1016/j.future.2019.02.028
10.1016/j.eswa.2022.119041
10.1016/j.jocs.2022.101651
10.1016/j.compbiolchem.2007.10.001
10.1109/MCI.2006.329691
10.1007/s00357-018-9261-2
10.1016/j.cma.2021.114194
10.1038/s41598-022-18993-0
10.1016/j.knosys.2022.108771
10.1016/j.engappai.2017.01.006
10.1007/s00521-017-2988-6
10.1016/j.engappai.2022.105082
10.1007/s00521-022-07925-8
10.1007/s11721-007-0002-0
10.1109/TKDE.2008.239
10.1016/j.compstruc.2016.03.001
10.1016/j.cma.2022.114570
10.1016/j.asoc.2009.11.014
10.1109/EURCON.2005.1629899
10.1007/978-1-4419-1665-5_1
10.1109/KCIC.2017.8228458
10.1109/ICMLC.2007.4370294
10.1109/SOCPAR.2015.7492775
10.1007/978-3-540-73190-0_7
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-50959-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

PubMed

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_cfa71326180e4ca29a72d450fcf895f3
PMC10771514
38184680
10_1038_s41598_023_50959_8
Genre Journal Article
GrantInformation_xml – fundername: Damiatta University
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-1e865e20923b5657a71606b030c6d6e615b296662ef6fd3f18176b8ac1b8375c3
IEDL.DBID M7P
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001137232700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:18 EDT 2025
Tue Nov 04 02:06:20 EST 2025
Thu Sep 04 20:06:19 EDT 2025
Tue Oct 07 08:24:36 EDT 2025
Mon Jul 21 05:56:15 EDT 2025
Tue Nov 18 21:47:48 EST 2025
Sat Nov 29 01:56:49 EST 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-1e865e20923b5657a71606b030c6d6e615b296662ef6fd3f18176b8ac1b8375c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2911121504?pq-origsite=%requestingapplication%
PMID 38184680
PQID 2911121504
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_cfa71326180e4ca29a72d450fcf895f3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10771514
proquest_miscellaneous_2912525772
proquest_journals_2911121504
pubmed_primary_38184680
crossref_citationtrail_10_1038_s41598_023_50959_8
crossref_primary_10_1038_s41598_023_50959_8
springer_journals_10_1038_s41598_023_50959_8
PublicationCentury 2000
PublicationDate 2024-01-06
PublicationDateYYYYMMDD 2024-01-06
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kyaw, Limsiroratana, Sattayaraksa (CR1) 2022; 13
Emary, Zawbaa (CR3) 2019; 22
Karaboga, Akay (CR20) 2009; 214
Agushaka, Ezugwu, Abualigah (CR27) 2022; 391
Sayed, Darwish, Hassanien (CR30) 2018; 35
Emary, Zawbaa, Hassanien (CR17) 2016; 213
Mafarja, Qasem, Heidari, Aljarah, Faris, Mirjalili (CR41) 2020; 12
CR33
Neggaz, Neggaz, Fizazi (CR50) 2023; 35
Derrac, García, Molina, Herrera (CR35) 2011; 1
Yang, Wang, Zhao, Yu, Huang, Heidari, Cai, Bourouis, Algarni, Chen (CR49) 2023; 213
Ahmed, Ghosh, Singh, Geem, Sarkar (CR40) 2020; 8
CR2
CR7
CR9
Long, Xu, Jiao, Wu (CR4) 2022; 201
Zhao, Wang, Mirjalili (CR44) 2022; 388
Wang, Cao, Zhang, Mirjalili, Zhao (CR37) 2022; 114
Etminaniesfahani, Ghanbarzadeh, Marashi (CR22) 2018; 74
Shen, Shi, Kong (CR13) 2008; 32
CR19
Joshi, Kulkarni, Kakandikar, Nandedkar (CR11) 2017; 4
Sayed, Hassanien, Azar (CR32) 2019; 31
Dehghani, Hubálovsky (CR47) 2021; 9
Eluri, Devarakonda (CR24) 2022; 247
Eluri, Devarakonda (CR25) 2023; 31
Xue, Zhang, Browne (CR16) 2012; 43
Gandomi, Yang, Talatahari, Alavi (CR8) 2013; 1
CR12
Peterson (CR34) 2009; 4
CR10
Moosavi, Bardsiri (CR48) 2017; 60
Dokeroglu, Deniz, Kiziloz (CR15) 2022
Eluri, Devarakonda (CR26) 2023; 82
Abdollahzadeh, Gharehchopogh, Mirjalili (CR45) 2021; 158
Akinola, Ezugwu, Oyelade, Agushaka (CR23) 2022; 12
Dorigo, Birattari, Stutzle (CR6) 2006; 1
Nasiri, Khiyabani (CR14) 2018; 5
Aalaei, Shahraki, Rowhanimanesh, Eslami (CR18) 2016; 19
Sayed, Tharwat, Hassanien (CR31) 2019; 49
Chuang, Yang, Li (CR29) 2011; 11
Etminaniesfahani, Gu, Salehipour (CR21) 2022; 61
Poli, Kennedy, Blackwell (CR5) 2007; 1
Leardi (CR43) 1994; 8
He, Garcia (CR36) 2009; 21
Askarzadeh (CR46) 2016; 169
Ahmed, Ghosh, Mirjalili, Sarkar (CR39) 2021; 228
Yang, Li, Cheng (CR28) 2007; 34
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR38) 2019; 97
Ibrahim, Ewees, Oliva, Abd Elaziz, Lu (CR42) 2019; 10
D Karaboga (50959_CR20) 2009; 214
M Mafarja (50959_CR41) 2020; 12
J Nasiri (50959_CR14) 2018; 5
SHS Moosavi (50959_CR48) 2017; 60
J Derrac (50959_CR35) 2011; 1
I Neggaz (50959_CR50) 2023; 35
A Etminaniesfahani (50959_CR22) 2018; 74
AS Joshi (50959_CR11) 2017; 4
RK Eluri (50959_CR25) 2023; 31
A Askarzadeh (50959_CR46) 2016; 169
50959_CR19
H He (50959_CR36) 2009; 21
KS Kyaw (50959_CR1) 2022; 13
W Long (50959_CR4) 2022; 201
Q Shen (50959_CR13) 2008; 32
A Etminaniesfahani (50959_CR21) 2022; 61
50959_CR12
D Yang (50959_CR28) 2007; 34
E Emary (50959_CR17) 2016; 213
RK Eluri (50959_CR24) 2022; 247
50959_CR10
T Dokeroglu (50959_CR15) 2022
L Wang (50959_CR37) 2022; 114
R Leardi (50959_CR43) 1994; 8
M Dehghani (50959_CR47) 2021; 9
W Zhao (50959_CR44) 2022; 388
S Ahmed (50959_CR39) 2021; 228
GI Sayed (50959_CR30) 2018; 35
S Aalaei (50959_CR18) 2016; 19
M Dorigo (50959_CR6) 2006; 1
JO Agushaka (50959_CR27) 2022; 391
E Emary (50959_CR3) 2019; 22
GI Sayed (50959_CR31) 2019; 49
GI Sayed (50959_CR32) 2019; 31
B Xue (50959_CR16) 2012; 43
50959_CR2
AH Gandomi (50959_CR8) 2013; 1
AA Heidari (50959_CR38) 2019; 97
B Abdollahzadeh (50959_CR45) 2021; 158
RK Eluri (50959_CR26) 2023; 82
50959_CR9
50959_CR7
R Poli (50959_CR5) 2007; 1
X Yang (50959_CR49) 2023; 213
LY Chuang (50959_CR29) 2011; 11
LE Peterson (50959_CR34) 2009; 4
50959_CR33
S Ahmed (50959_CR40) 2020; 8
RA Ibrahim (50959_CR42) 2019; 10
OA Akinola (50959_CR23) 2022; 12
References_xml – volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  ident: CR17
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– volume: 74
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR22
  article-title: Fibonacci indicator algorithm: A novel tool for complex optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.012
– year: 2022
  ident: CR15
  article-title: A comprehensive survey on recent metaheuristics for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– volume: 31
  start-page: 497
  issue: 03
  year: 2023
  end-page: 530
  ident: CR25
  article-title: Chaotic binary pelican optimization algorithm for feature selection
  publication-title: Int. J. Uncert. Fuzziness Knowl. Based Syst.
  doi: 10.1142/S0218488523500241
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  end-page: 34
  ident: CR1
  article-title: A comparative study of meta-heuristic and conventional search in optimization of multi-dimensional feature selection
  publication-title: Int. J. Appl. Metaheuristic Comput. (IJAMC)
  doi: 10.4018/IJAMC.292517
– volume: 228
  year: 2021
  ident: CR39
  article-title: AIEOU: Automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107283
– volume: 12
  start-page: 150
  year: 2020
  end-page: 175
  ident: CR41
  article-title: Efficient hybrid nature-inspired binary optimizers for feature selection
  publication-title: Cognit Comput.
  doi: 10.1007/s12559-019-09668-6
– ident: CR12
– volume: 4
  start-page: 7262
  issue: 8
  year: 2017
  end-page: 7269
  ident: CR11
  article-title: Cuckoo search optimization-a review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2017.07.055
– volume: 19
  start-page: 476
  issue: 5
  year: 2016
  ident: CR18
  article-title: Feature selection using genetic algorithm for breast cancer diagnosis: Experiment on three different datasets
  publication-title: Iran. J. Basic Med. Sci.
– volume: 22
  start-page: 857
  year: 2019
  end-page: 876
  ident: CR3
  article-title: Feature selection via Lèvy Antlion optimization
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-018-0695-2
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  end-page: 1375
  ident: CR28
  article-title: On the efficiency of chaos optimization algorithms for global optimization
  publication-title: Chaos Solit. Fractals
  doi: 10.1016/j.chaos.2006.04.057
– volume: 82
  start-page: 26679
  issue: 17
  year: 2023
  end-page: 26730
  ident: CR26
  article-title: Feature selection with a binary flamingo search algorithm and a genetic algorithm
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15467-x
– volume: 9
  start-page: 162059
  year: 2021
  end-page: 162080
  ident: CR47
  article-title: Northern goshawk optimization: A new swarm-based algorithm for solving optimization problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133286
– volume: 49
  start-page: 188
  year: 2019
  end-page: 205
  ident: CR31
  article-title: Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1261-8
– ident: CR19
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: CR34
  article-title: K-nearest neighbor
  publication-title: Scholarpedia.
  doi: 10.4249/scholarpedia.1883
– volume: 43
  start-page: 1656
  issue: 6
  year: 2012
  end-page: 1671
  ident: CR16
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 10
  start-page: 3155
  year: 2019
  end-page: 3169
  ident: CR42
  article-title: Improved salp swarm algorithm based on particle swarm optimization for feature selection
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-018-1031-9
– volume: 8
  start-page: 102629
  year: 2020
  end-page: 102645
  ident: CR40
  article-title: Hybrid of harmony search algorithm and ring theory-based evolutionary algorithm for feature selection
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2999093
– ident: CR9
– volume: 8
  start-page: 65
  issue: 1
  year: 1994
  end-page: 79
  ident: CR43
  article-title: Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection
  publication-title: J. Chemometr.
  doi: 10.1002/cem.1180080107
– volume: 158
  year: 2021
  ident: CR45
  article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 201
  year: 2022
  ident: CR4
  article-title: A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117217
– volume: 5
  start-page: 1483565
  issue: 1
  year: 2018
  ident: CR14
  article-title: A whale optimization algorithm (WOA) approach for clustering
  publication-title: Cogent Math. Stat.
  doi: 10.1080/25742558.2018.1483565
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  end-page: 18
  ident: CR35
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: CR38
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 213
  year: 2023
  ident: CR49
  article-title: An adaptive quadratic interpolation and rounding mechanism sine cosine algorithm with application to constrained engineering optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119041
– volume: 61
  year: 2022
  ident: CR21
  article-title: ABFIA: A hybrid algorithm based on artificial bee colony and Fibonacci indicator algorithm
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101651
– ident: CR2
– volume: 32
  start-page: 53
  issue: 1
  year: 2008
  end-page: 60
  ident: CR13
  article-title: Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.10.001
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  end-page: 39
  ident: CR6
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 35
  start-page: 300
  issue: 2
  year: 2018
  end-page: 344
  ident: CR30
  article-title: A new chaotic whale optimization algorithm for features selection
  publication-title: J. Classif.
  doi: 10.1007/s00357-018-9261-2
– ident: CR10
– ident: CR33
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  end-page: 132
  ident: CR20
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– volume: 388
  start-page: 114194
  year: 2022
  ident: CR44
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114194
– volume: 12
  start-page: 14945
  issue: 1
  year: 2022
  ident: CR23
  article-title: A hybrid binary dwarf mongoose optimization algorithm with simulated annealing for feature selection on high dimensional multi-class datasets
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-18993-0
– volume: 247
  year: 2022
  ident: CR24
  article-title: Binary golden eagle optimizer with time-varying flight length for feature selection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108771
– volume: 60
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR48
  article-title: Satin bowerbird optimizer: A new optimization algorithm to optimize anfis for software development effort estimation
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.006
– volume: 31
  start-page: 171
  year: 2019
  end-page: 188
  ident: CR32
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2988-6
– volume: 114
  year: 2022
  ident: CR37
  article-title: Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105082
– volume: 35
  start-page: 3903
  year: 2023
  end-page: 3923
  ident: CR50
  article-title: Boosting archimedes optimization algorithm using trigonometric operators based on feature selection for facial analysis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07925-8
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: CR5
  article-title: Particle swarm optimization: An overview
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  end-page: 1284
  ident: CR36
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– ident: CR7
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: CR46
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 391
  year: 2022
  ident: CR27
  article-title: Dwarf mongoose optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114570
– volume: 11
  start-page: 239
  issue: 1
  year: 2011
  end-page: 248
  ident: CR29
  article-title: Chaotic maps based on binary particle swarm optimization for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.014
– volume: 1
  start-page: 1
  year: 2013
  end-page: 24
  ident: CR8
  article-title: Metaheuristic algorithms in modeling and optimization
  publication-title: Metaheuristic Appl. Struct. Infrastruct.
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 50959_CR1
  publication-title: Int. J. Appl. Metaheuristic Comput. (IJAMC)
  doi: 10.4018/IJAMC.292517
– ident: 50959_CR12
  doi: 10.1109/EURCON.2005.1629899
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 50959_CR35
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 49
  start-page: 188
  year: 2019
  ident: 50959_CR31
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1261-8
– volume: 10
  start-page: 3155
  year: 2019
  ident: 50959_CR42
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-018-1031-9
– volume: 22
  start-page: 857
  year: 2019
  ident: 50959_CR3
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-018-0695-2
– volume: 391
  year: 2022
  ident: 50959_CR27
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114570
– volume: 82
  start-page: 26679
  issue: 17
  year: 2023
  ident: 50959_CR26
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15467-x
– volume: 169
  start-page: 1
  year: 2016
  ident: 50959_CR46
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 12
  start-page: 150
  year: 2020
  ident: 50959_CR41
  publication-title: Cognit Comput.
  doi: 10.1007/s12559-019-09668-6
– volume: 228
  year: 2021
  ident: 50959_CR39
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.107283
– volume: 31
  start-page: 171
  year: 2019
  ident: 50959_CR32
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2988-6
– volume: 158
  year: 2021
  ident: 50959_CR45
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107408
– volume: 31
  start-page: 497
  issue: 03
  year: 2023
  ident: 50959_CR25
  publication-title: Int. J. Uncert. Fuzziness Knowl. Based Syst.
  doi: 10.1142/S0218488523500241
– volume: 97
  start-page: 849
  year: 2019
  ident: 50959_CR38
  publication-title: Future Gen. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– year: 2022
  ident: 50959_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 50959_CR6
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– ident: 50959_CR33
– ident: 50959_CR9
  doi: 10.1007/978-1-4419-1665-5_1
– volume: 32
  start-page: 53
  issue: 1
  year: 2008
  ident: 50959_CR13
  publication-title: Comput. Biol. Chem.
  doi: 10.1016/j.compbiolchem.2007.10.001
– volume: 12
  start-page: 14945
  issue: 1
  year: 2022
  ident: 50959_CR23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-18993-0
– volume: 35
  start-page: 300
  issue: 2
  year: 2018
  ident: 50959_CR30
  publication-title: J. Classif.
  doi: 10.1007/s00357-018-9261-2
– volume: 4
  start-page: 1883
  issue: 2
  year: 2009
  ident: 50959_CR34
  publication-title: Scholarpedia.
  doi: 10.4249/scholarpedia.1883
– volume: 4
  start-page: 7262
  issue: 8
  year: 2017
  ident: 50959_CR11
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2017.07.055
– volume: 214
  start-page: 108
  issue: 1
  year: 2009
  ident: 50959_CR20
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 1
  year: 2013
  ident: 50959_CR8
  publication-title: Metaheuristic Appl. Struct. Infrastruct.
– volume: 1
  start-page: 33
  year: 2007
  ident: 50959_CR5
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– ident: 50959_CR19
  doi: 10.1109/KCIC.2017.8228458
– volume: 213
  start-page: 54
  year: 2016
  ident: 50959_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– volume: 114
  year: 2022
  ident: 50959_CR37
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105082
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  ident: 50959_CR28
  publication-title: Chaos Solit. Fractals
  doi: 10.1016/j.chaos.2006.04.057
– volume: 19
  start-page: 476
  issue: 5
  year: 2016
  ident: 50959_CR18
  publication-title: Iran. J. Basic Med. Sci.
– volume: 11
  start-page: 239
  issue: 1
  year: 2011
  ident: 50959_CR29
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.014
– volume: 388
  start-page: 114194
  year: 2022
  ident: 50959_CR44
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114194
– ident: 50959_CR10
  doi: 10.1109/ICMLC.2007.4370294
– volume: 8
  start-page: 102629
  year: 2020
  ident: 50959_CR40
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2999093
– volume: 213
  year: 2023
  ident: 50959_CR49
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119041
– volume: 247
  year: 2022
  ident: 50959_CR24
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108771
– volume: 5
  start-page: 1483565
  issue: 1
  year: 2018
  ident: 50959_CR14
  publication-title: Cogent Math. Stat.
  doi: 10.1080/25742558.2018.1483565
– volume: 61
  year: 2022
  ident: 50959_CR21
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2022.101651
– volume: 8
  start-page: 65
  issue: 1
  year: 1994
  ident: 50959_CR43
  publication-title: J. Chemometr.
  doi: 10.1002/cem.1180080107
– volume: 74
  start-page: 1
  year: 2018
  ident: 50959_CR22
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.012
– volume: 9
  start-page: 162059
  year: 2021
  ident: 50959_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3133286
– ident: 50959_CR2
  doi: 10.1109/SOCPAR.2015.7492775
– volume: 35
  start-page: 3903
  year: 2023
  ident: 50959_CR50
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07925-8
– ident: 50959_CR7
  doi: 10.1007/978-3-540-73190-0_7
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 50959_CR36
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 43
  start-page: 1656
  issue: 6
  year: 2012
  ident: 50959_CR16
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 201
  year: 2022
  ident: 50959_CR4
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117217
– volume: 60
  start-page: 1
  year: 2017
  ident: 50959_CR48
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.006
SSID ssj0000529419
Score 2.5721471
Snippet In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the swarm...
Abstract In this paper, a modified version of Dwarf Mongoose Optimization Algorithm (DMO) for feature selection is proposed. DMO is a novel technique of the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 701
SubjectTerms 639/705/117
639/705/794
Algorithms
Benchmarks
Feature selection
Foraging behavior
Gene mapping
Humanities and Social Sciences
multidisciplinary
Optimization algorithms
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDeBgozEDaI6jp3Y3MqWCg60HEDqzUocT3elNqk2WxD_nrGdXbo8L1xjJ5mMZzLf-PENwIvWFarm6HLVoc9lh2Xeohc5KtQoTMe70sViE_XRkT45MR-vlPoKe8ISPXBS3J7DhvIowvmae-kaYZpadFLR41EbhZHnk1DPlWQqsXoLIwsznZLhpd4bKVKF02SizFWa-9qKRJGw_3co89fNkj-tmMZAdHgbbk0Iku0nye_ANd_fhRuppuS3e_B-dvDh-DWbzZuBOrCDr80SGXnu6TCMnh3TH-J8OnrJ9s9Oh-ViNT9nhFwZ-sjxycZYGYfa78Pnw7efZu_yqV5C7pQsVnnhdaW84ITZ2rCaSYqj9KQlN3ZVV3nCLq2g7KYSHivsSqTgXletblzRUpqqXPkAdvqh94-Akdeji1jQKCl5Y3hbK4VCdbU0HGUGxVp31k1k4qGmxZmNi9qltknflvRto76tzuDl5p6LRKXx195vwpBsegYa7HiBjMNOxmH_ZRwZ7K4H1E6-OVoR_u-EdDh9xfNNM3lVWCppej9cxj4i8MTWIoOHafw3kgSMIyvNM9BblrEl6nZLv5hH5m7KtWuCWPTiV2sj-iHXn3Xx-H_o4gncFATI4vRRtQs7q-WlfwrX3ZfVYlw-i-7zHWfcGo0
  priority: 102
  providerName: Directory of Open Access Journals
Title CDMO: Chaotic Dwarf Mongoose Optimization Algorithm for feature selection
URI https://link.springer.com/article/10.1038/s41598-023-50959-8
https://www.ncbi.nlm.nih.gov/pubmed/38184680
https://www.proquest.com/docview/2911121504
https://www.proquest.com/docview/2912525772
https://pubmed.ncbi.nlm.nih.gov/PMC10771514
https://doaj.org/article/cfa71326180e4ca29a72d450fcf895f3
Volume 14
WOSCitedRecordID wos001137232700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvB-BsjISN4jqOHbscEHtthU97DZCIC2nKHHs3UptUjZbEP-esZNNtTx64ZJDxknszMOfZ-wZgDeljoSkVoeisibklY3D0hoWWmGVZWlFq1j7YhNyOlWzWZr1Dre231a5toneUFeNdj7yPea0Eucnyj9cfgtd1SgXXe1LaGzBjqPFfuteNvhYXBSLR2l_VobGaq_F-cqdKWNxKDoP2MZ85NP2_w1r_rll8re4qZ-Oju__70AewL0eiJL9TnIewi1TP4I7XWnKn4_hZHw4OX1PxouiwQbk8EextAQNwLxpWkNO0dBc9Cc4yf75HN-_WlwQBMDEGp8qlLS-wA7Sn8CX46PP449hX3Yh1IJHqzAyKhGGUYR-pQuKFrikokmJ1kAnVWIQApUMF0kJMzaxVWwRI8ikVIWOSlztCh0_he26qc1zIGg8rPaQMhWc0yKlpRTCMlFJnlLLA4jWPz_XfU5yVxrjPPex8VjlHcNyZFjuGZarAN4Oz1x2GTlubH3geDq0dNm0_Y1mOc975cy1xTEijo0UNVwXLC0kq7hAEbYqFTYOYHfNyrxX8Ta_5mMArwcyKqeLuBS1aa58G-bSzUoWwLNOgIaeOKjEE0UDUBuitdHVTUp9tvAJwHHJLhGp4YffraXwul___hcvbh7GS7jLELF5_1KyC9ur5ZV5Bbf199VZuxzBlpxJf1Uj2Dk4mmafRt6BgdcJy0Ze85CSnUyyr78AYP0vXA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAioX3pRAASPBCaI6jp04SAiVXaqu2m57KFJvJnHs3Urtpmy2VP1T_EbGTrLV8uitB66xk_jxzcxnjz0D8KbQkUip1aEorQl5aeOwsIaFVlhpWVbSMtY-2UQ6HMrDw2x_CX52d2HcscpOJ3pFXVba7ZGvMyeVaJ8o_3T6PXRZo5x3tUuh0cBi21yc45Kt_jjo4_y-ZWzzy0FvK2yzCoRa8GgWRkYmwjCKzKZwPr8cVww0KRDsOikTgxa-YLgGSJixiS1jiyYwTQqZ66jAxZzQMX73BtxEGsGkPyq4P9_TcV4zHmXt3Rway_Ua7aO7w8biUDQ7bgv2z6cJ-Bu3_fOI5m9-Wm_-Nu_9bwN3H-62RJtsNJLxAJbM5CHcblJvXjyCQa-_u_eB9MZ5hRVI_zyfWoIKblRVtSF7qEhP2huqZON4hP2ZjU8IEnxijQ-FSmqfQAjLH8PXa-nHE1ieVBPzFAgqR6s9Zc4E5zTPaJEKYZkoU55RywOIuslWuo257lJ_HCvv-4-lagCiECDKA0TJAN7N3zltIo5cWfuzw9C8posW7h9U05FqlY_SFvuIPD2S1HCdsyxPWckFiqiVmbBxAGsddFSrwmp1iZsAXs-LUfk4j1I-MdWZr8NcON2UBbDaAHbeEkcFeSJpAHIBygtNXSyZHI19gPOIpikyUfzx-w71l-3691g8u7obr2Bl62B3R-0MhtvP4Q5Ddur30pI1WJ5Nz8wLuKV_zI7q6Usv1QS-Xbc0_ALRqoI7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o9AASPBCaJ1HDtxkBAqu6xYFbZ7AKk3kzj2bqV2UzZbqv41fh1jJ9lqefTWA9fYSezkm5nPnvEMwItCRyKlVoeitCbkpY3DwhoWWmGlZVlJy1j7YhPpeCz39rLJBvzszsK4sMpOJ3pFXVba7ZH3mJNKtE-U92wbFjEZDN8dfQ9dBSnnae3KaTQQ2TGnJ7h8q9-OBvivXzI2_PCl_zFsKwyEWvBoGUZGJsIwiiyncP6_HFcPNCkQ-DopE4PWvmC4HkiYsYktY4vmME0KmeuowIWd0DE-9xJcTl3Sch82OFnt7zgPGo-y9pwOjWWvRlvpzrOxOBTN7tuaLfQlA_7Gc_8M1_zNZ-tN4fDm__wRb8GNloCT7UZibsOGmd-Bq01JztO7MOoPPu--If1ZXmEHMjjJF5ag4ptWVW3ILirYw_bkKtk-mOJ8lrNDgsSfWONTpJLaFxbC9nvw9ULmcR8259XcPASCStNqT6UzwTnNM1qkQlgmypRn1PIAou7HK93mYnclQQ6UjwmIpWrAohAsyoNFyQBere45ajKRnNv7vcPTqqfLIu4vVIupapWS0hbniPw9ktRwnbMsT1nJBYqulZmwcQBbHYxUq9pqdYahAJ6vmlEpOU9TPjfVse_DXJrdlAXwoAHvaiSOIvJE0gDkGqzXhrreMt-f-cTnEU1TZKj44tedBJyN69_f4tH503gG11AI1KfReOcxXGdIWv0WW7IFm8vFsXkCV_SP5X69eOoFnMC3ixaGX2ooivg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CDMO%3A+Chaotic+Dwarf+Mongoose+Optimization+Algorithm+for+feature+selection&rft.jtitle=Scientific+reports&rft.au=Abdelrazek%2C+Mohammed&rft.au=Abd+Elaziz%2C+Mohamed&rft.au=El-Baz%2C+A.+H&rft.date=2024-01-06&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=701&rft_id=info:doi/10.1038%2Fs41598-023-50959-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon