On Floating-Point Normal Vectors

In this paper we analyze normal vector representations. We derive the error of the most widely used representation, namely 3D floating‐point normal vectors. Based on this analysis, we show that, in theory, the discretization error inherent to single precision floating‐point normals can be achieved b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 29; číslo 4; s. 1405 - 1409
Hlavní autoři: Meyer, Quirin, Süßmuth, Jochen, Sußner, Gerd, Stamminger, Marc, Greiner, Günther
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Blackwell Publishing Ltd 01.06.2010
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we analyze normal vector representations. We derive the error of the most widely used representation, namely 3D floating‐point normal vectors. Based on this analysis, we show that, in theory, the discretization error inherent to single precision floating‐point normals can be achieved by 250.2 uniformly distributed normals, addressable by 51 bits. We review common sphere parameterizations and show that octahedron normal vectors perform best: they are fast and stable to compute, have a controllable error, and require only 1 bit more than the theoretical optimal discretization with the same error.
Bibliografie:ArticleID:CGF1737
ark:/67375/WNG-KHV108CV-N
istex:F4175A9B3327028EF2D0CA113060FFD1B2541EA3
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2010.01737.x