Metabolomics biomarkers to predict acamprosate treatment response in alcohol-dependent subjects

Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 7; H. 1; S. 2496 - 8
Hauptverfasser: Hinton, David J., Vázquez, Marely Santiago, Geske, Jennifer R., Hitschfeld, Mario J., Ho, Ada M. C., Karpyak, Victor M., Biernacka, Joanna M., Choi, Doo-Sup
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 31.05.2017
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precision medicine for alcohol use disorder (AUD) allows optimal treatment of the right patient with the right drug at the right time. Here, we generated multivariable models incorporating clinical information and serum metabolite levels to predict acamprosate treatment response. The sample of 120 patients was randomly split into a training set ( n  = 80) and test set ( n  = 40) five independent times. Treatment response was defined as complete abstinence (no alcohol consumption during 3 months of acamprosate treatment) while nonresponse was defined as any alcohol consumption during this period. In each of the five training sets, we built a predictive model using a least absolute shrinkage and section operator (LASSO) penalized selection method and then evaluated the predictive performance of each model in the corresponding test set. The models predicted acamprosate treatment response with a mean sensitivity and specificity in the test sets of 0.83 and 0.31, respectively, suggesting our model performed well at predicting responders, but not non-responders (i.e. many non-responders were predicted to respond). Studies with larger sample sizes and additional biomarkers will expand the clinical utility of predictive algorithms for pharmaceutical response in AUD.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-02442-4