Weakly-supervised deep learning for ultrasound diagnosis of breast cancer

Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 11; no. 1; pp. 24382 - 10
Main Authors: Kim, Jaeil, Kim, Hye Jung, Kim, Chanho, Lee, Jin Hwa, Kim, Keum Won, Park, Young Mi, Kim, Hye Won, Ki, So Yeon, Kim, You Me, Kim, Won Hwa
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 21.12.2021
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms were implemented with three networks (VGG16, ResNet34, and GoogLeNet) and trained using 1000 unannotated US images (500 benign and 500 malignant masses). Two sets of 200 images (100 benign and 100 malignant masses) were used for internal and external validation sets. For comparison with fully-supervised algorithms, ROI annotation was performed manually and automatically. Diagnostic performances were calculated as the area under the receiver operating characteristic curve (AUC). Using the class activation map, we determined how accurately the weakly-supervised DL algorithms localized the breast masses. For internal validation sets, the weakly-supervised DL algorithms achieved excellent diagnostic performances, with AUC values of 0.92–0.96, which were not statistically different (all P s > 0.05) from those of fully-supervised DL algorithms with either manual or automated ROI annotation (AUC, 0.92–0.96). For external validation sets, the weakly-supervised DL algorithms achieved AUC values of 0.86–0.90, which were not statistically different ( P s > 0.05) or higher ( P  = 0.04, VGG16 with automated ROI annotation) from those of fully-supervised DL algorithms (AUC, 0.84–0.92). In internal and external validation sets, weakly-supervised algorithms could localize 100% of malignant masses, except for ResNet34 (98%). The weakly-supervised DL algorithms developed in the present study were feasible for US diagnosis of breast cancer with well-performing localization and differential diagnosis.
AbstractList Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms were implemented with three networks (VGG16, ResNet34, and GoogLeNet) and trained using 1000 unannotated US images (500 benign and 500 malignant masses). Two sets of 200 images (100 benign and 100 malignant masses) were used for internal and external validation sets. For comparison with fully-supervised algorithms, ROI annotation was performed manually and automatically. Diagnostic performances were calculated as the area under the receiver operating characteristic curve (AUC). Using the class activation map, we determined how accurately the weakly-supervised DL algorithms localized the breast masses. For internal validation sets, the weakly-supervised DL algorithms achieved excellent diagnostic performances, with AUC values of 0.92-0.96, which were not statistically different (all Ps > 0.05) from those of fully-supervised DL algorithms with either manual or automated ROI annotation (AUC, 0.92-0.96). For external validation sets, the weakly-supervised DL algorithms achieved AUC values of 0.86-0.90, which were not statistically different (Ps > 0.05) or higher (P = 0.04, VGG16 with automated ROI annotation) from those of fully-supervised DL algorithms (AUC, 0.84-0.92). In internal and external validation sets, weakly-supervised algorithms could localize 100% of malignant masses, except for ResNet34 (98%). The weakly-supervised DL algorithms developed in the present study were feasible for US diagnosis of breast cancer with well-performing localization and differential diagnosis.Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms were implemented with three networks (VGG16, ResNet34, and GoogLeNet) and trained using 1000 unannotated US images (500 benign and 500 malignant masses). Two sets of 200 images (100 benign and 100 malignant masses) were used for internal and external validation sets. For comparison with fully-supervised algorithms, ROI annotation was performed manually and automatically. Diagnostic performances were calculated as the area under the receiver operating characteristic curve (AUC). Using the class activation map, we determined how accurately the weakly-supervised DL algorithms localized the breast masses. For internal validation sets, the weakly-supervised DL algorithms achieved excellent diagnostic performances, with AUC values of 0.92-0.96, which were not statistically different (all Ps > 0.05) from those of fully-supervised DL algorithms with either manual or automated ROI annotation (AUC, 0.92-0.96). For external validation sets, the weakly-supervised DL algorithms achieved AUC values of 0.86-0.90, which were not statistically different (Ps > 0.05) or higher (P = 0.04, VGG16 with automated ROI annotation) from those of fully-supervised DL algorithms (AUC, 0.84-0.92). In internal and external validation sets, weakly-supervised algorithms could localize 100% of malignant masses, except for ResNet34 (98%). The weakly-supervised DL algorithms developed in the present study were feasible for US diagnosis of breast cancer with well-performing localization and differential diagnosis.
Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms were implemented with three networks (VGG16, ResNet34, and GoogLeNet) and trained using 1000 unannotated US images (500 benign and 500 malignant masses). Two sets of 200 images (100 benign and 100 malignant masses) were used for internal and external validation sets. For comparison with fully-supervised algorithms, ROI annotation was performed manually and automatically. Diagnostic performances were calculated as the area under the receiver operating characteristic curve (AUC). Using the class activation map, we determined how accurately the weakly-supervised DL algorithms localized the breast masses. For internal validation sets, the weakly-supervised DL algorithms achieved excellent diagnostic performances, with AUC values of 0.92-0.96, which were not statistically different (all Ps > 0.05) from those of fully-supervised DL algorithms with either manual or automated ROI annotation (AUC, 0.92-0.96). For external validation sets, the weakly-supervised DL algorithms achieved AUC values of 0.86-0.90, which were not statistically different (Ps > 0.05) or higher (P = 0.04, VGG16 with automated ROI annotation) from those of fully-supervised DL algorithms (AUC, 0.84-0.92). In internal and external validation sets, weakly-supervised algorithms could localize 100% of malignant masses, except for ResNet34 (98%). The weakly-supervised DL algorithms developed in the present study were feasible for US diagnosis of breast cancer with well-performing localization and differential diagnosis.
Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms were implemented with three networks (VGG16, ResNet34, and GoogLeNet) and trained using 1000 unannotated US images (500 benign and 500 malignant masses). Two sets of 200 images (100 benign and 100 malignant masses) were used for internal and external validation sets. For comparison with fully-supervised algorithms, ROI annotation was performed manually and automatically. Diagnostic performances were calculated as the area under the receiver operating characteristic curve (AUC). Using the class activation map, we determined how accurately the weakly-supervised DL algorithms localized the breast masses. For internal validation sets, the weakly-supervised DL algorithms achieved excellent diagnostic performances, with AUC values of 0.92–0.96, which were not statistically different (all P s > 0.05) from those of fully-supervised DL algorithms with either manual or automated ROI annotation (AUC, 0.92–0.96). For external validation sets, the weakly-supervised DL algorithms achieved AUC values of 0.86–0.90, which were not statistically different ( P s > 0.05) or higher ( P  = 0.04, VGG16 with automated ROI annotation) from those of fully-supervised DL algorithms (AUC, 0.84–0.92). In internal and external validation sets, weakly-supervised algorithms could localize 100% of malignant masses, except for ResNet34 (98%). The weakly-supervised DL algorithms developed in the present study were feasible for US diagnosis of breast cancer with well-performing localization and differential diagnosis.
Abstract Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to develop a weakly-supervised DL algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly-supervised DL algorithms were implemented with three networks (VGG16, ResNet34, and GoogLeNet) and trained using 1000 unannotated US images (500 benign and 500 malignant masses). Two sets of 200 images (100 benign and 100 malignant masses) were used for internal and external validation sets. For comparison with fully-supervised algorithms, ROI annotation was performed manually and automatically. Diagnostic performances were calculated as the area under the receiver operating characteristic curve (AUC). Using the class activation map, we determined how accurately the weakly-supervised DL algorithms localized the breast masses. For internal validation sets, the weakly-supervised DL algorithms achieved excellent diagnostic performances, with AUC values of 0.92–0.96, which were not statistically different (all Ps > 0.05) from those of fully-supervised DL algorithms with either manual or automated ROI annotation (AUC, 0.92–0.96). For external validation sets, the weakly-supervised DL algorithms achieved AUC values of 0.86–0.90, which were not statistically different (Ps > 0.05) or higher (P = 0.04, VGG16 with automated ROI annotation) from those of fully-supervised DL algorithms (AUC, 0.84–0.92). In internal and external validation sets, weakly-supervised algorithms could localize 100% of malignant masses, except for ResNet34 (98%). The weakly-supervised DL algorithms developed in the present study were feasible for US diagnosis of breast cancer with well-performing localization and differential diagnosis.
ArticleNumber 24382
Author Kim, Hye Jung
Lee, Jin Hwa
Kim, You Me
Kim, Chanho
Park, Young Mi
Kim, Hye Won
Ki, So Yeon
Kim, Won Hwa
Kim, Keum Won
Kim, Jaeil
Author_xml – sequence: 1
  givenname: Jaeil
  surname: Kim
  fullname: Kim, Jaeil
  organization: School of Computer Science and Engineering, Kyungpook National University
– sequence: 2
  givenname: Hye Jung
  surname: Kim
  fullname: Kim, Hye Jung
  organization: Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital
– sequence: 3
  givenname: Chanho
  surname: Kim
  fullname: Kim, Chanho
  organization: School of Computer Science and Engineering, Kyungpook National University
– sequence: 4
  givenname: Jin Hwa
  surname: Lee
  fullname: Lee, Jin Hwa
  organization: Department of Radiology, Dong-A University College of Medicine
– sequence: 5
  givenname: Keum Won
  surname: Kim
  fullname: Kim, Keum Won
  organization: Departments of Radiology, School of Medicine, Konyang University, Konyang Univeristy Hospital
– sequence: 6
  givenname: Young Mi
  surname: Park
  fullname: Park, Young Mi
  organization: Department of Radiology, School of Medicine, Inje University, Busan Paik Hospital
– sequence: 7
  givenname: Hye Won
  surname: Kim
  fullname: Kim, Hye Won
  organization: Department of Radiology, Wonkwang University Hospital, Wonkwang University School of Medicine
– sequence: 8
  givenname: So Yeon
  surname: Ki
  fullname: Ki, So Yeon
  organization: Department of Radiology, School of Medicine, Chonnam National University, Chonnam National University Hwasun Hospital
– sequence: 9
  givenname: You Me
  surname: Kim
  fullname: Kim, You Me
  organization: Department of Radiology, School of Medicine, Dankook University, Dankook University Hospital
– sequence: 10
  givenname: Won Hwa
  surname: Kim
  fullname: Kim, Won Hwa
  email: greenoaktree9@gmail.com
  organization: Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34934144$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MJM4sbNKFyYgdmYmMaPlzRxo3FJGOYy8pwHT5hp0n9f-qbVtouy4cI953CA85IchRiQkNeMvmeUqw9ZsKZTNQVWlyVta_mMnAAVTQ0c4OhefUzOct7SMhroBOtekGMuOi6YECdk8wvNn-mqzsse06XPOFQD4r6a0KTgw1i5mKplmpPJcQml6c0YYva5iq7qE5o8V9YEi-kVee7MlPHsdj4lP798_nH-rb74_nVz_umito2gc41usFQ4xengLO2BO85BoOokOOrEoTJcSTpYaLBxMIBpygWFal3vKPJTsll1h2i2ep_8zqQrHY3Xh42YRm3S7O2E2rGODj1zYLkUrWoVl1I4aITolXRGFa2Pq9Z-6Xc4WAzlotMD0Yed4H_rMV5q1XYgaFME3t0KpPh3wTzrnc8Wp8kEjEvW0DKQspzeFejbR9BtXFIoT3VAAXDV8YJ6c9_RPyt3P1YAagXYFHNO6LT1s5l9vDHoJ82ovsmHXvOhSz70IR9aFio8ot6pP0niKykXcBgx_bf9BOsaIsrMQw
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106351
crossref_primary_10_14366_usg_24171
crossref_primary_10_1016_j_compmedimag_2023_102233
crossref_primary_10_1148_ryai_220185
crossref_primary_10_1007_s13198_024_02390_z
crossref_primary_10_1016_j_media_2024_103187
crossref_primary_10_1016_j_arthro_2022_03_037
crossref_primary_10_3389_fonc_2025_1517278
crossref_primary_10_1016_j_bspc_2022_103831
crossref_primary_10_3390_cancers14071651
crossref_primary_10_3390_healthcare10112300
crossref_primary_10_1007_s11042_025_20606_7
crossref_primary_10_4048_jbc_2024_0303
crossref_primary_10_3390_s25082361
crossref_primary_10_3390_cancers15123139
crossref_primary_10_1038_s41598_025_99009_5
crossref_primary_10_1109_TMI_2024_3366940
crossref_primary_10_1109_ACCESS_2024_3429386
crossref_primary_10_1016_j_bbe_2024_01_002
crossref_primary_10_1007_s00521_025_11215_4
crossref_primary_10_1109_ACCESS_2025_3560211
crossref_primary_10_1186_s12880_025_01701_5
crossref_primary_10_1016_j_medengphy_2025_104288
crossref_primary_10_1007_s11548_022_02658_4
crossref_primary_10_1016_j_media_2025_103552
crossref_primary_10_3390_ijms26157134
crossref_primary_10_3390_cancers14215334
crossref_primary_10_4048_jbc_2025_0123
crossref_primary_10_1016_j_crad_2024_08_002
crossref_primary_10_1038_s41598_024_55298_w
crossref_primary_10_1002_cai2_136
crossref_primary_10_1007_s11548_024_03098_y
crossref_primary_10_1016_j_media_2023_102960
crossref_primary_10_1016_j_compbiomed_2024_109391
crossref_primary_10_1109_RBME_2024_3357877
crossref_primary_10_1371_journal_pdig_0001019
Cites_doi 10.1088/1361-6560/aa82ec
10.1097/MD.0000000000014146
10.2214/ajr.184.4.01841260
10.1109/TIP.2008.2001043
10.2214/AJR.18.20532
10.1007/s10439-018-2095-6
10.1016/j.bspc.2020.102027
10.1371/journal.pcbi.1007792
10.2214/AJR.13.12072
10.1038/s41551-018-0324-9
10.1109/JBHI.2017.2731873
10.1109/TMI.2018.2872031
10.1002/jmri.26721
10.1016/j.media.2019.03.009
10.1007/s11604-019-00831-5
10.14366/usg.20117
10.1186/s12880-019-0349-x
10.1002/mp.13361
10.1002/mp.13268
10.1007/s00330-018-5668-8
10.1088/1361-6560/ab5093
10.1016/j.artmed.2019.01.001
10.1148/rg.305095144
10.1148/radiol.2412051710
10.1016/j.aca.2021.338522
10.1109/TMI.2016.2528162
10.4329/wjr.v11.i2.19
10.1109/TBME.2018.2877577
10.1016/j.patcog.2018.02.012
10.1117/12.2549203
10.1145/3233547.3233573
10.1259/bjr.20170576
10.1007/978-3-319-24574-4_28
10.1109/ICCV.2017.74
10.1109/CVPR.2016.319
10.1109/CVPR.2015.7298668
10.1109/CVPR.2017.369
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-03806-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_f190db1f2c37468683774f2544b87fa8
PMC8692405
34934144
10_1038_s41598_021_03806_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Korean Society of Breast Imaging & Korean Society for Breast Screening
  grantid: KSBI & KSFBS-2017-01
– fundername: National Research Foundation of Korea
  grantid: 2020R1I1A3074639; 2019R1G1A1098655; 2020R1C1C1006453
  funderid: http://dx.doi.org/10.13039/501100003725
– fundername: Daegu Metropolitan and Daegu-Gyeongbuk Medical Innovation Foundation (2021 Daegu Medi-Startup Program)
– fundername: ;
– fundername: ;
  grantid: KSBI & KSFBS-2017-01
– fundername: ;
  grantid: 2020R1I1A3074639; 2019R1G1A1098655; 2020R1C1C1006453
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-efdc04f830dfc0b23f3324e8972f0f44e897a3870dc25e5f2d2a5380486fbf0e3
IEDL.DBID M2P
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732567600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:37:00 EDT 2025
Tue Nov 04 01:52:23 EST 2025
Thu Sep 04 19:51:50 EDT 2025
Tue Oct 07 09:04:41 EDT 2025
Thu Jan 02 22:56:29 EST 2025
Tue Nov 18 20:02:48 EST 2025
Sat Nov 29 02:51:05 EST 2025
Fri Feb 21 02:39:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-efdc04f830dfc0b23f3324e8972f0f44e897a3870dc25e5f2d2a5380486fbf0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2612223893?pq-origsite=%requestingapplication%
PMID 34934144
PQID 2612223893
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f190db1f2c37468683774f2544b87fa8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8692405
proquest_miscellaneous_2612773749
proquest_journals_2612223893
pubmed_primary_34934144
crossref_citationtrail_10_1038_s41598_021_03806_7
crossref_primary_10_1038_s41598_021_03806_7
springer_journals_10_1038_s41598_021_03806_7
PublicationCentury 2000
PublicationDate 2021-12-21
PublicationDateYYYYMMDD 2021-12-21
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Berg, Blume, Cormack, Mendelson (CR3) 2006; 241
Lamy, Sekar, Guezennec, Bouaud, Seroussi (CR35) 2019; 94
Becker, Mueller, Stoffel, Marcon, Ghafoor, Boss (CR19) 2018; 91
Hong, Rosen, Soo, Baker (CR26) 2005; 184
CR16
CR38
Jager, Knoll, Hamprecht (CR7) 2008; 17
CR37
Mendelson (CR4) 2019; 212
CR11
CR33
CR30
Hu (CR32) 2019; 46
Wu (CR5) 2019; 11
Lee (CR36) 2019; 3
Cao, Duan, Yang, Yue, Chen (CR13) 2019; 19
Zhou (CR10) 2019; 50
Shin (CR15) 2016; 35
Fujioka (CR21) 2019; 37
Brem, Lenihan, Lieberman, Torrente (CR1) 2015; 204
Shin, Lee, Yun, Lee (CR24) 2019; 38
Byra (CR31) 2020; 61
Han (CR17) 2017; 62
Cheplygina, de Bruijne, Pluim (CR9) 2019; 54
Kim, Kim, Kim, Kim (CR6) 2021; 40
Yap (CR23) 2018; 22
Park (CR20) 2019; 98
CR8
Anguita-Ruiz, Segura-Delgado, Alcalá, Aguilera, Alcalá-Fdez (CR34) 2020; 16
Xian, Zhang, Cheng, Xu, Zhang, Ding (CR28) 2018; 79
CR29
Du (CR14) 2018; 46
CR25
Raza, Goldkamp, Chikarmane, Birdwell (CR27) 2010; 30
Byra (CR18) 2019; 46
Tanaka, Chiu, Watanabe, Kaoku, Yamaguchi (CR22) 2019; 64
Mishra, Chaudhury, Sarkar, Soin (CR12) 2019; 66
Leonoor (CR39) 2021; 1177
Vourtsis, Berg (CR2) 2019; 29
H Lee (3806_CR36) 2019; 3
H Tanaka (3806_CR22) 2019; 64
3806_CR29
M Byra (3806_CR18) 2019; 46
D Mishra (3806_CR12) 2019; 66
M Xian (3806_CR28) 2018; 79
3806_CR25
Y Hu (3806_CR32) 2019; 46
SY Shin (3806_CR24) 2019; 38
3806_CR8
S Raza (3806_CR27) 2010; 30
HC Shin (3806_CR15) 2016; 35
Y Du (3806_CR14) 2018; 46
MH Yap (3806_CR23) 2018; 22
T Fujioka (3806_CR21) 2019; 37
RF Brem (3806_CR1) 2015; 204
V Cheplygina (3806_CR9) 2019; 54
A Anguita-Ruiz (3806_CR34) 2020; 16
EB Mendelson (3806_CR4) 2019; 212
3806_CR16
3806_CR38
3806_CR37
Z Cao (3806_CR13) 2019; 19
S Han (3806_CR17) 2017; 62
3806_CR11
3806_CR33
EM Leonoor (3806_CR39) 2021; 1177
JB Lamy (3806_CR35) 2019; 94
AS Becker (3806_CR19) 2018; 91
3806_CR30
M Byra (3806_CR31) 2020; 61
WA Berg (3806_CR3) 2006; 241
J Zhou (3806_CR10) 2019; 50
HJ Park (3806_CR20) 2019; 98
AS Hong (3806_CR26) 2005; 184
A Vourtsis (3806_CR2) 2019; 29
M Jager (3806_CR7) 2008; 17
GG Wu (3806_CR5) 2019; 11
J Kim (3806_CR6) 2021; 40
References_xml – volume: 62
  start-page: 7714
  year: 2017
  end-page: 7728
  ident: CR17
  article-title: A deep learning framework for supporting the classification of breast lesions in ultrasound images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa82ec
– volume: 91
  start-page: 20170576
  year: 2018
  ident: CR19
  article-title: Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study
  publication-title: Br. J. Radiol.
– volume: 98
  start-page: e14146
  year: 2019
  ident: CR20
  article-title: A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: Added value for the inexperienced breast radiologist
  publication-title: Medicine
  doi: 10.1097/MD.0000000000014146
– volume: 184
  start-page: 1260
  year: 2005
  end-page: 1265
  ident: CR26
  article-title: BI-RADS for sonography: positive and negative predictive values of sonographic features
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/ajr.184.4.01841260
– volume: 17
  start-page: 1700
  year: 2008
  end-page: 1708
  ident: CR7
  article-title: Weakly supervised learning of a classifier for unusual event detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2001043
– ident: CR16
– ident: CR37
– ident: CR30
– volume: 212
  start-page: 293
  year: 2019
  end-page: 299
  ident: CR4
  article-title: Artificial intelligence in breast imaging: Potentials and limitations
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/AJR.18.20532
– volume: 46
  start-page: 1988
  year: 2018
  end-page: 1999
  ident: CR14
  article-title: Classification of tumor epithelium and stroma by exploiting image features learned by deep convolutional neural networks
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2095-6
– volume: 61
  start-page: 102027
  year: 2020
  ident: CR31
  article-title: Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102027
– ident: CR33
– volume: 16
  start-page: e1007792
  year: 2020
  ident: CR34
  article-title: eXplainable artificial intelligence (XAI) for the identification of biologically relevant gene expression patterns in longitudinal human studies, insights from obesity research
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1007792
– ident: CR29
– volume: 204
  start-page: 234
  year: 2015
  end-page: 240
  ident: CR1
  article-title: Screening breast ultrasound: past, present, and future
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/AJR.13.12072
– ident: CR8
– volume: 3
  start-page: 173
  year: 2019
  end-page: 182
  ident: CR36
  article-title: An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets
  publication-title: Nat Biomed Eng.
  doi: 10.1038/s41551-018-0324-9
– ident: CR25
– volume: 22
  start-page: 1218
  year: 2018
  end-page: 1226
  ident: CR23
  article-title: Automated breast ultrasound lesions detection using convolutional neural networks
  publication-title: IEEE J. Biomed Health Inform.
  doi: 10.1109/JBHI.2017.2731873
– volume: 38
  start-page: 762
  year: 2019
  end-page: 774
  ident: CR24
  article-title: Joint weakly and semi-supervised deep learning for localization and classification of masses in breast ultrasound images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2872031
– volume: 50
  start-page: 1144
  year: 2019
  end-page: 1151
  ident: CR10
  article-title: Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images
  publication-title: J. Magn. Reson. Imaging.
  doi: 10.1002/jmri.26721
– volume: 54
  start-page: 280
  year: 2019
  end-page: 296
  ident: CR9
  article-title: Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.009
– volume: 37
  start-page: 466
  year: 2019
  end-page: 472
  ident: CR21
  article-title: Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-019-00831-5
– volume: 40
  start-page: 183
  year: 2021
  end-page: 190
  ident: CR6
  article-title: Artificial intelligence in breast ultrasonography
  publication-title: Ultrasonography
  doi: 10.14366/usg.20117
– ident: CR38
– volume: 19
  start-page: 51
  year: 2019
  ident: CR13
  article-title: An experimental study on breast lesion detection and classification from ultrasound images using deep learning architectures
  publication-title: BMC Med. Imaging.
  doi: 10.1186/s12880-019-0349-x
– volume: 46
  start-page: 746
  year: 2019
  end-page: 755
  ident: CR18
  article-title: Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion
  publication-title: Med. Phys.
  doi: 10.1002/mp.13361
– volume: 46
  start-page: 215
  year: 2019
  end-page: 228
  ident: CR32
  article-title: Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model
  publication-title: Med Phys.
  doi: 10.1002/mp.13268
– volume: 29
  start-page: 1762
  year: 2019
  end-page: 1777
  ident: CR2
  article-title: Breast density implications and supplemental screening
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5668-8
– ident: CR11
– volume: 64
  start-page: 235013
  year: 2019
  ident: CR22
  article-title: Computer-aided diagnosis system for breast ultrasound images using deep learning
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab5093
– volume: 94
  start-page: 42
  year: 2019
  end-page: 53
  ident: CR35
  article-title: Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach
  publication-title: Artif Intell Med.
  doi: 10.1016/j.artmed.2019.01.001
– volume: 30
  start-page: 1199
  year: 2010
  end-page: 1213
  ident: CR27
  article-title: US of breast masses categorized as BI-RADS 3, 4, and 5: pictorial review of factors influencing clinical management
  publication-title: Radiographics
  doi: 10.1148/rg.305095144
– volume: 241
  start-page: 55
  year: 2006
  end-page: 365
  ident: CR3
  article-title: Operator dependence of physician-performed whole-breast US: Lesion detection and characterization
  publication-title: Radiology
  doi: 10.1148/radiol.2412051710
– volume: 1177
  start-page: 338522
  year: 2021
  ident: CR39
  article-title: Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized shapley additive explanations
  publication-title: Analytica Chimica Acta.
  doi: 10.1016/j.aca.2021.338522
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: CR15
  article-title: Deep convolutional neural networks for computer-aided detection: CNN Architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2016.2528162
– volume: 11
  start-page: 19
  year: 2019
  end-page: 26
  ident: CR5
  article-title: Artificial intelligence in breast ultrasound
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v11.i2.19
– volume: 66
  start-page: 1637
  year: 2019
  end-page: 1648
  ident: CR12
  article-title: Ultrasound image segmentation: A deeply supervised network with attention to boundaries
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2877577
– volume: 79
  start-page: 340
  year: 2018
  end-page: 355
  ident: CR28
  article-title: Automatic breast ultrasound image segmentation: A survey
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.02.012
– volume: 98
  start-page: e14146
  year: 2019
  ident: 3806_CR20
  publication-title: Medicine
  doi: 10.1097/MD.0000000000014146
– volume: 66
  start-page: 1637
  year: 2019
  ident: 3806_CR12
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2877577
– ident: 3806_CR38
– volume: 30
  start-page: 1199
  year: 2010
  ident: 3806_CR27
  publication-title: Radiographics
  doi: 10.1148/rg.305095144
– volume: 40
  start-page: 183
  year: 2021
  ident: 3806_CR6
  publication-title: Ultrasonography
  doi: 10.14366/usg.20117
– volume: 46
  start-page: 746
  year: 2019
  ident: 3806_CR18
  publication-title: Med. Phys.
  doi: 10.1002/mp.13361
– volume: 29
  start-page: 1762
  year: 2019
  ident: 3806_CR2
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-018-5668-8
– volume: 212
  start-page: 293
  year: 2019
  ident: 3806_CR4
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/AJR.18.20532
– volume: 204
  start-page: 234
  year: 2015
  ident: 3806_CR1
  publication-title: AJR Am. J. Roentgenol.
  doi: 10.2214/AJR.13.12072
– volume: 54
  start-page: 280
  year: 2019
  ident: 3806_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.009
– volume: 19
  start-page: 51
  year: 2019
  ident: 3806_CR13
  publication-title: BMC Med. Imaging.
  doi: 10.1186/s12880-019-0349-x
– volume: 3
  start-page: 173
  year: 2019
  ident: 3806_CR36
  publication-title: Nat Biomed Eng.
  doi: 10.1038/s41551-018-0324-9
– volume: 17
  start-page: 1700
  year: 2008
  ident: 3806_CR7
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2001043
– volume: 62
  start-page: 7714
  year: 2017
  ident: 3806_CR17
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa82ec
– ident: 3806_CR25
  doi: 10.1117/12.2549203
– ident: 3806_CR11
  doi: 10.1145/3233547.3233573
– volume: 91
  start-page: 20170576
  year: 2018
  ident: 3806_CR19
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20170576
– volume: 38
  start-page: 762
  year: 2019
  ident: 3806_CR24
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2872031
– volume: 94
  start-page: 42
  year: 2019
  ident: 3806_CR35
  publication-title: Artif Intell Med.
  doi: 10.1016/j.artmed.2019.01.001
– volume: 61
  start-page: 102027
  year: 2020
  ident: 3806_CR31
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102027
– ident: 3806_CR30
– volume: 16
  start-page: e1007792
  year: 2020
  ident: 3806_CR34
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1007792
– volume: 64
  start-page: 235013
  year: 2019
  ident: 3806_CR22
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab5093
– volume: 11
  start-page: 19
  year: 2019
  ident: 3806_CR5
  publication-title: World J. Radiol.
  doi: 10.4329/wjr.v11.i2.19
– volume: 79
  start-page: 340
  year: 2018
  ident: 3806_CR28
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.02.012
– ident: 3806_CR29
  doi: 10.1007/978-3-319-24574-4_28
– ident: 3806_CR33
  doi: 10.1109/ICCV.2017.74
– volume: 46
  start-page: 1988
  year: 2018
  ident: 3806_CR14
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2095-6
– volume: 50
  start-page: 1144
  year: 2019
  ident: 3806_CR10
  publication-title: J. Magn. Reson. Imaging.
  doi: 10.1002/jmri.26721
– volume: 35
  start-page: 1285
  year: 2016
  ident: 3806_CR15
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2016.2528162
– volume: 46
  start-page: 215
  year: 2019
  ident: 3806_CR32
  publication-title: Med Phys.
  doi: 10.1002/mp.13268
– ident: 3806_CR37
  doi: 10.1109/CVPR.2016.319
– ident: 3806_CR8
  doi: 10.1109/CVPR.2015.7298668
– volume: 184
  start-page: 1260
  year: 2005
  ident: 3806_CR26
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/ajr.184.4.01841260
– volume: 37
  start-page: 466
  year: 2019
  ident: 3806_CR21
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-019-00831-5
– volume: 241
  start-page: 55
  year: 2006
  ident: 3806_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.2412051710
– ident: 3806_CR16
  doi: 10.1109/CVPR.2017.369
– volume: 22
  start-page: 1218
  year: 2018
  ident: 3806_CR23
  publication-title: IEEE J. Biomed Health Inform.
  doi: 10.1109/JBHI.2017.2731873
– volume: 1177
  start-page: 338522
  year: 2021
  ident: 3806_CR39
  publication-title: Analytica Chimica Acta.
  doi: 10.1016/j.aca.2021.338522
SSID ssj0000529419
Score 2.5612674
Snippet Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We aimed to...
Abstract Conventional deep learning (DL) algorithm requires full supervision of annotating the region of interest (ROI) that is laborious and often biased. We...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24382
SubjectTerms 631/67
631/67/1347
692/4028
692/700
692/700/1421/1860
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Annotations
Automation
Breast - diagnostic imaging
Breast - pathology
Breast cancer
Breast Neoplasms - diagnosis
Breast Neoplasms - diagnostic imaging
Case-Control Studies
Deep Learning
Diagnosis, Differential
Differential diagnosis
Female
Follow-Up Studies
Humanities and Social Sciences
Humans
Image Interpretation, Computer-Assisted - methods
Localization
Middle Aged
multidisciplinary
Neural Networks, Computer
Prognosis
Retrospective Studies
ROC Curve
Science
Science (multidisciplinary)
Ultrasonic imaging
Ultrasonography, Mammary - methods
Ultrasound
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hqpW4oJbyCLTISNyoVcd2YucIqBW9VBxA9GYlfsCKVXa12UXqv-_Yzi7d8rr0FiVOMvo8tr-Rx98AvKl4rerKSSoq3VEZvKeNrhz1vsS5r24xZHCp2IS6vNRXV82nW6W-Yk5YlgfOwJ0GXLFcVwZuhZK1rjGgUjJEYa1Oq9CmY75MNbeCqazqzRtZNuMpGSb06YArVTxNxmMGkcYwWm2tREmw_08s8_dkyTs7pmkhOt-HRyODJO-y5QfwwPePYS_XlLw-hIuvvv0xvabDah6ngcE74ryfk7E8xDeCLJWspviTIVZUIi7n2k0GMgukiynqS2KjKyyewJfzs88fPtKxXgK1yLuW1AdnmQxaMBcs67gIAumS143igQWZrlqBA9RZXvkqcMdbnO-i6F7oAvPiKez0s94_ByI720YpOOd4kEog1kgLpFeyqZHQMFZAucbO2FFMPNa0mJq0qS20yXgbxNskvI0q4O3mnXmW0vhn6_exSzYtowx2uoHOYUbnMP9zjgKO1h1qxrE5mCiahqQIiVoBrzePcVTFrZK297NVbqMUfrQp4Fnu_40lQiIUGIcWoLY8Y8vU7Sf95HtS7tY1hrusKuBk7UO_zPo7FC_uA4qX8JBH5y855eUR7CwXK38Mu_bncjIsXqXRcwM4Nhmy
  priority: 102
  providerName: Directory of Open Access Journals
Title Weakly-supervised deep learning for ultrasound diagnosis of breast cancer
URI https://link.springer.com/article/10.1038/s41598-021-03806-7
https://www.ncbi.nlm.nih.gov/pubmed/34934144
https://www.proquest.com/docview/2612223893
https://www.proquest.com/docview/2612773749
https://pubmed.ncbi.nlm.nih.gov/PMC8692405
https://doaj.org/article/f190db1f2c37468683774f2544b87fa8
Volume 11
WOSCitedRecordID wos000732567600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RBqReeD8MJTISN7Bq76696xOiqBU9NLIQiHCy7H2UiMhO4wSp_56ZtZMqPHrhsrLidbTeee-MvwF4nbJMZqkREU9VHQlnbZSr1ETWJqj7sgpDBuObTcjJRE2neTEcuHVDWeVGJ3pFbVpNZ-RHBHWFpgzN67vFZURdoyi7OrTQ2IMRejYJlXSds2J7xkJZLJHkw7cyMVdHHdor-qaMUR2RwmBa7tgjD9v_N1_zz5LJ3_Km3hyd3vvfF7kPdwdHNHzfc84DuGWbh3Cnb0159QjOvtrqx_wq6tYL0iadNaGxdhEOXSYuQnR2w_UcV9lRY6bQ9CV7sy5sXVhTpfsq1MRRy8fw5fTk84eP0dB2IdLovq0i64yOhVM8Nk7HNeOOo9dlVS6Zi53wVxVHOTeapTZ1zLAK1SZh97naxZY_gf2mbewzCEWtK0KUM4Y5IbmoFXoXwkqRZ-gXxXEAyWbzSz1gklNrjHnpc-NclT3BSiRY6QlWygDebJ9Z9IgcN84-JppuZxKatv-hXV6Ug3CWDr0iUyeOaS5FpjIM2qVwBN5WK-kqFcDhhpTlIOJdeU3HAF5tb6NwUsalamy77udIiX-aB_C0Z6DtSrjArcBwNgC5w1o7S92908y-ewBwlWHUHKcBvN0w4fWy_r0Vz29-ixdwwEguEhax5BD2V8u1fQm39c_VrFuOYU9OpR_VGEbHJ5Pi09ifX4y9yNEocRwVZ-fFt1-b9S-W
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70eggJHgBFET24mdA0K8qq5aVj0U0ZubxHZZscoum13Q_il-IzN5bLU8euuBW5Q4lmN_M_M5M54BeJbwVKWJlaFIdBFK71yY6cSGzsWo-9Ictwy2KTahhkN9dJQdbMDP_iwMhVX2OrFR1HZS0j_ybUp1haYMzevr6beQqkaRd7UvodHCYs8tf-CWrX41eI_r-5zznQ-H73bDrqpAWCI7mYfO2zKSXovI-jIquPACSYXTmeI-8rK5ygXC2JY8cYnnlueoFSg1nS985AT2ewEuSsosRqGC_GD1T4e8ZjLOurM5kdDbNdpHOsPGKW5J4-Zdrdm_pkzA37jtnyGav_lpG_O3c_1_m7gbcK0j2uxNKxk3YcNVt-ByW3pzeRsGn13-dbwM68WUtGXtLLPOTVlXReOEIZlnizHOSk2Fp5htQxJHNZt4VlAk_5yVJDGzO_DpXL7jLmxWk8rdByaLMqeMedZyL5WQhUb2JJ2SWYq8L4oCiPvFNmWXc51Kf4xN4_sX2rQAMQgQ0wDEqABerN6ZthlHzmz9ljC0aknZwpsbk9mJ6ZSP8cj6bBF7XgolU51qgaTfU3K6Qiuf6wC2euiYToXV5hQ3ATxdPUblQx6lvHKTRdtGKew0C-BeC9jVSITEqcDtegBqDcprQ11_Uo2-NAnOdZoh0UwCeNmD_nRY_56KB2d_xRO4snv4cd_sD4Z7D-EqJ5mMecjjLdiczxbuEVwqv89H9exxI9QMjs9bGH4BhiGFxw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD8CCxgJThA1sZ3YOSAELBXVQtUDiN2TSWJ7qaiS0rSg_jV-HeO8VuWxtz1wixLHcuxvZr6JxzMAjyMaizjS3GeRzHxujfETGWnfmBB1X5yiy6DrYhNiMpGHh8l0B352Z2FcWGWnE2tFrcvc_SMfulRXaMrQvA5tGxYx3R-9WHzzXQUpt9PaldNoIHJgNj_Qfauej_dxrZ9QOnrz4fVbv60w4OfIVFa-sToPuJUs0DYPMsosQ4JhZCKoDSyvr1KGkNY5jUxkqaYpagiXps5mNjAM-z0Hu0jJOR3A7nT8fnrU_-Fxe2g8TNqTOgGTwwqtpTvRRl0Uk0RXXmxZw7powN-Y7p8Bm7_t2tbGcHTlf57Gq3C5peDkZSMz12DHFNfhQlOUc3MDxp9M-nW-8av1wunRymiijVmQtr7GMUGaT9ZznKHKlaQiuglWnFWktCRzMf4rkjtZWt6Ej2fyHbdgUJSFuQOEZ3nqculpTS0XjGcSeRU3gicxMsIg8CDsFl7lbTZ2VxRkruqoACZVAxaFYFE1WJTw4Gn_zqLJRXJq61cOT31Ll0e8vlEuj1WrlpRFPqiz0NKcCR7LWDJ0B6xLW5dJYVPpwV4HI9Uqt0qdYMiDR_1jVEturyktTLlu2giBnSYe3G7A24-EcZwKdOQ9EFuw3hrq9pNi9qVOfS7jBClo5MGzTgBOhvXvqbh7-lc8hIsoA-rdeHJwDy5RJ54h9Wm4B4PVcm3uw_n8-2pWLR-0Ek7g81lLwy8ngZAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weakly-supervised+deep+learning+for+ultrasound+diagnosis+of+breast+cancer&rft.jtitle=Scientific+reports&rft.au=Kim%2C+Jaeil&rft.au=Kim%2C+Hye+Jung&rft.au=Kim%2C+Chanho&rft.au=Lee%2C+Jin+Hwa&rft.date=2021-12-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-03806-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_03806_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon