Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion

In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model comb...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; pp. 6491 - 14
Main Authors: Peng, Cheng, Chen, Yufeng, Gui, Weihua, Tang, Zhaohui, Li, Changyun
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 20.04.2022
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model.
AbstractList In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model.
Abstract In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model.
In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model.In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model.
ArticleNumber 6491
Author Gui, Weihua
Chen, Yufeng
Tang, Zhaohui
Li, Changyun
Peng, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Peng
  fullname: Peng, Cheng
  email: chengpeng@csu.edu.cn
  organization: Hunan University of Technology, Central South University
– sequence: 2
  givenname: Yufeng
  surname: Chen
  fullname: Chen, Yufeng
  organization: Hunan University of Technology
– sequence: 3
  givenname: Weihua
  surname: Gui
  fullname: Gui, Weihua
  organization: Central South University
– sequence: 4
  givenname: Zhaohui
  surname: Tang
  fullname: Tang, Zhaohui
  organization: Central South University
– sequence: 5
  givenname: Changyun
  surname: Li
  fullname: Li, Changyun
  organization: Hunan University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35444248$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rFTEUhoNUbK39Ay4k4MbNaD5nJhtBih-FgiDdhzOTkzGXuck1mZH6783tbbXtotkknDzvy5uc85IcxRSRkNecvedM9h-K4tr0DROi4Ywb3ohn5EQwpRshhTi6dz4mZ6VsWF1aGMXNC3IstVJKqP6E2B-4hRBDnOha0K8znYNHustpiqmEQpOny5qH5CFSjFOIWOgABR1NkTrEHfUIlUCK10uGcQm1DtFRv5Z6fEWee5gLnt3up-Tqy-er82_N5fevF-efLptRK7Y0BkG6FkbWC-4cyN4zZrrOwOgH0J1Ax7VwvfGaCfTone4UCoHSDci0lKfk4mDrEmzsLoct5D82QbA3hZQnC3kJ44zWIB_6nrdGdly1Qwu8VeiGTpsROgZQvT4evHbrsEU3Yqzvmh-YPryJ4aed0m9rmOCS62rw7tYgp18rlsVuQxlxniFiWosVrZai7TqlKvr2EbpJa471p_aU6KTisq3Um_uJ_kW5a2MF-gMw5lRKRm_HsMC-FTVgmC1ndj809jA0tg6NvRkaK6pUPJLeuT8pkgdRqXCcMP-P_YTqLz7x1MI
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108186
crossref_primary_10_1088_1361_6501_ad3ea0
crossref_primary_10_1109_TCYB_2022_3228524
crossref_primary_10_1007_s11668_024_01922_w
crossref_primary_10_1088_1361_665X_acee37
crossref_primary_10_3390_electronics13142741
crossref_primary_10_1007_s00170_024_14000_0
crossref_primary_10_1016_j_advengsoft_2024_103645
crossref_primary_10_3390_s23249748
Cites_doi 10.1016/j.neucom.2017.01.053
10.1016/j.compind.2019.02.004
10.1016/j.ymssp.2019.05.005
10.3390/app10031062
10.1109/TNNLS.2016.2582798
10.1109/TII.2018.2868687
10.1142/S0218001415510131
10.1016/j.neucom.2017.11.062
10.1016/j.ress.2017.11.021
10.1109/ICPHM.2017.7998311
10.21629/JSEE.2020.01.19
10.1155/2018/3813029
10.1109/PHM.2008.4711414
10.1016/j.neucom.2019.07.075
10.1109/ACCESS.2019.2943076
10.1007/s40430-019-2010-6
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-10191-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_9e1b8816937146b6a164edb759ca70aa
PMC9021315
35444248
10_1038_s41598_022_10191_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Hunan Province
  grantid: 2020JJ4275
– fundername: Natural Science Foundation of China
  grantid: 61871432
– fundername: ;
  grantid: 2020JJ4275
– fundername: ;
  grantid: 61871432
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-9ea3d6ac0821dda38f009779acfba572ed152d89f502efefd574e22e3dbe0533
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784990500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Mon Nov 10 04:33:46 EST 2025
Tue Nov 04 01:59:42 EST 2025
Thu Sep 04 16:35:47 EDT 2025
Tue Oct 07 09:18:38 EDT 2025
Thu Jan 02 22:53:45 EST 2025
Sat Nov 29 06:25:51 EST 2025
Tue Nov 18 21:31:48 EST 2025
Fri Feb 21 02:36:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-9ea3d6ac0821dda38f009779acfba572ed152d89f502efefd574e22e3dbe0533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/9e1b8816937146b6a164edb759ca70aa
PMID 35444248
PQID 2652734136
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9e1b8816937146b6a164edb759ca70aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021315
proquest_miscellaneous_2653267744
proquest_journals_2652734136
pubmed_primary_35444248
crossref_citationtrail_10_1038_s41598_022_10191_2
crossref_primary_10_1038_s41598_022_10191_2
springer_journals_10_1038_s41598_022_10191_2
PublicationCentury 2000
PublicationDate 2022-04-20
PublicationDateYYYYMMDD 2022-04-20
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Rigamonti, Baraldi, Zio, Roychoudhury, Goebel, Poll (CR14) 2018; 281
Berghout, Mouss, Kadri (CR8) 2018; 10
Wang, Gogu, Binaud (CR2) 2018; 232
CR19
Que, Jin, Xu (CR1) 2021; 15
CR18
Yu, Kim, Mechefske (CR11) 2019; 129
CR16
CR12
CR10
Zhao, Wu, Rong (CR7) 2017; 51
Zhao, Peng, Yang (CR3) 2021; 14
Famouri, Taheri, Azimifar (CR17) 2015; 29
Xia, Li, Shu (CR9) 2018; 15
Zhang, Lim, Qin, Tan (CR21) 2017; 28
Hua, Zheng, Péra, Gao (CR15) 2020; 265
CR6
CR5
Li, Ding, Sun (CR24) 2018; 172
CR29
CR28
CR27
Zhong, Xie, Lin (CR13) 2017; 238
CR25
Al-Dulaimi, Zabihi, Asif (CR23) 2019; 108
CR22
Zhang, Lim, Qin, Tan (CR26) 2017; 28
CR20
Cao, Jia, Ding (CR4) 2021; 178
S Zhao (10191_CR3) 2021; 14
Y Cao (10191_CR4) 2021; 178
YW Wang (10191_CR2) 2018; 232
T Berghout (10191_CR8) 2018; 10
C Zhang (10191_CR26) 2017; 28
M Famouri (10191_CR17) 2015; 29
10191_CR16
GS Zhao (10191_CR7) 2017; 51
10191_CR18
10191_CR19
C Zhang (10191_CR21) 2017; 28
M Xia (10191_CR9) 2018; 15
M Rigamonti (10191_CR14) 2018; 281
Z Hua (10191_CR15) 2020; 265
10191_CR10
10191_CR12
10191_CR27
Z Que (10191_CR1) 2021; 15
10191_CR28
A Al-Dulaimi (10191_CR23) 2019; 108
10191_CR29
10191_CR5
WN Yu (10191_CR11) 2019; 129
10191_CR6
X Li (10191_CR24) 2018; 172
10191_CR20
10191_CR22
S Zhong (10191_CR13) 2017; 238
10191_CR25
References_xml – volume: 238
  start-page: 191
  issue: 1
  year: 2017
  end-page: 204
  ident: CR13
  article-title: Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.053
– volume: 14
  start-page: 102
  issue: 6
  year: 2021
  end-page: 125
  ident: CR3
  article-title: Health state estimation and remaining useful life prediction of power devices subject to noisy and aperiodic condition monitoring
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 178
  start-page: 109
  issue: 5
  year: 2021
  end-page: 127
  ident: CR4
  article-title: Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network
  publication-title: Measurement
– ident: CR22
– ident: CR18
– volume: 232
  start-page: 690
  issue: 6
  year: 2018
  end-page: 709
  ident: CR2
  article-title: Predictive airframe maintenance strategies using model-based prognostics
  publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
– ident: CR16
– ident: CR12
– ident: CR10
– ident: CR6
– volume: 108
  start-page: 186
  year: 2019
  end-page: 196
  ident: CR23
  article-title: A multimodal and hybrid deep neural network model for remaining useful life estimation
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.02.004
– ident: CR29
– volume: 129
  start-page: 764
  year: 2019
  end-page: 780
  ident: CR11
  article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.005
– volume: 10
  start-page: 1062
  issue: 3
  year: 2018
  ident: CR8
  article-title: Aircraft engines remaining useful life prediction with an improved online sequential extreme learning machine
  publication-title: Appl. Sci.
  doi: 10.3390/app10031062
– volume: 28
  start-page: 2306
  issue: 10
  year: 2017
  end-page: 2318
  ident: CR21
  article-title: Multi objective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582798
– ident: CR25
– ident: CR27
– volume: 15
  start-page: 10
  issue: 10
  year: 2021
  end-page: 28
  ident: CR1
  article-title: Remaining useful life prediction for bearings based on a gated recurrent unit
  publication-title: IEEE Trans. Instrum. Meas.
– ident: CR19
– volume: 15
  start-page: 3703
  issue: 6
  year: 2018
  end-page: 3711
  ident: CR9
  article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2868687
– volume: 28
  start-page: 2306
  year: 2017
  end-page: 2318
  ident: CR26
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582798
– volume: 29
  start-page: 1551013
  issue: 08
  year: 2015
  ident: CR17
  article-title: Fast linear SVM validation based on early stopping in iterative learning
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001415510131
– volume: 265
  start-page: 123
  issue: 114791
  year: 2020
  end-page: 146
  ident: CR15
  article-title: Remaining useful life prediction of PEMFC systems based on the multi-input echo state network
  publication-title: Appl. Energy
– volume: 281
  start-page: 121
  issue: 1
  year: 2018
  end-page: 138
  ident: CR14
  article-title: Ensemble of optimized echo state networks for remaining useful life prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.062
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR24
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– ident: CR5
– volume: 51
  start-page: 150
  issue: 11
  year: 2017
  end-page: 155
  ident: CR7
  article-title: A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine
  publication-title: J. Xi'an Jiao Tong Univ.
– ident: CR28
– ident: CR20
– volume: 265
  start-page: 123
  issue: 114791
  year: 2020
  ident: 10191_CR15
  publication-title: Appl. Energy
– ident: 10191_CR19
– volume: 51
  start-page: 150
  issue: 11
  year: 2017
  ident: 10191_CR7
  publication-title: J. Xi'an Jiao Tong Univ.
– volume: 178
  start-page: 109
  issue: 5
  year: 2021
  ident: 10191_CR4
  publication-title: Measurement
– ident: 10191_CR25
  doi: 10.1109/ICPHM.2017.7998311
– ident: 10191_CR22
  doi: 10.1109/ICPHM.2017.7998311
– volume: 172
  start-page: 1
  year: 2018
  ident: 10191_CR24
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– volume: 232
  start-page: 690
  issue: 6
  year: 2018
  ident: 10191_CR2
  publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab.
– volume: 15
  start-page: 3703
  issue: 6
  year: 2018
  ident: 10191_CR9
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2868687
– ident: 10191_CR5
  doi: 10.21629/JSEE.2020.01.19
– volume: 281
  start-page: 121
  issue: 1
  year: 2018
  ident: 10191_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.062
– volume: 108
  start-page: 186
  year: 2019
  ident: 10191_CR23
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.02.004
– ident: 10191_CR27
– ident: 10191_CR16
– ident: 10191_CR10
  doi: 10.1155/2018/3813029
– ident: 10191_CR18
  doi: 10.1109/PHM.2008.4711414
– volume: 238
  start-page: 191
  issue: 1
  year: 2017
  ident: 10191_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.053
– volume: 10
  start-page: 1062
  issue: 3
  year: 2018
  ident: 10191_CR8
  publication-title: Appl. Sci.
  doi: 10.3390/app10031062
– ident: 10191_CR20
  doi: 10.1016/j.neucom.2019.07.075
– volume: 14
  start-page: 102
  issue: 6
  year: 2021
  ident: 10191_CR3
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10191_CR29
  doi: 10.1109/ACCESS.2019.2943076
– volume: 29
  start-page: 1551013
  issue: 08
  year: 2015
  ident: 10191_CR17
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001415510131
– ident: 10191_CR28
– volume: 15
  start-page: 10
  issue: 10
  year: 2021
  ident: 10191_CR1
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10191_CR6
  doi: 10.1109/ICPHM.2017.7998311
– ident: 10191_CR12
  doi: 10.1007/s40430-019-2010-6
– volume: 28
  start-page: 2306
  issue: 10
  year: 2017
  ident: 10191_CR21
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582798
– volume: 129
  start-page: 764
  year: 2019
  ident: 10191_CR11
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.005
– volume: 28
  start-page: 2306
  year: 2017
  ident: 10191_CR26
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582798
SSID ssj0000529419
Score 2.4405534
Snippet In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to...
Abstract In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6491
SubjectTerms 639/166/988
639/705/258
Accuracy
Aircraft
Algorithms
Computer Simulation
Crack propagation
Datasets
Deep learning
Engines
Experiments
Gene Fusion
Humanities and Social Sciences
Methods
multidisciplinary
Neural networks
Noise
Optimization
Prediction models
Prognosis
Science
Science (multidisciplinary)
Useful life
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb2igICNxg6iJ7cTOCQGi4oAqhHrYm-XEY1hpmyybTSX-PWMnm2p59MItih3Jzrw-e-xvAF6VWtIqucjJ0rxMZVnbVKP0KTopEElDyjqSuH5Wp6d6sai-TBtu_XSscucTo6N2XRP2yI95GajCyOWWb9c_0lA1KmRXpxIa1-FGKJsd9Fwt1LzHErJYMq-muzKZ0Mc9xatwp4xWYKSLVZ7yvXgUafv_hjX_PDL5W940hqOTu_87kXtwZwKi7N2oOffhGrYP4NZYmvLnQzBf8XwsHsGGHv2wYqulRxaOc7Vdv-xZ5xlFK4qhtmUYSQ17FkKiY13LHOKaeYykoYzc_2a8PsFs65gfwgbdIzg7-Xj24VM6FWNIGwJ127RCK1xpG4IMuXNWaB-ugKjKNr62heLoCAk4Xfki4-jRu0JJ5ByFq0P1CfEYDtquxUNgXKAkWOaV4w096DortSucqAvpCtQugXwnEdNMROWhXsbKxIS50GaUoiEpmihFwxN4PX-zHmk6ruz9Pgh67hkotuOLbvPNTBZrKsxrrQNXjaJoUpeWFpboalVUjVWZtQkc7eRrJrvvzaVwE3g5N5PFhjSMbbEbYh_CzAS7ZQJPRq2aRyIKKSWXOgG1p297Q91vaZffIyt4RWhN5EUCb3aaeTmsf_-Kp1fP4hnc5sFYMknu9AgOtpsBn8PN5mK77DcvorX9AnSJMYw
  priority: 102
  providerName: ProQuest
Title Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion
URI https://link.springer.com/article/10.1038/s41598-022-10191-2
https://www.ncbi.nlm.nih.gov/pubmed/35444248
https://www.proquest.com/docview/2652734136
https://www.proquest.com/docview/2653267744
https://pubmed.ncbi.nlm.nih.gov/PMC9021315
https://doaj.org/article/9e1b8816937146b6a164edb759ca70aa
Volume 12
WOSCitedRecordID wos000784990500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA66q-BF_G11HSJ407JtkjbJ0ZVdFNyhLHsYTyFtXnBgbJfpVPC_9yXtjDv-vHgJpUkh5L2X70uTfI-QV6USuEoucow0L1JR1jZVIHwKTnAA9JCyjiKuH-V8rhYLXV1L9RXOhI3ywOPAHWvIa6WCZIjEoK5Li_weXC0L3ViZ2UiNMqmvLaZGVW-mRa6nWzIZV8c9IlW4TYZrL_RCnadsD4miYP_vWOavhyV_2jGNQHR2j9ydGCR9O_b8PrkB7QNye8wp-e0hMRfwZcz6QIce_LCiq6UHGs5htV2_7GnnKcIMgp9tKUQ1wp4GLHO0a6kDuKIeotonxXl7Pd57oLZ11A_hz9ojcnl2evnufTplUUgbZGObVIPlrrQNYn3unOXKh7sbUtvG17aQDBxCuFPaFxkDD94VUgBjwF0d0kbwx-Sg7Vp4SijjIJBPeelYgw-qzkrlCsfrQrgClEtIvh1Q00wK4yHRxcrEnW6uzGgEg0Yw0QiGJeT17purUV_jr61Pgp12LYM2dnyBHmMmjzH_8piEHG2tbKaA7Q0rgxIdInqZkJe7agy1sH9iW-iG2AbJLvJlkZAno1PsesILIQQTKiFyz132urpf0y4_RzlvjTSL50VC3mwd60e3_jwUz_7HUDwnd1iIiEzgbHlEDjbrAV6QW83XzbJfz8hNuZCxVDNyeHI6ry5mMcywPGdVKCWWh9WH8-rTdy9eKlo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DgUWCE7Vqr9f2-oAQr6pR0yhCPZTTau2dhUjBDnEC6o_iPzLrR6rw6K0HblG8idb2N_PN7O58A_A8kYKy5DgkS7PCF0mufYnC-mhEhEgISfJGxHWUjsfy5CSbbMHPvhbGHavsfWLjqE1VuDXyPZ44qTByucnr-TffdY1yu6t9C40WFod4-oNStvrV8D293xec7384fnfgd10F_IKik6WfoY5MogvivtAYHUnrahnSTBc213HK0RClGZnZOOBo0Zo4Fcg5RiZ3bRQi-ttLsC0I68EAtifDo8mn9aKO2zYTYdYV5wSR3KuJIF0RG6V8BP4s9PkGATZ9Av4W3P55RvO3jdqG__Zv_GdP7iZc7wJt9qa1jFuwheVtuNK23jy9A-ojfm2bY7BVjXY1Y7OpReaOq5VVPa1ZZRmxMcUIumTYiDbWzFG-YVXJDOKcWWxEURnR26ItD2G6NMyu3ALkXTi-iJu7B4OyKvEBMB6hoLDTpoYX9EHmQSJNbKI8FiZGaTwIewCoohNid_1AZqo5EBBJ1YJGEWhUAxrFPXi5_s28lSE5d_Rbh6v1SCch3nxRLT6rziOpDMNcSqfFkxJb5ommxBlNnsZZodNAaw92ejipzq_V6gxLHjxbXyaP5LaZdInVqhlDOQGlFcKD-y2I1zOJYkGWI6QH6Qa8N6a6eaWcfmlUzzOKRqMw9mC3N4Szaf37UTw8_y6ewtWD46ORGg3Hh4_gGnd2Ggiijh0YLBcrfAyXi-_Lab140pk6A3XBJvILo52RTg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaCE412YzuJc0CI0q6oWq2qqofeLCcew0olWTa7oP40_h3jPLZaHr31wG2VOCs7-eZlz3wD8DpRkqLkOCJJczKUSW5ChdKFaKVAJIQkeUPiephOJur0NDvagJ99LYxPq-x1YqOobVX4PfIhTzxVGKncZOi6tIij3fH72bfQd5DyJ619O40WIgd4_oPCt_rd_i596zecj_dOPn4Kuw4DYUGeyiLM0AibmILsYGStEcr5uoY0M4XLTZxytGTerMpcPOLo0Nk4lcg5Cpv7lgqC_vYabKaCYp4BbO7sTY6OVxs8_ghNRllXqDMSaliTsfQFbRT-kSBkUcjXjGHTM-Bvju6f-Zq_Hdo2tnB85z9-i3fhdueAsw-txNyDDSzvw422Jef5A9DH-LVtmsGWNdLs2dnUIfNpbGVVT2tWOUZWmnwHUzJsyBxr5l0By6qSWcQZc9iQpTJa9bwtG2GmtMwt_cbkQzi5isU9gkFZlfgEGBcoyR11qeUF_VD5KFE2tiKPpY1R2QCiHgy66AjafZ-QM90kCgilWwBpApBuAKR5AG9Xz8xaepJLR-94jK1Gemrx5kI1_6w7TaUzjHKlPEdPSlY0TwwF1GjzNM4Kk46MCWCrh5bu9F2tL3AVwKvVbdJU_vjJlFgtmzEUK1C4IQN43AJ6NRMRSym5VAGka1Bfm-r6nXL6pWFDz8hLFVEcwHYvFBfT-vereHr5Kl7CTZILfbg_OXgGt7gX2ZEki7IFg8V8ic_hevF9Ma3nLzqpZ6CvWEJ-Aagnmeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prognosis+of+turbofan+engines+based+on+deep+feature+extraction+and+fusion&rft.jtitle=Scientific+reports&rft.au=Cheng+Peng&rft.au=Yufeng+Chen&rft.au=Weihua+Gui&rft.au=Zhaohui+Tang&rft.date=2022-04-20&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-022-10191-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e1b8816937146b6a164edb759ca70aa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon