Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion
In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model comb...
Saved in:
| Published in: | Scientific reports Vol. 12; no. 1; pp. 6491 - 14 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
20.04.2022
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2045-2322, 2045-2322 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model. |
|---|---|
| AbstractList | In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model. Abstract In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model. In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model.In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model. |
| ArticleNumber | 6491 |
| Author | Gui, Weihua Chen, Yufeng Tang, Zhaohui Li, Changyun Peng, Cheng |
| Author_xml | – sequence: 1 givenname: Cheng surname: Peng fullname: Peng, Cheng email: chengpeng@csu.edu.cn organization: Hunan University of Technology, Central South University – sequence: 2 givenname: Yufeng surname: Chen fullname: Chen, Yufeng organization: Hunan University of Technology – sequence: 3 givenname: Weihua surname: Gui fullname: Gui, Weihua organization: Central South University – sequence: 4 givenname: Zhaohui surname: Tang fullname: Tang, Zhaohui organization: Central South University – sequence: 5 givenname: Changyun surname: Li fullname: Li, Changyun organization: Hunan University of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35444248$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1rFTEUhoNUbK39Ay4k4MbNaD5nJhtBih-FgiDdhzOTkzGXuck1mZH6783tbbXtotkknDzvy5uc85IcxRSRkNecvedM9h-K4tr0DROi4Ywb3ohn5EQwpRshhTi6dz4mZ6VsWF1aGMXNC3IstVJKqP6E2B-4hRBDnOha0K8znYNHustpiqmEQpOny5qH5CFSjFOIWOgABR1NkTrEHfUIlUCK10uGcQm1DtFRv5Z6fEWee5gLnt3up-Tqy-er82_N5fevF-efLptRK7Y0BkG6FkbWC-4cyN4zZrrOwOgH0J1Ax7VwvfGaCfTone4UCoHSDci0lKfk4mDrEmzsLoct5D82QbA3hZQnC3kJ44zWIB_6nrdGdly1Qwu8VeiGTpsROgZQvT4evHbrsEU3Yqzvmh-YPryJ4aed0m9rmOCS62rw7tYgp18rlsVuQxlxniFiWosVrZai7TqlKvr2EbpJa471p_aU6KTisq3Um_uJ_kW5a2MF-gMw5lRKRm_HsMC-FTVgmC1ndj809jA0tg6NvRkaK6pUPJLeuT8pkgdRqXCcMP-P_YTqLz7x1MI |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108186 crossref_primary_10_1088_1361_6501_ad3ea0 crossref_primary_10_1109_TCYB_2022_3228524 crossref_primary_10_1007_s11668_024_01922_w crossref_primary_10_1088_1361_665X_acee37 crossref_primary_10_3390_electronics13142741 crossref_primary_10_1007_s00170_024_14000_0 crossref_primary_10_1016_j_advengsoft_2024_103645 crossref_primary_10_3390_s23249748 |
| Cites_doi | 10.1016/j.neucom.2017.01.053 10.1016/j.compind.2019.02.004 10.1016/j.ymssp.2019.05.005 10.3390/app10031062 10.1109/TNNLS.2016.2582798 10.1109/TII.2018.2868687 10.1142/S0218001415510131 10.1016/j.neucom.2017.11.062 10.1016/j.ress.2017.11.021 10.1109/ICPHM.2017.7998311 10.21629/JSEE.2020.01.19 10.1155/2018/3813029 10.1109/PHM.2008.4711414 10.1016/j.neucom.2019.07.075 10.1109/ACCESS.2019.2943076 10.1007/s40430-019-2010-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1038/s41598-022-10191-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_9e1b8816937146b6a164edb759ca70aa PMC9021315 35444248 10_1038_s41598_022_10191_2 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Hunan Province grantid: 2020JJ4275 – fundername: Natural Science Foundation of China grantid: 61871432 – fundername: ; grantid: 2020JJ4275 – fundername: ; grantid: 61871432 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c540t-9ea3d6ac0821dda38f009779acfba572ed152d89f502efefd574e22e3dbe0533 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000784990500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2045-2322 |
| IngestDate | Mon Nov 10 04:33:46 EST 2025 Tue Nov 04 01:59:42 EST 2025 Thu Sep 04 16:35:47 EDT 2025 Tue Oct 07 09:18:38 EDT 2025 Thu Jan 02 22:53:45 EST 2025 Sat Nov 29 06:25:51 EST 2025 Tue Nov 18 21:31:48 EST 2025 Fri Feb 21 02:36:40 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-9ea3d6ac0821dda38f009779acfba572ed152d89f502efefd574e22e3dbe0533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/9e1b8816937146b6a164edb759ca70aa |
| PMID | 35444248 |
| PQID | 2652734136 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9e1b8816937146b6a164edb759ca70aa pubmedcentral_primary_oai_pubmedcentral_nih_gov_9021315 proquest_miscellaneous_2653267744 proquest_journals_2652734136 pubmed_primary_35444248 crossref_citationtrail_10_1038_s41598_022_10191_2 crossref_primary_10_1038_s41598_022_10191_2 springer_journals_10_1038_s41598_022_10191_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-20 |
| PublicationDateYYYYMMDD | 2022-04-20 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Rigamonti, Baraldi, Zio, Roychoudhury, Goebel, Poll (CR14) 2018; 281 Berghout, Mouss, Kadri (CR8) 2018; 10 Wang, Gogu, Binaud (CR2) 2018; 232 CR19 Que, Jin, Xu (CR1) 2021; 15 CR18 Yu, Kim, Mechefske (CR11) 2019; 129 CR16 CR12 CR10 Zhao, Wu, Rong (CR7) 2017; 51 Zhao, Peng, Yang (CR3) 2021; 14 Famouri, Taheri, Azimifar (CR17) 2015; 29 Xia, Li, Shu (CR9) 2018; 15 Zhang, Lim, Qin, Tan (CR21) 2017; 28 Hua, Zheng, Péra, Gao (CR15) 2020; 265 CR6 CR5 Li, Ding, Sun (CR24) 2018; 172 CR29 CR28 CR27 Zhong, Xie, Lin (CR13) 2017; 238 CR25 Al-Dulaimi, Zabihi, Asif (CR23) 2019; 108 CR22 Zhang, Lim, Qin, Tan (CR26) 2017; 28 CR20 Cao, Jia, Ding (CR4) 2021; 178 S Zhao (10191_CR3) 2021; 14 Y Cao (10191_CR4) 2021; 178 YW Wang (10191_CR2) 2018; 232 T Berghout (10191_CR8) 2018; 10 C Zhang (10191_CR26) 2017; 28 M Famouri (10191_CR17) 2015; 29 10191_CR16 GS Zhao (10191_CR7) 2017; 51 10191_CR18 10191_CR19 C Zhang (10191_CR21) 2017; 28 M Xia (10191_CR9) 2018; 15 M Rigamonti (10191_CR14) 2018; 281 Z Hua (10191_CR15) 2020; 265 10191_CR10 10191_CR12 10191_CR27 Z Que (10191_CR1) 2021; 15 10191_CR28 A Al-Dulaimi (10191_CR23) 2019; 108 10191_CR29 10191_CR5 WN Yu (10191_CR11) 2019; 129 10191_CR6 X Li (10191_CR24) 2018; 172 10191_CR20 10191_CR22 S Zhong (10191_CR13) 2017; 238 10191_CR25 |
| References_xml | – volume: 238 start-page: 191 issue: 1 year: 2017 end-page: 204 ident: CR13 article-title: Genetic algorithm optimized double-reservoir echo state network for multi-regime time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.053 – volume: 14 start-page: 102 issue: 6 year: 2021 end-page: 125 ident: CR3 article-title: Health state estimation and remaining useful life prediction of power devices subject to noisy and aperiodic condition monitoring publication-title: IEEE Trans. Instrum. Meas. – volume: 178 start-page: 109 issue: 5 year: 2021 end-page: 127 ident: CR4 article-title: Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network publication-title: Measurement – ident: CR22 – ident: CR18 – volume: 232 start-page: 690 issue: 6 year: 2018 end-page: 709 ident: CR2 article-title: Predictive airframe maintenance strategies using model-based prognostics publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab. – ident: CR16 – ident: CR12 – ident: CR10 – ident: CR6 – volume: 108 start-page: 186 year: 2019 end-page: 196 ident: CR23 article-title: A multimodal and hybrid deep neural network model for remaining useful life estimation publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.02.004 – ident: CR29 – volume: 129 start-page: 764 year: 2019 end-page: 780 ident: CR11 article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.05.005 – volume: 10 start-page: 1062 issue: 3 year: 2018 ident: CR8 article-title: Aircraft engines remaining useful life prediction with an improved online sequential extreme learning machine publication-title: Appl. Sci. doi: 10.3390/app10031062 – volume: 28 start-page: 2306 issue: 10 year: 2017 end-page: 2318 ident: CR21 article-title: Multi objective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582798 – ident: CR25 – ident: CR27 – volume: 15 start-page: 10 issue: 10 year: 2021 end-page: 28 ident: CR1 article-title: Remaining useful life prediction for bearings based on a gated recurrent unit publication-title: IEEE Trans. Instrum. Meas. – ident: CR19 – volume: 15 start-page: 3703 issue: 6 year: 2018 end-page: 3711 ident: CR9 article-title: A two-stage approach for the remaining useful life prediction of bearings using deep neural networks publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2868687 – volume: 28 start-page: 2306 year: 2017 end-page: 2318 ident: CR26 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582798 – volume: 29 start-page: 1551013 issue: 08 year: 2015 ident: CR17 article-title: Fast linear SVM validation based on early stopping in iterative learning publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001415510131 – volume: 265 start-page: 123 issue: 114791 year: 2020 end-page: 146 ident: CR15 article-title: Remaining useful life prediction of PEMFC systems based on the multi-input echo state network publication-title: Appl. Energy – volume: 281 start-page: 121 issue: 1 year: 2018 end-page: 138 ident: CR14 article-title: Ensemble of optimized echo state networks for remaining useful life prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.062 – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: CR24 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 – ident: CR5 – volume: 51 start-page: 150 issue: 11 year: 2017 end-page: 155 ident: CR7 article-title: A multi-source statistics data-driven method for remaining useful life prediction of aircraft engine publication-title: J. Xi'an Jiao Tong Univ. – ident: CR28 – ident: CR20 – volume: 265 start-page: 123 issue: 114791 year: 2020 ident: 10191_CR15 publication-title: Appl. Energy – ident: 10191_CR19 – volume: 51 start-page: 150 issue: 11 year: 2017 ident: 10191_CR7 publication-title: J. Xi'an Jiao Tong Univ. – volume: 178 start-page: 109 issue: 5 year: 2021 ident: 10191_CR4 publication-title: Measurement – ident: 10191_CR25 doi: 10.1109/ICPHM.2017.7998311 – ident: 10191_CR22 doi: 10.1109/ICPHM.2017.7998311 – volume: 172 start-page: 1 year: 2018 ident: 10191_CR24 publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 – volume: 232 start-page: 690 issue: 6 year: 2018 ident: 10191_CR2 publication-title: Proc. Inst. Mech. Eng. Part O J. Risk Reliab. – volume: 15 start-page: 3703 issue: 6 year: 2018 ident: 10191_CR9 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2868687 – ident: 10191_CR5 doi: 10.21629/JSEE.2020.01.19 – volume: 281 start-page: 121 issue: 1 year: 2018 ident: 10191_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.062 – volume: 108 start-page: 186 year: 2019 ident: 10191_CR23 publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.02.004 – ident: 10191_CR27 – ident: 10191_CR16 – ident: 10191_CR10 doi: 10.1155/2018/3813029 – ident: 10191_CR18 doi: 10.1109/PHM.2008.4711414 – volume: 238 start-page: 191 issue: 1 year: 2017 ident: 10191_CR13 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.053 – volume: 10 start-page: 1062 issue: 3 year: 2018 ident: 10191_CR8 publication-title: Appl. Sci. doi: 10.3390/app10031062 – ident: 10191_CR20 doi: 10.1016/j.neucom.2019.07.075 – volume: 14 start-page: 102 issue: 6 year: 2021 ident: 10191_CR3 publication-title: IEEE Trans. Instrum. Meas. – ident: 10191_CR29 doi: 10.1109/ACCESS.2019.2943076 – volume: 29 start-page: 1551013 issue: 08 year: 2015 ident: 10191_CR17 publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001415510131 – ident: 10191_CR28 – volume: 15 start-page: 10 issue: 10 year: 2021 ident: 10191_CR1 publication-title: IEEE Trans. Instrum. Meas. – ident: 10191_CR6 doi: 10.1109/ICPHM.2017.7998311 – ident: 10191_CR12 doi: 10.1007/s40430-019-2010-6 – volume: 28 start-page: 2306 issue: 10 year: 2017 ident: 10191_CR21 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582798 – volume: 129 start-page: 764 year: 2019 ident: 10191_CR11 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.05.005 – volume: 28 start-page: 2306 year: 2017 ident: 10191_CR26 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582798 |
| SSID | ssj0000529419 |
| Score | 2.4405534 |
| Snippet | In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to... Abstract In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction,... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6491 |
| SubjectTerms | 639/166/988 639/705/258 Accuracy Aircraft Algorithms Computer Simulation Crack propagation Datasets Deep learning Engines Experiments Gene Fusion Humanities and Social Sciences Methods multidisciplinary Neural networks Noise Optimization Prediction models Prognosis Science Science (multidisciplinary) Useful life |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb2igICNxg6iJ7cTOCQGi4oAqhHrYm-XEY1hpmyybTSX-PWMnm2p59MItih3Jzrw-e-xvAF6VWtIqucjJ0rxMZVnbVKP0KTopEElDyjqSuH5Wp6d6sai-TBtu_XSscucTo6N2XRP2yI95GajCyOWWb9c_0lA1KmRXpxIa1-FGKJsd9Fwt1LzHErJYMq-muzKZ0Mc9xatwp4xWYKSLVZ7yvXgUafv_hjX_PDL5W940hqOTu_87kXtwZwKi7N2oOffhGrYP4NZYmvLnQzBf8XwsHsGGHv2wYqulRxaOc7Vdv-xZ5xlFK4qhtmUYSQ17FkKiY13LHOKaeYykoYzc_2a8PsFs65gfwgbdIzg7-Xj24VM6FWNIGwJ127RCK1xpG4IMuXNWaB-ugKjKNr62heLoCAk4Xfki4-jRu0JJ5ByFq0P1CfEYDtquxUNgXKAkWOaV4w096DortSucqAvpCtQugXwnEdNMROWhXsbKxIS50GaUoiEpmihFwxN4PX-zHmk6ruz9Pgh67hkotuOLbvPNTBZrKsxrrQNXjaJoUpeWFpboalVUjVWZtQkc7eRrJrvvzaVwE3g5N5PFhjSMbbEbYh_CzAS7ZQJPRq2aRyIKKSWXOgG1p297Q91vaZffIyt4RWhN5EUCb3aaeTmsf_-Kp1fP4hnc5sFYMknu9AgOtpsBn8PN5mK77DcvorX9AnSJMYw priority: 102 providerName: ProQuest |
| Title | Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion |
| URI | https://link.springer.com/article/10.1038/s41598-022-10191-2 https://www.ncbi.nlm.nih.gov/pubmed/35444248 https://www.proquest.com/docview/2652734136 https://www.proquest.com/docview/2653267744 https://pubmed.ncbi.nlm.nih.gov/PMC9021315 https://doaj.org/article/9e1b8816937146b6a164edb759ca70aa |
| Volume | 12 |
| WOSCitedRecordID | wos000784990500024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M2P dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA66q-BF_G11HSJ407JtkjbJ0ZVdFNyhLHsYTyFtXnBgbJfpVPC_9yXtjDv-vHgJpUkh5L2X70uTfI-QV6USuEoucow0L1JR1jZVIHwKTnAA9JCyjiKuH-V8rhYLXV1L9RXOhI3ywOPAHWvIa6WCZIjEoK5Li_weXC0L3ViZ2UiNMqmvLaZGVW-mRa6nWzIZV8c9IlW4TYZrL_RCnadsD4miYP_vWOavhyV_2jGNQHR2j9ydGCR9O_b8PrkB7QNye8wp-e0hMRfwZcz6QIce_LCiq6UHGs5htV2_7GnnKcIMgp9tKUQ1wp4GLHO0a6kDuKIeotonxXl7Pd57oLZ11A_hz9ojcnl2evnufTplUUgbZGObVIPlrrQNYn3unOXKh7sbUtvG17aQDBxCuFPaFxkDD94VUgBjwF0d0kbwx-Sg7Vp4SijjIJBPeelYgw-qzkrlCsfrQrgClEtIvh1Q00wK4yHRxcrEnW6uzGgEg0Yw0QiGJeT17purUV_jr61Pgp12LYM2dnyBHmMmjzH_8piEHG2tbKaA7Q0rgxIdInqZkJe7agy1sH9iW-iG2AbJLvJlkZAno1PsesILIQQTKiFyz132urpf0y4_RzlvjTSL50VC3mwd60e3_jwUz_7HUDwnd1iIiEzgbHlEDjbrAV6QW83XzbJfz8hNuZCxVDNyeHI6ry5mMcywPGdVKCWWh9WH8-rTdy9eKlo |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAQX3g9DgUWCE7Vqr9f2-oAQr6pR0yhCPZTTau2dhUjBDnEC6o_iPzLrR6rw6K0HblG8idb2N_PN7O58A_A8kYKy5DgkS7PCF0mufYnC-mhEhEgISfJGxHWUjsfy5CSbbMHPvhbGHavsfWLjqE1VuDXyPZ44qTByucnr-TffdY1yu6t9C40WFod4-oNStvrV8D293xec7384fnfgd10F_IKik6WfoY5MogvivtAYHUnrahnSTBc213HK0RClGZnZOOBo0Zo4Fcg5RiZ3bRQi-ttLsC0I68EAtifDo8mn9aKO2zYTYdYV5wSR3KuJIF0RG6V8BP4s9PkGATZ9Av4W3P55RvO3jdqG__Zv_GdP7iZc7wJt9qa1jFuwheVtuNK23jy9A-ojfm2bY7BVjXY1Y7OpReaOq5VVPa1ZZRmxMcUIumTYiDbWzFG-YVXJDOKcWWxEURnR26ItD2G6NMyu3ALkXTi-iJu7B4OyKvEBMB6hoLDTpoYX9EHmQSJNbKI8FiZGaTwIewCoohNid_1AZqo5EBBJ1YJGEWhUAxrFPXi5_s28lSE5d_Rbh6v1SCch3nxRLT6rziOpDMNcSqfFkxJb5ommxBlNnsZZodNAaw92ejipzq_V6gxLHjxbXyaP5LaZdInVqhlDOQGlFcKD-y2I1zOJYkGWI6QH6Qa8N6a6eaWcfmlUzzOKRqMw9mC3N4Szaf37UTw8_y6ewtWD46ORGg3Hh4_gGnd2Ggiijh0YLBcrfAyXi-_Lab140pk6A3XBJvILo52RTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkaCE412YzuJc0CI0q6oWq2qqofeLCcew0olWTa7oP40_h3jPLZaHr31wG2VOCs7-eZlz3wD8DpRkqLkOCJJczKUSW5ChdKFaKVAJIQkeUPiephOJur0NDvagJ99LYxPq-x1YqOobVX4PfIhTzxVGKncZOi6tIij3fH72bfQd5DyJ619O40WIgd4_oPCt_rd_i596zecj_dOPn4Kuw4DYUGeyiLM0AibmILsYGStEcr5uoY0M4XLTZxytGTerMpcPOLo0Nk4lcg5Cpv7lgqC_vYabKaCYp4BbO7sTY6OVxs8_ghNRllXqDMSaliTsfQFbRT-kSBkUcjXjGHTM-Bvju6f-Zq_Hdo2tnB85z9-i3fhdueAsw-txNyDDSzvw422Jef5A9DH-LVtmsGWNdLs2dnUIfNpbGVVT2tWOUZWmnwHUzJsyBxr5l0By6qSWcQZc9iQpTJa9bwtG2GmtMwt_cbkQzi5isU9gkFZlfgEGBcoyR11qeUF_VD5KFE2tiKPpY1R2QCiHgy66AjafZ-QM90kCgilWwBpApBuAKR5AG9Xz8xaepJLR-94jK1Gemrx5kI1_6w7TaUzjHKlPEdPSlY0TwwF1GjzNM4Kk46MCWCrh5bu9F2tL3AVwKvVbdJU_vjJlFgtmzEUK1C4IQN43AJ6NRMRSym5VAGka1Bfm-r6nXL6pWFDz8hLFVEcwHYvFBfT-vereHr5Kl7CTZILfbg_OXgGt7gX2ZEki7IFg8V8ic_hevF9Ma3nLzqpZ6CvWEJ-Aagnmeg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remaining+useful+life+prognosis+of+turbofan+engines+based+on+deep+feature+extraction+and+fusion&rft.jtitle=Scientific+reports&rft.au=Cheng+Peng&rft.au=Yufeng+Chen&rft.au=Weihua+Gui&rft.au=Zhaohui+Tang&rft.date=2022-04-20&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-022-10191-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9e1b8816937146b6a164edb759ca70aa |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |