Remaining useful life prognosis of turbofan engines based on deep feature extraction and fusion

In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model comb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports Jg. 12; H. 1; S. 6491 - 14
Hauptverfasser: Peng, Cheng, Chen, Yufeng, Gui, Weihua, Tang, Zhaohui, Li, Changyun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 20.04.2022
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2045-2322, 2045-2322
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In turbofan engine datasets, to address problems, such as noise interference, diverse data types, large data volumes, complex feature extraction, inability to effectively describe degradation trends, and poor remaining useful life (RUL) prognosis effects, a remaining useful life prognosis model combining an improved stack sparse autoencoder (imSSAE) and an improved echo state network (imESN) is proposed in this paper. First, the 3-sigma criterion is adopted to remove the noise and reconstruct the data, and then the deep features of the engine are extracted by using an imSSAE and fused into health indicator (HI) curves describing the engine degradation trend. Finally, an attention mechanism is introduced into an imESN to adaptively process different types of data and obtain the RUL. The experimental results based on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset show that compared with the other popular RUL prediction models, the combined model proposed in this paper has higher prediction accuracy, and the evaluation indices also show the effectiveness and superiority of the model.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-10191-2