Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds
We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable ) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear mod...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 13; H. 1; S. 872 - 13 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
15.02.2022
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!