Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds

We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable ) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear mod...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature communications Ročník 13; číslo 1; s. 872 - 13
Hlavní autori: Cenedese, Mattia, Axås, Joar, Bäuerlein, Bastian, Avila, Kerstin, Haller, George
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 15.02.2022
Nature Publishing Group
Nature Portfolio
Predmet:
ISSN:2041-1723, 2041-1723
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We develop a methodology to construct low-dimensional predictive models from data sets representing essentially nonlinear (or non-linearizable ) dynamical systems with a hyperbolic linear part that are subject to external forcing with finitely many frequencies. Our data-driven, sparse, nonlinear models are obtained as extended normal forms of the reduced dynamics on low-dimensional, attracting spectral submanifolds (SSMs) of the dynamical system. We illustrate the power of data-driven SSM reduction on high-dimensional numerical data sets and experimental measurements involving beam oscillations, vortex shedding and sloshing in a water tank. We find that SSM reduction trained on unforced data also predicts nonlinear response accurately under additional external forcing. Current data-driven modelling techniques perform reliably on linear systems or on those that can be linearized. Cenedese et al. develop a data-based reduced modeling method for non-linear, high-dimensional physical systems. Their models reconstruct and predict the dynamics of the full physical system.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-28518-y