Thermal gradient of in-flight polymer particles during cold spraying

[Display omitted] •Discontinuous nozzle induces the flow to choke at the discontinuity location.•At the nozzle exit, the particle velocity reaches 190 m.s−1 for 60 μm diameter.•During cold-spray, polymeric particles are submitted to important thermal gradient. The manufacture of polymer coatings via...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of materials processing technology Ročník 286; s. 116805
Hlavní autoři: Bernard, C.A., Takana, H., Diguet, G., Ravi, K., Lame, O., Ogawa, K., Cavaillé, J.-Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.12.2020
Elsevier BV
Elsevier
Témata:
ISSN:0924-0136, 1873-4774
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:[Display omitted] •Discontinuous nozzle induces the flow to choke at the discontinuity location.•At the nozzle exit, the particle velocity reaches 190 m.s−1 for 60 μm diameter.•During cold-spray, polymeric particles are submitted to important thermal gradient. The manufacture of polymer coatings via the cold-spray process remains challenging owing to the viscoelastic-viscoplastic behavior exhibited by polymers. One crucial step to improve cold-spray polymer coating is to determine the particles’ thermal history during their flight from inside the nozzle to their impact on the substrate. In this study, we propose estimating the velocity and temperature of an isolated polymer particle traveling through a nozzle with a sharp change in its cross-section. The preliminary results show that the geometric discontinuity constricts the flow, thereby increasing the particle velocity. Moreover, a significant thermal gradient is expected inside the particle, which in turn leads to a gradient of mechanical properties of the polymeric particle during impact.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-0136
1873-4774
DOI:10.1016/j.jmatprotec.2020.116805