Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis
Background Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunom...
Saved in:
| Published in: | Critical care (London, England) Vol. 26; no. 1; pp. 29 - 17 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
28.01.2022
Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1364-8535, 1466-609X, 1364-8535, 1466-609X, 1366-609X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs and the mechanism by which neutrophilic glycolysis is regulated during sepsis.
Methods
Metabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) were evaluated.
Results
Transcriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discovered that glycolysis regulated PMNs’ chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs’ chemotaxis and phagocytosis functions.
Conclusions
The inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the improvement of immune function in sepsis. |
|---|---|
| AbstractList | Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs and the mechanism by which neutrophilic glycolysis is regulated during sepsis.BACKGROUNDEffective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs and the mechanism by which neutrophilic glycolysis is regulated during sepsis.Metabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) were evaluated.METHODSMetabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) were evaluated.Transcriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discovered that glycolysis regulated PMNs' chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs' chemotaxis and phagocytosis functions.RESULTSTranscriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discovered that glycolysis regulated PMNs' chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs' chemotaxis and phagocytosis functions.The inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the improvement of immune function in sepsis.CONCLUSIONSThe inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the improvement of immune function in sepsis. Background Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs and the mechanism by which neutrophilic glycolysis is regulated during sepsis. Methods Metabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) were evaluated. Results Transcriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discovered that glycolysis regulated PMNs’ chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs’ chemotaxis and phagocytosis functions. Conclusions The inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the improvement of immune function in sepsis. Background Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs and the mechanism by which neutrophilic glycolysis is regulated during sepsis. Methods Metabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) were evaluated. Results Transcriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discovered that glycolysis regulated PMNs’ chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs’ chemotaxis and phagocytosis functions. Conclusions The inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the improvement of immune function in sepsis. Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs and the mechanism by which neutrophilic glycolysis is regulated during sepsis. Metabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) were evaluated. Transcriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discovered that glycolysis regulated PMNs' chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs' chemotaxis and phagocytosis functions. The inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the improvement of immune function in sepsis. Abstract Background Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of innate cellular immunity and play vital roles in clearing pathogenic bacteria. However, the metabolic characteristics and immunomodulatory pathways of PMNs during sepsis have not been investigated. In the present study, we explored the immune metabolism characteristics of PMNs and the mechanism by which neutrophilic glycolysis is regulated during sepsis. Methods Metabolomics analysis was performed on PMNs isolated from 14 septic patients, 26 patients with acute appendicitis, and 19 healthy volunteers. Transcriptome analysis was performed on the PMNs isolated from the healthy volunteers and the patients with sepsis to assess glycolysis and investigate its mechanism. Lipopolysaccharide (LPS) was used to stimulate the neutrophils isolated from the healthy volunteers at different time intervals to build an LPS-tolerant model. Chemotaxis, phagocytosis, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) were evaluated. Results Transcriptomics showed significant changes in glycolysis and the mTOR/HIF-1α signaling pathway during sepsis. Metabolomics revealed that the Warburg effect was significantly altered in the patients with sepsis. We discovered that glycolysis regulated PMNs’ chemotaxis and phagocytosis functions during sepsis. Lactate dehydrogenase A (LDHA) downregulation was a key factor in the inhibition of glycolysis in PMNs. This study confirmed that the PI3K/Akt-HIF-1α pathway was involved in the LDHA expression level and also influenced PMNs’ chemotaxis and phagocytosis functions. Conclusions The inhibition of glycolysis contributed to neutrophil immunosuppression during sepsis and might be controlled by PI3K/Akt-HIF-1α pathway-mediated LDHA downregulation. Our study provides a scientific theoretical basis for the management and treatment of patients with sepsis and promotes to identify therapeutic target for the improvement of immune function in sepsis. |
| ArticleNumber | 29 |
| Author | Tan, Ruoming Pan, Tingting Chen, Erzhen Chen, Yang Liu, Jialin Wang, Xiaoli Sun, Shaoqiong Liu, Zhaojun Tian, Rui Qu, Hongping |
| Author_xml | – sequence: 1 givenname: Tingting surname: Pan fullname: Pan, Tingting organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 2 givenname: Shaoqiong surname: Sun fullname: Sun, Shaoqiong organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 3 givenname: Yang surname: Chen fullname: Chen, Yang organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 4 givenname: Rui surname: Tian fullname: Tian, Rui organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 5 givenname: Erzhen surname: Chen fullname: Chen, Erzhen organization: Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 6 givenname: Ruoming surname: Tan fullname: Tan, Ruoming organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 7 givenname: Xiaoli surname: Wang fullname: Wang, Xiaoli organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 8 givenname: Zhaojun surname: Liu fullname: Liu, Zhaojun email: dongshanchunyi@163.com organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 9 givenname: Jialin surname: Liu fullname: Liu, Jialin email: ljl11243@rjh.com.cn organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 10 givenname: Hongping orcidid: 0000-0002-2116-5125 surname: Qu fullname: Qu, Hongping email: hongpingqu0412@hotmail.com organization: Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35090526$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u1DAUhSNURH_gBVigSGzYhHH8F2eDVFWURlSCBawtJ7nOeHDsYCdI81i8SJ-pnpkW2i668pV9zqcj33OaHTnvIMveluhjWQq-iiVBjBYI4wIRUZOCv8hOSsJpIRhhRw_m4-w0xg1CZSU4eZUdE4ZqxDA_yXQzjouDHLSGbo651_n3hnxdnf-aV1fNZVHe_C0CDItVM_T5YLedt9toYm5cPqVx9GFae7d0FlTIHSxz8NPa2Jj3SzBuyCNMSf46e6mVjfDm7jzLfl5-_nFxVVx_-9JcnF8XHaNoLqgGVhPMgWhd97SvmOYtURrjGreYKgSEArQ1IwhByxVpmepLBb3mXV0hRs6y5sDtvdrIKZhRha30ysj9hQ-DVGE2Ka1kignBdCew0LRUfcsrjGqdMBSrnuLE-nRgTUs7Qt-Bm4Oyj6CPX5xZy8H_kaKqOeMiAT7cAYL_vUCc5WhiB9YqB36JEnNMhKgEo0n6_ol045fg0lclFUGUMr5XvXuY6F-U-3UmgTgIuuBjDKBlZ2Y1G78LaKwskdw1Rx6aI1Nz5L45cmfFT6z39GdN5GCK027ZEP7HfsZ1C6f812I |
| CitedBy_id | crossref_primary_10_1016_j_cellimm_2024_104901 crossref_primary_10_1016_j_lfs_2024_123215 crossref_primary_10_7717_peerj_17414 crossref_primary_10_3389_fphys_2023_1320964 crossref_primary_10_1016_S2213_2600_23_00330_2 crossref_primary_10_1186_s13054_024_05069_w crossref_primary_10_3390_antiox12111942 crossref_primary_10_1002_mco2_70055 crossref_primary_10_1016_j_jep_2023_117250 crossref_primary_10_1016_j_compositesb_2024_112005 crossref_primary_10_3389_fnagi_2024_1335122 crossref_primary_10_3389_fonc_2024_1499580 crossref_primary_10_1016_j_ab_2023_115360 crossref_primary_10_1016_j_lfs_2024_122923 crossref_primary_10_3390_genes14101953 crossref_primary_10_1186_s12951_025_03250_z crossref_primary_10_1007_s12672_025_03015_y crossref_primary_10_1155_2022_5719974 crossref_primary_10_3389_fmed_2024_1430252 crossref_primary_10_1016_j_cytogfr_2022_11_001 crossref_primary_10_1007_s10753_025_02321_5 crossref_primary_10_1038_s41598_024_81600_x crossref_primary_10_1016_j_phymed_2024_155804 crossref_primary_10_1016_j_intimp_2024_112876 crossref_primary_10_3233_CH_221624 crossref_primary_10_1007_s00018_025_05715_8 crossref_primary_10_3390_antiox14040437 crossref_primary_10_1002_adma_202310320 crossref_primary_10_1038_s41368_023_00267_8 crossref_primary_10_26599_NR_2025_94907296 crossref_primary_10_3389_fimmu_2024_1483400 crossref_primary_10_1016_j_jphs_2025_05_017 crossref_primary_10_3389_fphar_2024_1491321 crossref_primary_10_1016_j_ecoenv_2024_117451 crossref_primary_10_1038_s41598_024_58160_1 crossref_primary_10_1186_s12882_025_04421_8 crossref_primary_10_3389_fimmu_2023_1298041 crossref_primary_10_3389_fimmu_2023_1083072 crossref_primary_10_1186_s12967_024_05543_7 crossref_primary_10_1016_j_biopha_2022_114164 crossref_primary_10_3389_fendo_2023_1242991 crossref_primary_10_3389_fvets_2024_1417078 crossref_primary_10_1007_s13402_025_01037_w crossref_primary_10_3724_abbs_2025089 crossref_primary_10_1002_ctm2_70098 crossref_primary_10_1155_mi_8822728 crossref_primary_10_1097_CM9_0000000000003447 crossref_primary_10_2147_IJGM_S539158 crossref_primary_10_1016_j_ijbiomac_2025_146903 crossref_primary_10_3389_fimmu_2023_1078310 crossref_primary_10_4103_1995_7645_388388 crossref_primary_10_1007_s00432_023_04985_8 crossref_primary_10_1007_s12011_025_04604_2 crossref_primary_10_1016_j_intimp_2024_111885 crossref_primary_10_1136_thorax_2024_222215 crossref_primary_10_2147_JIR_S527416 crossref_primary_10_1016_j_jep_2024_118634 crossref_primary_10_1007_s12195_024_00814_1 crossref_primary_10_1186_s12931_024_03077_6 crossref_primary_10_1186_s13054_024_04885_4 crossref_primary_10_1186_s13054_023_04551_1 crossref_primary_10_2147_JIR_S403778 crossref_primary_10_1002_iid3_965 crossref_primary_10_1016_j_clim_2023_109698 crossref_primary_10_1186_s12879_024_09008_6 crossref_primary_10_3390_biomedicines11082163 crossref_primary_10_1016_j_bioactmat_2024_07_026 crossref_primary_10_1038_s41380_025_02988_0 crossref_primary_10_1515_biol_2022_0907 crossref_primary_10_3389_fimmu_2025_1538282 crossref_primary_10_1111_jcmm_18034 crossref_primary_10_1093_cei_uxae115 crossref_primary_10_1002_wrna_1764 crossref_primary_10_1186_s12943_024_02074_z crossref_primary_10_1186_s12905_023_02872_5 crossref_primary_10_1038_s41419_022_05132_w crossref_primary_10_1186_s10020_023_00690_x crossref_primary_10_1038_s41419_023_05932_8 crossref_primary_10_1038_s44321_024_00155_6 crossref_primary_10_1186_s12879_025_10818_5 crossref_primary_10_2217_nnm_2023_0313 crossref_primary_10_1016_j_clinsp_2025_100738 crossref_primary_10_1007_s12033_024_01168_9 crossref_primary_10_1007_s11010_025_05342_8 crossref_primary_10_1007_s00262_023_03563_8 crossref_primary_10_1186_s12950_023_00341_2 crossref_primary_10_1016_j_pbb_2024_173775 crossref_primary_10_1007_s10528_025_11095_2 crossref_primary_10_3390_ijms26136114 crossref_primary_10_3389_fimmu_2024_1508985 crossref_primary_10_1016_j_tranon_2024_102088 crossref_primary_10_2147_JIR_S482213 crossref_primary_10_1097_MD_0000000000039867 crossref_primary_10_1097_SHK_0000000000002122 crossref_primary_10_1111_jcmm_70232 crossref_primary_10_1038_s41598_023_47699_0 crossref_primary_10_1038_s41392_023_01499_0 crossref_primary_10_1002_cnr2_1976 crossref_primary_10_1016_j_jep_2025_120375 crossref_primary_10_3389_fphar_2024_1404021 crossref_primary_10_1097_MD_0000000000033133 crossref_primary_10_1515_med_2025_1248 crossref_primary_10_3389_fimmu_2025_1643017 crossref_primary_10_1038_s41419_024_06943_9 crossref_primary_10_1111_imr_13173 crossref_primary_10_1016_j_intimp_2024_112933 crossref_primary_10_3389_fimmu_2024_1449975 crossref_primary_10_3389_fmicb_2022_995219 crossref_primary_10_1093_burnst_tkae006 crossref_primary_10_2147_JIR_S459185 crossref_primary_10_1186_s12935_024_03283_8 crossref_primary_10_1002_advs_202407064 crossref_primary_10_3390_jpm14030225 crossref_primary_10_1038_s42003_024_06543_5 crossref_primary_10_4049_jimmunol_2300562 crossref_primary_10_1016_j_intimp_2024_113739 crossref_primary_10_3389_fgene_2025_1501115 crossref_primary_10_3389_fimmu_2023_1076587 |
| Cites_doi | 10.1002/JLB.5HI0119-018R 10.1002/JLB.4MIR0220-574RR 10.1002/cam4.112 10.1590/S0100-879X2006005000143 10.3389/fimmu.2018.02564 10.1371/journal.pone.0111838 10.4049/jimmunol.1901246 10.1016/j.intimp.2019.106048 10.1006/jsre.1997.5040 10.1182/blood-2016-01-688887 10.1155/2018/4065362 10.1515/hsz-2015-0271 10.4049/jimmunol.0902584 10.1111/cei.13218 10.1016/j.redox.2021.101954 10.1038/nature13490 10.1189/jlb.1112571 10.1172/JCI82224 10.1165/rcmb.2011-0113OC 10.1186/s13059-014-0550-8 10.1146/annurev-immunol-020711-074942 10.1016/S0022-1759(98)00016-7 10.1111/jcmm.13112 10.1016/j.ctrv.2016.03.005 10.1016/bs.ai.2019.11.005 10.1615/CritRevImmunol.2016017164 10.1097/CCM.0000000000002052 10.1016/S0022-1759(00)00237-4 10.1177/0885066617711882 10.1186/s13054-016-1250-4 10.3389/fcimb.2020.00047 10.1097/QCO.0b013e3283528c9b 10.1002/cmdc.201700783 10.1016/j.cmet.2020.11.016 10.1164/rccm.201504-0781OC 10.4049/jimmunol.1200718 10.33594/000000245 10.1016/j.cmet.2018.09.003 10.4049/jimmunol.1801005 10.1189/jlb.1VMR1216-535R 10.3389/fimmu.2021.691134 10.3390/ijms20092290 10.1016/j.jim.2007.05.012 10.3389/fimmu.2019.02099 10.1677/joe.1.06438 10.1038/s41419-020-2635-5 10.3109/1547691X.2013.826307 10.1007/s10753-017-0725-z 10.1172/JCI110647 10.4049/jimmunol.178.9.5940 10.1016/j.jmii.2019.10.006 10.1074/jbc.R115.693903 10.1111/imm.12437 10.1186/s13046-019-1351-4 10.1152/physrev.00012.2018 10.1001/jama.2016.0287 10.1097/SHK.0000000000000958 10.21037/jtd.2018.11.74 10.1021/jm980334n 10.18632/oncotarget.8623 10.1172/JCI123839 10.1083/jcb.201503066 10.1053/j.gastro.2014.03.014 10.1161/CIRCULATIONAHA.110.961714 10.1186/s13041-020-00601-9 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1186/s13054-022-03893-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1364-8535 1466-609X 1366-609X |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_5a5885fc828f41adb67209f97042ad42 PMC8796568 35090526 10_1186_s13054_022_03893_6 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | St Louis Missouri United States--US Norway China Germany |
| GeographicLocations_xml | – name: China – name: Germany – name: St Louis Missouri – name: United States--US – name: Norway |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81772040 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Clinical Research Plan of SHDC grantid: SHDC2020CR1028B – fundername: Scientific and Technological Innovation Act Program of Science and Technology Commission of Shanghai Municipality grantid: 18411950900 – fundername: National Natural Science Foundation of China grantid: 81772040 – fundername: ; grantid: 18411950900 – fundername: ; grantid: SHDC2020CR1028B – fundername: ; grantid: 81772040 |
| GroupedDBID | --- 0R~ 29F 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABUWG ACGFS ACJQM ADBBV ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS EMOBN F5P FYUFA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RBZ ROL RPM RSV SJN SMD SOJ SV3 TR2 U2A UKHRP WOQ YOC .6V AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c540t-4fe59326e3ff9d4d75f6b3af2292b24a0e34eeb95300eb6a3b5ad1aedf6c97053 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000748251800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1364-8535 1466-609X |
| IngestDate | Fri Oct 03 12:30:21 EDT 2025 Tue Nov 04 01:57:22 EST 2025 Fri Sep 05 12:27:33 EDT 2025 Tue Oct 14 14:11:50 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Sat Nov 29 06:02:11 EST 2025 Tue Nov 18 21:40:40 EST 2025 Sat Sep 06 07:25:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Glycolysis Metabolomics Sepsis Neutrophil Immune |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-4fe59326e3ff9d4d75f6b3af2292b24a0e34eeb95300eb6a3b5ad1aedf6c97053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2116-5125 |
| OpenAccessLink | https://doaj.org/article/5a5885fc828f41adb67209f97042ad42 |
| PMID | 35090526 |
| PQID | 2630445654 |
| PQPubID | 44362 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5a5885fc828f41adb67209f97042ad42 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8796568 proquest_miscellaneous_2623887854 proquest_journals_2630445654 pubmed_primary_35090526 crossref_citationtrail_10_1186_s13054_022_03893_6 crossref_primary_10_1186_s13054_022_03893_6 springer_journals_10_1186_s13054_022_03893_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-28 |
| PublicationDateYYYYMMDD | 2022-01-28 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Critical care (London, England) |
| PublicationTitleAbbrev | Crit Care |
| PublicationTitleAlternate | Crit Care |
| PublicationYear | 2022 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | X Li (3893_CR21) 2017; 45 J Jin (3893_CR65) 2019; 38 A Coulibaly (3893_CR12) 2019; 20 CS Wilson (3893_CR26) 1997; 69 C Fleischmann (3893_CR2) 2016; 193 C Silvestre-Roig (3893_CR29) 2016; 127 P Sadiku (3893_CR35) 2021; 33 CD Wrann (3893_CR60) 2007; 178 T Tak (3893_CR28) 2013; 94 M Singer (3893_CR1) 2016; 315 I Manoharan (3893_CR52) 2021; 12 TC Alba-Loureiro (3893_CR40) 2006; 188 J Xu (3893_CR49) 2021; 54 L Pan (3893_CR54) 2020; 79 SF Chen (3893_CR66) 2020; 13 BC Richer (3893_CR18) 2018; 41 Z Wang (3893_CR56) 2020; 204 L Peng (3893_CR13) 2020; 10 H Beck (3893_CR32) 2018; 13 JM Patel (3893_CR11) 2018; 2018 I Flamme (3893_CR31) 2014; 9 PX Liew (3893_CR6) 2019; 99 JM Ratter (3893_CR45) 2018; 9 AA Al-Khami (3893_CR15) 2017; 102 J Domínguez-Andrés (3893_CR55) 2019; 29 MA Kovach (3893_CR36) 2012; 25 M Xu (3893_CR62) 2011; 45 C Rosales (3893_CR5) 2020; 108 CW Frevert (3893_CR23) 1998; 213 H Shangguan (3893_CR63) 2020; 11 F Massari (3893_CR64) 2016; 45 S Selleri (3893_CR51) 2016; 7 MI Love (3893_CR22) 2014; 15 M Mengozzi (3893_CR27) 1993; 12 J Shi (3893_CR61) 2021; 41 LM Deck (3893_CR30) 1998; 41 O Rodríguez-Espinosa (3893_CR38) 2015; 145 B Nolt (3893_CR47) 2018; 49 JP Garnett (3893_CR34) 2012; 189 S Mehta (3893_CR4) 2019; 11 E Tippett (3893_CR25) 2007; 325 W Li (3893_CR43) 2016; 36 P Ellinghaus (3893_CR33) 2013; 2 R Curi (3893_CR39) 2020; 54 N Borregaard (3893_CR20) 1982; 70 Y Sun (3893_CR57) 2019; 129 B Amulic (3893_CR7) 2012; 30 RM Loftus (3893_CR16) 2016; 291 MJ Delano (3893_CR10) 2016; 126 PH Leliefeld (3893_CR9) 2016; 20 I Grondman (3893_CR14) 2019; 106 HL Caslin (3893_CR48) 2019; 203 J Lin (3893_CR58) 2019; 195 AK Lehmann (3893_CR24) 2000; 243 M Drechsler (3893_CR44) 2010; 122 R Herrán-Monge (3893_CR3) 2019; 34 W Ratajczak-Wrona (3893_CR59) 2014; 11 J Laval (3893_CR42) 2016; 397 S Kumar (3893_CR19) 2019; 10 OR Colegio (3893_CR50) 2014; 513 R Hoque (3893_CR53) 2014; 146 XF Shen (3893_CR8) 2017; 21 S Liang (3893_CR17) 2020; 145 TC Alba-Loureiro (3893_CR41) 2007; 40 Y Bao (3893_CR37) 2015; 210 K Dietl (3893_CR46) 2010; 184 |
| References_xml | – volume: 106 start-page: 11 issue: 1 year: 2019 ident: 3893_CR14 publication-title: J Leukoc Biol doi: 10.1002/JLB.5HI0119-018R – volume: 108 start-page: 377 issue: 1 year: 2020 ident: 3893_CR5 publication-title: J Leukoc Biol doi: 10.1002/JLB.4MIR0220-574RR – volume: 2 start-page: 611 issue: 5 year: 2013 ident: 3893_CR33 publication-title: Cancer Med doi: 10.1002/cam4.112 – volume: 40 start-page: 1037 issue: 8 year: 2007 ident: 3893_CR41 publication-title: Braz J Med Biol Res doi: 10.1590/S0100-879X2006005000143 – volume: 9 start-page: 2564 year: 2018 ident: 3893_CR45 publication-title: Front Immunol doi: 10.3389/fimmu.2018.02564 – volume: 9 start-page: e111838 issue: 11 year: 2014 ident: 3893_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0111838 – volume: 204 start-page: 2232 issue: 8 year: 2020 ident: 3893_CR56 publication-title: J Immunol doi: 10.4049/jimmunol.1901246 – volume: 79 start-page: 106048 year: 2020 ident: 3893_CR54 publication-title: Int Immunopharmacol doi: 10.1016/j.intimp.2019.106048 – volume: 69 start-page: 101 issue: 1 year: 1997 ident: 3893_CR26 publication-title: J Surg Res doi: 10.1006/jsre.1997.5040 – volume: 127 start-page: 2173 issue: 18 year: 2016 ident: 3893_CR29 publication-title: Blood doi: 10.1182/blood-2016-01-688887 – volume: 2018 start-page: 4065362 year: 2018 ident: 3893_CR11 publication-title: Mediat Inflamm doi: 10.1155/2018/4065362 – volume: 397 start-page: 485 issue: 6 year: 2016 ident: 3893_CR42 publication-title: Biol Chem doi: 10.1515/hsz-2015-0271 – volume: 184 start-page: 1200 issue: 3 year: 2010 ident: 3893_CR46 publication-title: J Immunol doi: 10.4049/jimmunol.0902584 – volume: 195 start-page: 226 issue: 2 year: 2019 ident: 3893_CR58 publication-title: Clin Exp Immunol doi: 10.1111/cei.13218 – volume: 41 start-page: 101954 year: 2021 ident: 3893_CR61 publication-title: Redox Biol doi: 10.1016/j.redox.2021.101954 – volume: 513 start-page: 559 issue: 7519 year: 2014 ident: 3893_CR50 publication-title: Nature doi: 10.1038/nature13490 – volume: 94 start-page: 595 issue: 4 year: 2013 ident: 3893_CR28 publication-title: J Leukoc Biol doi: 10.1189/jlb.1112571 – volume: 126 start-page: 23 issue: 1 year: 2016 ident: 3893_CR10 publication-title: J Clin Invest doi: 10.1172/JCI82224 – volume: 45 start-page: 1028 issue: 5 year: 2011 ident: 3893_CR62 publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2011-0113OC – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 3893_CR22 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 30 start-page: 459 year: 2012 ident: 3893_CR7 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-020711-074942 – volume: 213 start-page: 41 issue: 1 year: 1998 ident: 3893_CR23 publication-title: J Immunol Methods doi: 10.1016/S0022-1759(98)00016-7 – volume: 21 start-page: 1687 issue: 9 year: 2017 ident: 3893_CR8 publication-title: J Cell Mol Med doi: 10.1111/jcmm.13112 – volume: 45 start-page: 46 year: 2016 ident: 3893_CR64 publication-title: Cancer Treat Rev doi: 10.1016/j.ctrv.2016.03.005 – volume: 145 start-page: 129 year: 2020 ident: 3893_CR17 publication-title: Adv Immunol doi: 10.1016/bs.ai.2019.11.005 – volume: 36 start-page: 75 issue: 1 year: 2016 ident: 3893_CR43 publication-title: Crit Rev Immunol doi: 10.1615/CritRevImmunol.2016017164 – volume: 45 start-page: e97 year: 2017 ident: 3893_CR21 publication-title: Crit Care Med doi: 10.1097/CCM.0000000000002052 – volume: 243 start-page: 229 year: 2000 ident: 3893_CR24 publication-title: J Immunol Methods doi: 10.1016/S0022-1759(00)00237-4 – volume: 34 start-page: 740 issue: 9 year: 2019 ident: 3893_CR3 publication-title: J Intensive Care Med doi: 10.1177/0885066617711882 – volume: 20 start-page: 73 year: 2016 ident: 3893_CR9 publication-title: Crit Care doi: 10.1186/s13054-016-1250-4 – volume: 10 start-page: 47 year: 2020 ident: 3893_CR13 publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2020.00047 – volume: 25 start-page: 321 issue: 3 year: 2012 ident: 3893_CR36 publication-title: Curr Opin Infect Dis doi: 10.1097/QCO.0b013e3283528c9b – volume: 13 start-page: 988 issue: 10 year: 2018 ident: 3893_CR32 publication-title: ChemMedChem doi: 10.1002/cmdc.201700783 – volume: 33 start-page: 411 issue: 2 year: 2021 ident: 3893_CR35 publication-title: Cell Metab doi: 10.1016/j.cmet.2020.11.016 – volume: 193 start-page: 259 issue: 3 year: 2016 ident: 3893_CR2 publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.201504-0781OC – volume: 189 start-page: 373 issue: 1 year: 2012 ident: 3893_CR34 publication-title: J Immunol doi: 10.4049/jimmunol.1200718 – volume: 54 start-page: 629 issue: 4 year: 2020 ident: 3893_CR39 publication-title: Cell Physiol Biochem doi: 10.33594/000000245 – volume: 29 start-page: 211 issue: 1 year: 2019 ident: 3893_CR55 publication-title: Cell Metab doi: 10.1016/j.cmet.2018.09.003 – volume: 203 start-page: 453 issue: 2 year: 2019 ident: 3893_CR48 publication-title: J Immunol doi: 10.4049/jimmunol.1801005 – volume: 102 start-page: 369 issue: 2 year: 2017 ident: 3893_CR15 publication-title: J Leukoc Biol doi: 10.1189/jlb.1VMR1216-535R – volume: 12 start-page: 691134 year: 2021 ident: 3893_CR52 publication-title: Front Immunol doi: 10.3389/fimmu.2021.691134 – volume: 20 start-page: 2290 issue: 9 year: 2019 ident: 3893_CR12 publication-title: Int J Mol Sci doi: 10.3390/ijms20092290 – volume: 325 start-page: 42 year: 2007 ident: 3893_CR25 publication-title: J Immunol Methods doi: 10.1016/j.jim.2007.05.012 – volume: 10 start-page: 2099 year: 2019 ident: 3893_CR19 publication-title: Front Immunol doi: 10.3389/fimmu.2019.02099 – volume: 188 start-page: 295 issue: 2 year: 2006 ident: 3893_CR40 publication-title: J Endocrinol doi: 10.1677/joe.1.06438 – volume: 11 start-page: 437 issue: 6 year: 2020 ident: 3893_CR63 publication-title: Cell Death Dis doi: 10.1038/s41419-020-2635-5 – volume: 11 start-page: 231 issue: 3 year: 2014 ident: 3893_CR59 publication-title: J Immunotoxicol doi: 10.3109/1547691X.2013.826307 – volume: 41 start-page: 710 issue: 2 year: 2018 ident: 3893_CR18 publication-title: Inflammation doi: 10.1007/s10753-017-0725-z – volume: 70 start-page: 550 issue: 3 year: 1982 ident: 3893_CR20 publication-title: J Clin Invest doi: 10.1172/JCI110647 – volume: 178 start-page: 5940 issue: 8 year: 2007 ident: 3893_CR60 publication-title: J Immunol doi: 10.4049/jimmunol.178.9.5940 – volume: 54 start-page: 404 issue: 3 year: 2021 ident: 3893_CR49 publication-title: J Microbiol Immunol Infect doi: 10.1016/j.jmii.2019.10.006 – volume: 291 start-page: 1 issue: 1 year: 2016 ident: 3893_CR16 publication-title: J Biol Chem doi: 10.1074/jbc.R115.693903 – volume: 145 start-page: 213 issue: 2 year: 2015 ident: 3893_CR38 publication-title: Immunology doi: 10.1111/imm.12437 – volume: 38 start-page: 377 issue: 1 year: 2019 ident: 3893_CR65 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-019-1351-4 – volume: 99 start-page: 1223 issue: 2 year: 2019 ident: 3893_CR6 publication-title: Physiol Rev doi: 10.1152/physrev.00012.2018 – volume: 315 start-page: 801 issue: 8 year: 2016 ident: 3893_CR1 publication-title: JAMA doi: 10.1001/jama.2016.0287 – volume: 49 start-page: 120 issue: 2 year: 2018 ident: 3893_CR47 publication-title: Shock doi: 10.1097/SHK.0000000000000958 – volume: 12 start-page: 231 issue: 4 year: 1993 ident: 3893_CR27 publication-title: Lymphokine Cytokine Res – volume: 11 start-page: 21 issue: 1 year: 2019 ident: 3893_CR4 publication-title: J Thorac Dis doi: 10.21037/jtd.2018.11.74 – volume: 41 start-page: 3879 issue: 20 year: 1998 ident: 3893_CR30 publication-title: J Med Chem doi: 10.1021/jm980334n – volume: 7 start-page: 30193 issue: 21 year: 2016 ident: 3893_CR51 publication-title: Oncotarget doi: 10.18632/oncotarget.8623 – volume: 129 start-page: 2029 issue: 5 year: 2019 ident: 3893_CR57 publication-title: J Clin Invest doi: 10.1172/JCI123839 – volume: 210 start-page: 1153 issue: 7 year: 2015 ident: 3893_CR37 publication-title: J Cell Biol doi: 10.1083/jcb.201503066 – volume: 146 start-page: 1763 issue: 7 year: 2014 ident: 3893_CR53 publication-title: Gastroenterology doi: 10.1053/j.gastro.2014.03.014 – volume: 122 start-page: 1837 issue: 18 year: 2010 ident: 3893_CR44 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.110.961714 – volume: 13 start-page: 63 issue: 1 year: 2020 ident: 3893_CR66 publication-title: Mol Brain doi: 10.1186/s13041-020-00601-9 |
| SSID | ssj0017863 |
| Score | 2.6589277 |
| Snippet | Background
Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important... Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important components of... Background Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most important... Abstract Background Effective removal of pathogenic bacteria is key to improving the prognosis of sepsis. Polymorphonuclear neutrophils (PMNs) are the most... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 29 |
| SubjectTerms | Antibodies Bacteria Chromatography Critical care Critical Care Medicine Discriminant analysis Emergency Medicine Glycolysis Humans Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Immune Infections Intensive Mass spectrometry Medicine Medicine & Public Health Metabolism Metabolites Metabolomics Neutrophil Neutrophils Neutrophils - metabolism Phosphatidylinositol 3-Kinases - metabolism Proto-Oncogene Proteins c-akt - metabolism Scientific imaging Sepsis Signal Transduction |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMSFdyFQkJG4gbWJX3FOqCBWXQFVD4D2Fjmx3a5YkpBkkfhZ_BF-Ex4nm2p59MItSiaSnXn4c2b8DULPnDNMGZoQm5SCcFeWRBcmJmmRaaep1jpkTD-9S4-P1XKZnYw_3LqxrHIbE0OgNnUJ_8hnVPqNN8AP_rL5SqBrFGRXxxYal9EVaJsNdp4upw1XkqrQSS1hkhO_LIntoRklZ52P3YITqGUHijlG5M7CFPj7_wY6_6yd_C2BGtal-c3_ndEtdGNEpPhwMKHb6JKt7qBr78ec-13kFnCExOKx8gPXDp8s2NvZ4ed-drSYk-TnD9IOHe2twafr7960gOYEryrc-MsvdQv178CbrFtc2U3f1s3Zat3h4Ygk7mzjxe-hj_M3H14fkbE7Ayk9yuu9Xq0A8GeZc5nhJhVOFkw7SjNaUK5jy7i1RSZYHNtCalYIbRJtjZNllnrf30d7VV3ZBwgL4WGKDwTKrwLc0KIQjPt7GdOlFmUsIpRsVZOXI3U5dNBY52ELo2Q-qDP36syDOnMZoefTO81A3HGh9CvQ-CQJpNvhRt2e5qMP50ILpaDmjSrHE20KmdI4c34ynGrDaYQOtorOx0jQ5edajtDT6bH3YUjM6MrWG5DxwEmlCmTuD-Y1jYR5RAecPBFKdwxvZ6i7T6rVWeAJV2nm0bqK0IutiZ4P69-f4uHFs3iErtPgNQmh6gDt9e3GPkZXy2_9qmufBP_7BfCvN44 priority: 102 providerName: ProQuest – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIMSFNzRQkJG4gbWJX3GOBbHqCqgqHlVvlh3b7YptskqySPws_gi_Cdt5oIWCBLfIHkvj8Yw90cx8A8Az5wwRBmfIZiVD1JUlUtqkKNeFcgorpWLE9PhtfngoTk6Ko6EorB2z3ceQZLypo1kLPmv9bcsoCtnnARSOIH4ZXPHPnQgNG95_OJ5iB7ngZCyPuXDd1hMUkfovci9_z5L8JVQaX6D5zf_j_Ra4MXiccL9Xkdvgkq3ugGvvhpj6XeAWoUTEwiGzA9YOHi3Im9n-5252sJij7Ps31PQd662Bp6uvXnUCjAlcVnDtP8_rJuS3B1xk1cDKbrqmXp8tVy3sSyBha9ee_B74NH_98dUBGrovoNJ7cZ0_N8uCc2eJc4WhJmeOa6IcxgXWmKrUEmqtLhhJU6u5IpopkylrHC-L3Nv2fbBT1ZXdBZAx74Z4Qxf-lqcGa80I9WMFUaViZcoSkI0HIssBmjx0yFjJ-IsiuOwFKL0AZRSg5Al4Pq1Z98Acf6V-Gc55ogyg2nGgbk7lYKOSKSZEyGnDwtFMGc1znBbOb4ZiZShOwN6oJXKw9Fb6faU0uMU0AU-naW-jIfCiKltvAo13jEQuAs2DXqkmTohX4YC5k4B8S922WN2eqZZnEQdc5IX3xkUCXoxK95OtP4vi4b-RPwLXcdTbDGGxB3a6ZmMfg6vll27ZNk-i5f0AGoMr5A priority: 102 providerName: Springer Nature |
| Title | Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis |
| URI | https://link.springer.com/article/10.1186/s13054-022-03893-6 https://www.ncbi.nlm.nih.gov/pubmed/35090526 https://www.proquest.com/docview/2630445654 https://www.proquest.com/docview/2623887854 https://pubmed.ncbi.nlm.nih.gov/PMC8796568 https://doaj.org/article/5a5885fc828f41adb67209f97042ad42 |
| Volume | 26 |
| WOSCitedRecordID | wos000748251800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: RBZ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1364-8535 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1364-8535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017863 issn: 1364-8535 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgILQXxJ3AqIzEG1hNfImdxw2tWgWrogFTeYqc2GYVXVqlKRI_iz_Cb-LYSQvl-sJLlNgnknMuzmed488IPXPOMGVoQmxSCcJdVRFdmpjIMtNOU611yJiev5aTiZpOs_yHo758TVhHD9wpbii0UMoXGlHleKJNmUoaZy6T4G3a8DD7xjLbLKb6_IFUKdtskVHpcAUzteDEV657QjlG0p3fUGDr_x3E_LVS8qd0afgLjW6hmz18xIfdsG-jK7a-g26c9gnyu8iN_X4Pi_syDbxwOB-zV8PDj-3wZDwiydcvpOmOn7cGf5h_Bj_wnCR4VuMl3F4uGl-s7kmOdYNru26bxfJiNl_hbj8jXtkliN9D70bHb1-ekP4oBVIBJGvBCFZ4pGaZc5nhRgqXlkw7SjNaUq5jy7i1ZSZYHNsy1awU2iTaGpdWoGrB7qO9elHbhwgLAZgColbBlM0NLUvBOLRlTFdaVLGIULLRbFH1POP-uIt5EdYbKi06axRgjSJYo0gj9Hz7zrJj2fir9JE32FbSM2SHBvCboveb4l9-E6GDjbmLPmxXBXxXzD3G5RF6uu2GgPNZFF3bxdrLAMpRUnmZB513bEfCAH55Ap0IyR2_2Rnqbk89uwik3kpmAK1VhF5sPOz7sP6sikf_QxWP0T4NoZEQqg7QXtus7RN0vfrUzlbNAF2VUxmuaoCuHR1P8rNBCDZ4ysen-Xt4Ontz_g3FLi1e |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jj9MwFLZGAwIu7EtgACPBCawmXhLngNCwVK3aqeYwoN6CE9udipKUpAXNn0Lij_Cb8MvSUVnmNgdukf0i2c73trzn9xB6aq1mUtOAmCAThNssIyrVPonSWFlFlVJ1xPTDOJpM5HQaH-6g791dGEir7GRiLah1kcE_8h4NneMN5gd_tfxCoGsURFe7FhoNLEbm5Jtz2aqXw7fu-z6jtP_u6M2AtF0FSOask5VbjxFgtBhmbay5joQNU6YspTFNKVe-YdyYNBbM900aKpYKpQNltA2zOPKhS4QT-RecHI_A2YumGwcviGTduS1gISdODYruko4Me5XTFYITyJ2HknaMhFuKsO4X8Dcj989czd8CtrUe7F_7307wOrraWtx4v2GRG2jH5DfRpYM2p-AWskO4ImNwm9mCC4sPh2zU2_-06g2GfRL8_EFKM4M2Z0bj2eLEsQ6UccHzHC_d4-eihPx-qAutSpyb9aoslsfzRYWbK6C4MktHfhu9P5dd3kG7eZGbewgL4cwwJ-ik03Jc0zQVjLuxmKlMicwXHgo6KCRZW5odOoQsktpFk2HSwCdx8Elq-CShh55v3lk2hUnOpH4NCNtQQlHxeqAoZ0kroxKhhJSQ00el5YHSaRhRP7ZuM5wqzamH9jpgJa2kq5JTVHnoyWbaySgIPKncFGugcYahjCTQ3G3gvFkJcxYr1BzyULQF9K2lbs_k8-O6DrqMYueNSA-96FjidFn_Por7Z-_iMbo8ODoYJ-PhZPQAXaE1xwaEyj20uyrX5iG6mH1dzavyUc37GH08b1b5BfXNll4 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELWgoIoX7oVAASPxBtYmviTOY7msumpZrQRUfbPs2G5XLEmUZJH4LH6Eb8J2soGFgoR4i5yxZI9n7GPNzDEAz6zVhGucIJMUDFFbFEgqHaNM5dJKLKUMEdOT42w-56en-eKnKv6Q7b4JSfY1DZ6lqewmtba9i_N00rqdl1HkM9E9QRxB6WVwhfpEen9ff3cyxhEynpJNqcyF_baOo8DafxHU_D1j8pewaTiNpjf-fx43wfUBicKD3nRugUumvA123w6x9jvAznzpiIFDxgesLFzMyNHk4GM3OZxNUfLtK2r6l-yNhmerL86kPL0JXJawdp-fqsbnvXu-ZNnA0qy7pqrPl6sW9qWRsDW1E78LPkzfvH91iIZXGVDh0F3n1tMwD_oMsTbXVGfMpopIi3GOFaYyNoQao3JG4tioVBLFpE6k0TYt8sz5_B7YKavS3AeQMQdP3AbA3e5PNVaKEeraciILyYqYRSDZLI4oBspy_3LGSoSrC09Fr0DhFCiCAkUagedjn7on7Pir9Eu_5qOkJ9sODVVzJgbfFUwyzn2uG-aWJlKrNMNxbt1kKJaa4gjsbyxGDDtAK9y8YurhMo3A0_G3810fkJGlqdZexgEmnnEvc683sHEkxCE5z8UTgWzL9LaGuv2nXJ4HfnCe5Q6l8wi82Bjgj2H9WRUP_k38CdhdvJ6K49n86CG4hoMJJwjzfbDTNWvzCFwtPnfLtnkcHPI7eFU3rA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+effects+of+PI3K%2FAkt%2FHIF-1%CE%B1-regulated+glycolysis+in+polymorphonuclear+neutrophils+during+sepsis&rft.jtitle=Critical+care+%28London%2C+England%29&rft.au=Tingting+Pan&rft.au=Shaoqiong+Sun&rft.au=Yang+Chen&rft.au=Rui+Tian&rft.date=2022-01-28&rft.pub=BMC&rft.eissn=1364-8535&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1186%2Fs13054-022-03893-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5a5885fc828f41adb67209f97042ad42 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8535&client=summon |