REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review
NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid a...
Saved in:
| Published in: | Journal of sustainable metallurgy Vol. 3; no. 1; pp. 122 - 149 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.03.2017
Springer Nature B.V |
| Subjects: | |
| ISSN: | 2199-3823, 2199-3831, 2199-3831 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be as large as 1000–2000 kg in the generators of modern wind turbines. NdFeB permanent magnets contain about 31–32 wt% of rare-earth elements (REEs). Recycling of REEs contained in this type of magnets from the End-of-Life (EOL) products will play an important and complementary role in the total supply of REEs in the future. However, collection and recovery of the magnets from small consumer electronics imposes great social and technological challenges. This paper gives an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of the various available technologies to recover the REEs from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery. At present, no commercial operation has been identified for recycling the EOL NdFeB permanent magnets and the recovery of the associated REE content. Most of the processing methods are still at various research and development stages. It is estimated that in the coming 10–15 years, the recycled REEs from EOL permanent magnets will play a significant role in the total REE supply in the magnet sector, provided that efficient technologies will be developed and implemented in practice. |
|---|---|
| AbstractList | NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be as large as 1000–2000 kg in the generators of modern wind turbines. NdFeB permanent magnets contain about 31–32 wt% of rare-earth elements (REEs). Recycling of REEs contained in this type of magnets from the End-of-Life (EOL) products will play an important and complementary role in the total supply of REEs in the future. However, collection and recovery of the magnets from small consumer electronics imposes great social and technological challenges. This paper gives an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of the various available technologies to recover the REEs from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery. At present, no commercial operation has been identified for recycling the EOL NdFeB permanent magnets and the recovery of the associated REE content. Most of the processing methods are still at various research and development stages. It is estimated that in the coming 10–15 years, the recycled REEs from EOL permanent magnets will play a significant role in the total REE supply in the magnet sector, provided that efficient technologies will be developed and implemented in practice. NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be as large as 1000–2000 kg in the generators of modern wind turbines. NdFeB permanent magnets contain about 31–32 wt% of rare-earth elements (REEs). Recycling of REEs contained in this type of magnets from the End-of-Life (EOL) products will play an important and complementary role in the total supply of REEs in the future. However, collection and recovery of the magnets from small consumer electronics imposes great social and technological challenges. This paper gives an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of the various available technologies to recover the REEs from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery. At present, no commercial operation has been identified for recycling the EOL NdFeB permanent magnets and the recovery of the associated REE content. Most of the processing methods are still at various research and development stages. It is estimated that in the coming 10–15 years, the recycled REEs from EOL permanent magnets will play a significant role in the total REE supply in the magnet sector, provided that efficient technologies will be developed and implemented in practice. |
| Author | Gauß, Roland Jones, Peter Tom Walton, Allan Sheridan, Richard Van Gerven, Tom Güth, Konrad Gutfleisch, Oliver Binnemans, Koen Yang, Yongxiang Buchert, Matthias Steenari, Britt-Marie |
| Author_xml | – sequence: 1 givenname: Yongxiang orcidid: 0000-0003-4584-6918 surname: Yang fullname: Yang, Yongxiang email: y.yang@tudelft.nl organization: Department of Materials Science and Engineering, Delft University of Technology – sequence: 2 givenname: Allan surname: Walton fullname: Walton, Allan organization: School of Metallurgy and Materials, University of Birmingham – sequence: 3 givenname: Richard surname: Sheridan fullname: Sheridan, Richard organization: School of Metallurgy and Materials, University of Birmingham – sequence: 4 givenname: Konrad surname: Güth fullname: Güth, Konrad organization: Fraunhofer ISC, Project Group IWKS – sequence: 5 givenname: Roland surname: Gauß fullname: Gauß, Roland organization: Fraunhofer ISC, Project Group IWKS – sequence: 6 givenname: Oliver surname: Gutfleisch fullname: Gutfleisch, Oliver organization: Institute of Material Science, Technische Universität Darmstadt – sequence: 7 givenname: Matthias surname: Buchert fullname: Buchert, Matthias organization: Resources & Transport Division, Öko-Institut e.V – sequence: 8 givenname: Britt-Marie surname: Steenari fullname: Steenari, Britt-Marie organization: Department of Chemistry and Chemical Engineering, Chalmers University of Technology – sequence: 9 givenname: Tom surname: Van Gerven fullname: Van Gerven, Tom organization: Department of Chemical Engineering, KU Leuven – sequence: 10 givenname: Peter Tom surname: Jones fullname: Jones, Peter Tom organization: Department of Materials Engineering, KU Leuven – sequence: 11 givenname: Koen surname: Binnemans fullname: Binnemans, Koen organization: Department of Chemistry, KU Leuven |
| BackLink | https://research.chalmers.se/publication/251342$$DView record from Swedish Publication Index (Chalmers tekniska högskola) |
| BookMark | eNp9UVtrVDEQDlLBWvsDfAv4HJ3czsnxrS7bC2xVWn0OOcmcNmU3WZOzLf33pmwpIujTDMN3mZnvLTlIOSEh7zl85AD9p6rASM6AdwxgAKZekUPBh4HJNj546YV8Q45rvQMA0UvV9_yQXF4tl_QKfb7H8kinkjd0mQLLE1vFCenXcIpf6HcsG5cwzfTS3SSc6bUvbvuZntBFiXP0bt0k7iM-vCOvJ7euePxcj8jP0-WPxTlbfTu7WJysmNcKZqZM51wAMUrPtQrgezFqDT4I12nVjTAYJ-QgghYhTA0ZOm8mZzo9yt4bI4_I9V63PuB2N9ptiRtXHm120Ras6Iq_tf7WrTdYqq1omwGOupfWjEZahait83yyAc0k5WjUEKCpftirbkv-tcM627u8K6kdYrkx0P7VD6Kh-B7lS6614PTizsE-xWH3cdgWh32Kw6rG6f_i-Di7OeY0FxfX_2WK50ubS7rB8sdO_yT9BkCPnmo |
| CitedBy_id | crossref_primary_10_1016_j_actamat_2024_119871 crossref_primary_10_1080_01496395_2024_2315604 crossref_primary_10_1007_s10967_024_09466_x crossref_primary_10_1016_j_jclepro_2019_02_223 crossref_primary_10_1016_j_jmmm_2023_171698 crossref_primary_10_1016_j_seppur_2021_119158 crossref_primary_10_1016_j_matdes_2022_110525 crossref_primary_10_1007_s11367_022_02081_6 crossref_primary_10_1016_j_exis_2023_101367 crossref_primary_10_3390_met8090721 crossref_primary_10_1016_j_jclepro_2018_01_260 crossref_primary_10_1557_s43577_022_00301_w crossref_primary_10_3390_met9020269 crossref_primary_10_1016_j_hydromet_2022_105855 crossref_primary_10_1016_j_jclepro_2019_07_048 crossref_primary_10_1080_08827508_2023_2232932 crossref_primary_10_3390_ma16196565 crossref_primary_10_1016_j_jre_2024_02_001 crossref_primary_10_1021_acselectrochem_4c00120 crossref_primary_10_1007_s11106_023_00344_x crossref_primary_10_1016_j_scriptamat_2017_11_020 crossref_primary_10_1016_j_jallcom_2020_157993 crossref_primary_10_1016_j_wear_2021_204134 crossref_primary_10_1016_j_radphyschem_2025_113077 crossref_primary_10_1016_j_cep_2020_107831 crossref_primary_10_1016_j_resourpol_2023_104137 crossref_primary_10_1007_s11837_019_03732_0 crossref_primary_10_3390_ma18132989 crossref_primary_10_1007_s42461_018_0042_6 crossref_primary_10_1016_j_hydromet_2021_105581 crossref_primary_10_3390_en18092274 crossref_primary_10_1016_j_jallcom_2025_180148 crossref_primary_10_1016_j_jece_2025_117751 crossref_primary_10_1016_j_jre_2023_04_019 crossref_primary_10_2497_jjspm_14E_T16_02 crossref_primary_10_1007_s11085_023_10212_z crossref_primary_10_1002_chem_202002844 crossref_primary_10_1016_j_jwpe_2025_107010 crossref_primary_10_1016_j_seppur_2018_03_022 crossref_primary_10_1016_j_molliq_2024_124697 crossref_primary_10_1002_cssc_202402372 crossref_primary_10_1016_j_jre_2025_04_020 crossref_primary_10_1016_j_seppur_2024_129469 crossref_primary_10_3390_pr11020577 crossref_primary_10_1016_j_jmmm_2019_01_095 crossref_primary_10_1016_j_procir_2020_02_052 crossref_primary_10_1016_j_seppur_2024_128498 crossref_primary_10_3390_min10040340 crossref_primary_10_1016_j_seppur_2022_122958 crossref_primary_10_1016_j_apenergy_2025_125707 crossref_primary_10_2116_analsci_20SAR11 crossref_primary_10_3390_ma17112487 crossref_primary_10_1007_s42250_019_00048_z crossref_primary_10_1016_j_jallcom_2023_168709 crossref_primary_10_1134_S0018143925600053 crossref_primary_10_1016_j_jmmm_2024_172166 crossref_primary_10_1109_TIE_2017_2762625 crossref_primary_10_1007_s13563_022_00304_8 crossref_primary_10_1007_s40831_018_0200_6 crossref_primary_10_1016_j_resenv_2025_100260 crossref_primary_10_1016_j_mineng_2022_107632 crossref_primary_10_1016_j_susmat_2024_e01041 crossref_primary_10_1002_ejic_201700801 crossref_primary_10_56958_jesi_2021_6_2_7 crossref_primary_10_1002_celc_201900286 crossref_primary_10_1016_j_susmat_2024_e01043 crossref_primary_10_1016_j_mineng_2025_109538 crossref_primary_10_1002_cssc_201902342 crossref_primary_10_1016_j_mattod_2025_05_010 crossref_primary_10_1002_cjce_25138 crossref_primary_10_3390_ma18174019 crossref_primary_10_1002_adem_202100459 crossref_primary_10_1007_s41403_021_00231_0 crossref_primary_10_3390_ma16145181 crossref_primary_10_1007_s11837_017_2698_7 crossref_primary_10_1021_acssensors_5c00833 crossref_primary_10_1002_adem_202402815 crossref_primary_10_3390_met12071204 crossref_primary_10_1016_j_resconrec_2024_107966 crossref_primary_10_1080_00084433_2022_2058152 crossref_primary_10_1016_j_actamat_2024_120532 crossref_primary_10_1088_1361_6463_aab7d1 crossref_primary_10_1007_s43615_022_00204_7 crossref_primary_10_1016_j_commatsci_2023_112527 crossref_primary_10_1007_s40516_022_00180_8 crossref_primary_10_1039_D5SU00222B crossref_primary_10_1007_s12666_021_02221_w crossref_primary_10_1016_j_jtice_2019_01_006 crossref_primary_10_1016_j_jwpe_2024_106442 crossref_primary_10_1007_s11837_020_04409_9 crossref_primary_10_1016_j_cej_2019_04_026 crossref_primary_10_1080_2329194X_2020_1836498 crossref_primary_10_1007_s12666_019_01702_3 crossref_primary_10_3390_met11081149 crossref_primary_10_1016_j_cej_2025_160892 crossref_primary_10_1126_science_aau7628 crossref_primary_10_3390_pr11061783 crossref_primary_10_1002_adem_202300252 crossref_primary_10_1007_s40831_018_0198_9 crossref_primary_10_1016_j_ces_2025_122073 crossref_primary_10_3390_ma15155281 crossref_primary_10_3390_met12081268 crossref_primary_10_3390_su16072681 crossref_primary_10_1002_chem_202303923 crossref_primary_10_1016_j_jclepro_2020_125087 crossref_primary_10_1016_j_micromeso_2021_110919 crossref_primary_10_1016_j_spc_2020_07_012 crossref_primary_10_1109_TMAG_2020_3002098 crossref_primary_10_1016_j_mineng_2018_12_022 crossref_primary_10_1016_j_procir_2020_02_005 crossref_primary_10_1016_j_resourpol_2019_101448 crossref_primary_10_1007_s11696_020_01083_8 crossref_primary_10_1016_j_matpr_2023_11_037 crossref_primary_10_3390_min13070862 crossref_primary_10_3390_ma17040808 crossref_primary_10_3390_met13040779 crossref_primary_10_1002_slct_202402192 crossref_primary_10_1007_s40831_025_01010_9 crossref_primary_10_1002_adem_202201027 crossref_primary_10_3390_ma18132946 crossref_primary_10_1016_j_jece_2024_114389 crossref_primary_10_3390_w14030401 crossref_primary_10_1016_j_elecom_2022_107287 crossref_primary_10_1016_j_clay_2020_105825 crossref_primary_10_1109_TMAG_2020_3013556 crossref_primary_10_3390_ma17225528 crossref_primary_10_1007_s42765_024_00442_4 crossref_primary_10_1016_j_jclepro_2024_142251 crossref_primary_10_1016_j_psep_2019_01_026 crossref_primary_10_3390_met8110867 crossref_primary_10_3390_jmmp8020081 crossref_primary_10_1016_j_jclepro_2025_146483 crossref_primary_10_1002_aesr_202300184 crossref_primary_10_1016_j_electacta_2019_03_161 crossref_primary_10_1016_j_jhazmat_2019_121632 crossref_primary_10_1016_j_wasman_2024_01_023 crossref_primary_10_1016_j_heliyon_2024_e34811 crossref_primary_10_1016_j_jece_2022_108946 crossref_primary_10_1016_j_resconrec_2024_108113 crossref_primary_10_1007_s13563_023_00381_3 crossref_primary_10_1002_adem_202501217 crossref_primary_10_1007_s11696_022_02428_1 crossref_primary_10_1016_j_resourpol_2025_105491 crossref_primary_10_1007_s11157_023_09647_2 crossref_primary_10_3390_min13101274 crossref_primary_10_3390_min13070846 crossref_primary_10_3390_ma18010184 crossref_primary_10_3390_met12101615 crossref_primary_10_1007_s11356_021_17761_3 crossref_primary_10_1016_j_resconrec_2020_104923 crossref_primary_10_1021_acs_chemrev_5c00103 crossref_primary_10_1007_s11837_019_03844_7 crossref_primary_10_3390_nano9060814 crossref_primary_10_1016_j_seppur_2024_126701 crossref_primary_10_3390_met10060841 crossref_primary_10_3390_nano12060974 crossref_primary_10_1016_j_jallcom_2024_177980 crossref_primary_10_1016_j_seppur_2024_127914 crossref_primary_10_1088_1755_1315_677_5_052063 crossref_primary_10_1007_s10163_021_01277_6 crossref_primary_10_1016_j_procir_2024_12_078 crossref_primary_10_1039_D2RA06883D crossref_primary_10_1016_j_jallcom_2020_158272 crossref_primary_10_1080_08827508_2022_2073591 crossref_primary_10_1016_j_jmmm_2022_170250 crossref_primary_10_1021_acsestengg_5c00508 crossref_primary_10_1016_j_mineng_2022_107446 crossref_primary_10_1146_annurev_chembioeng_100722_114853 crossref_primary_10_1016_j_hydromet_2022_105942 crossref_primary_10_1016_j_scriptamat_2018_01_032 crossref_primary_10_1016_j_matchar_2022_111824 crossref_primary_10_1021_jacs_5c04150 crossref_primary_10_1016_j_micromeso_2020_110747 crossref_primary_10_1016_j_chroma_2022_463528 crossref_primary_10_5796_electrochemistry_23_69105 crossref_primary_10_1016_j_actamat_2022_118454 crossref_primary_10_1016_j_jmmm_2024_172360 crossref_primary_10_1016_j_seppur_2023_124332 crossref_primary_10_1016_j_hydromet_2024_106284 crossref_primary_10_1016_j_jallcom_2025_178567 crossref_primary_10_1016_j_cogsc_2024_100884 crossref_primary_10_1007_s40831_024_00873_8 crossref_primary_10_1016_j_hydromet_2019_105154 crossref_primary_10_1016_j_jclepro_2022_135112 crossref_primary_10_3390_pr13092830 crossref_primary_10_1016_j_jclepro_2017_09_051 crossref_primary_10_1016_j_jece_2023_111001 crossref_primary_10_1515_psr_2018_0022 crossref_primary_10_1039_D2NJ02776C crossref_primary_10_1088_1361_6463_abfad4 crossref_primary_10_1016_j_cogsc_2018_02_008 crossref_primary_10_3390_pr9050857 crossref_primary_10_1039_D3SU00390F crossref_primary_10_1016_j_mineng_2025_109479 crossref_primary_10_1016_j_psep_2024_09_053 crossref_primary_10_1039_C9RA08996A crossref_primary_10_3390_ma17040848 crossref_primary_10_3390_recycling7050068 crossref_primary_10_3390_min12080948 crossref_primary_10_3390_resources6040059 crossref_primary_10_1016_j_jclepro_2022_135004 crossref_primary_10_1080_12269328_2024_2425351 crossref_primary_10_1016_j_heliyon_2024_e38766 crossref_primary_10_1016_j_molliq_2022_120012 crossref_primary_10_1016_j_molliq_2023_122258 crossref_primary_10_1002_ente_201901025 crossref_primary_10_1007_s11837_023_06235_1 crossref_primary_10_1007_s13762_021_03546_1 crossref_primary_10_3390_eng3020020 crossref_primary_10_1111_jiec_13058 crossref_primary_10_1109_ACCESS_2020_3008214 crossref_primary_10_1177_0954407020971246 crossref_primary_10_3390_app14135638 crossref_primary_10_1007_s11837_021_04592_3 crossref_primary_10_1180_mgm_2020_9 crossref_primary_10_1016_j_hydromet_2021_105626 crossref_primary_10_1016_j_jclepro_2024_142453 crossref_primary_10_1016_j_jiec_2023_04_027 crossref_primary_10_1016_j_seppur_2017_11_025 crossref_primary_10_1016_j_seppur_2025_134703 crossref_primary_10_1038_s41893_019_0252_z crossref_primary_10_1007_s11696_023_02745_z crossref_primary_10_1016_j_egyr_2024_07_022 crossref_primary_10_3390_cryst10090815 crossref_primary_10_1016_j_cej_2022_137418 crossref_primary_10_3390_ma16196614 crossref_primary_10_1016_j_scriptamat_2020_113686 crossref_primary_10_3390_met12050794 crossref_primary_10_1016_j_hydromet_2019_105213 crossref_primary_10_1007_s12540_019_00605_8 crossref_primary_10_1007_s40831_025_01239_4 crossref_primary_10_1016_j_resconrec_2024_107582 crossref_primary_10_1016_j_procir_2024_12_067 crossref_primary_10_1007_s40831_019_00259_1 crossref_primary_10_1016_j_jece_2024_113169 crossref_primary_10_1016_j_resconrec_2023_107037 crossref_primary_10_1109_TIE_2024_3368104 crossref_primary_10_1016_j_resconrec_2023_106864 crossref_primary_10_1080_2374068X_2022_2095142 crossref_primary_10_1002_adfm_202407018 crossref_primary_10_1007_s40831_018_0204_2 crossref_primary_10_3390_met11060978 crossref_primary_10_1111_jfb_15860 crossref_primary_10_1016_j_jclepro_2025_145794 crossref_primary_10_1016_j_jre_2025_09_003 crossref_primary_10_1016_j_rser_2022_112523 crossref_primary_10_1016_j_wasman_2018_01_033 crossref_primary_10_1063_5_0172155 crossref_primary_10_1002_adem_202400234 crossref_primary_10_1016_j_seppur_2024_129850 crossref_primary_10_1039_D4RA08474H crossref_primary_10_3390_met14060658 crossref_primary_10_3390_min11121374 crossref_primary_10_1016_j_jclepro_2022_132672 crossref_primary_10_1007_s10163_024_02108_0 crossref_primary_10_1016_j_seppur_2022_122699 crossref_primary_10_1016_j_jallcom_2019_152215 crossref_primary_10_1016_j_ces_2025_121351 crossref_primary_10_1680_jemmr_18_00046 crossref_primary_10_3389_fceng_2024_1420008 crossref_primary_10_1016_j_scp_2022_100623 crossref_primary_10_1016_j_actamat_2024_120493 crossref_primary_10_1016_j_cej_2018_06_112 crossref_primary_10_1016_j_resconrec_2018_11_024 crossref_primary_10_1016_j_apt_2021_08_040 crossref_primary_10_1016_j_cej_2023_141708 crossref_primary_10_1007_s11783_021_1412_8 crossref_primary_10_1016_j_jclepro_2019_119762 crossref_primary_10_1007_s40831_018_0171_7 crossref_primary_10_1016_j_resconrec_2024_108094 crossref_primary_10_1016_j_mineng_2024_108779 crossref_primary_10_1016_j_hydromet_2017_11_010 crossref_primary_10_3390_molecules29194624 crossref_primary_10_3390_min13060714 crossref_primary_10_1016_j_sajce_2020_04_003 crossref_primary_10_4028_www_scientific_net_KEM_845_81 crossref_primary_10_1007_s40831_022_00574_0 crossref_primary_10_3390_en18102436 crossref_primary_10_1016_j_envint_2023_108177 crossref_primary_10_1016_j_resconrec_2019_06_031 crossref_primary_10_3390_ma12091498 crossref_primary_10_1007_s11837_020_04185_6 crossref_primary_10_1016_j_susmat_2018_e00074 crossref_primary_10_1007_s11837_019_03523_7 crossref_primary_10_1149_1945_7111_ade509 crossref_primary_10_1038_s41598_025_94667_x crossref_primary_10_3390_met11091494 crossref_primary_10_1007_s10163_025_02162_2 crossref_primary_10_1016_j_jclepro_2017_12_035 crossref_primary_10_1016_j_seppur_2024_127892 crossref_primary_10_1088_1674_1056_add006 crossref_primary_10_1016_j_electacta_2024_144817 crossref_primary_10_1016_j_jenvman_2025_126513 crossref_primary_10_1088_1757_899X_550_1_012034 crossref_primary_10_1109_TTE_2024_3476161 crossref_primary_10_1016_j_resconrec_2020_104781 crossref_primary_10_1016_j_seppur_2024_126447 crossref_primary_10_1002_cssc_202400286 crossref_primary_10_1039_D2RA05876F crossref_primary_10_1007_s10098_024_02935_7 crossref_primary_10_1007_s12613_020_2228_4 crossref_primary_10_1007_s10854_022_08992_2 crossref_primary_10_1016_j_resconrec_2023_107245 crossref_primary_10_1016_j_seppur_2023_125924 crossref_primary_10_1016_j_jclepro_2023_136252 crossref_primary_10_1016_j_solidstatesciences_2018_12_022 crossref_primary_10_3390_su12072624 crossref_primary_10_1016_j_scitotenv_2024_177995 crossref_primary_10_3390_met15090942 crossref_primary_10_3390_en17235861 crossref_primary_10_1007_s41403_021_00216_z crossref_primary_10_3390_met13030559 crossref_primary_10_1016_j_matchemphys_2024_129648 crossref_primary_10_5796_electrochemistry_23_69163 crossref_primary_10_3390_su16198726 crossref_primary_10_3390_met12091464 crossref_primary_10_1038_s41578_021_00308_w crossref_primary_10_3390_en14175540 crossref_primary_10_3390_membranes13050467 crossref_primary_10_1016_j_jmmm_2023_171475 crossref_primary_10_1016_j_resourpol_2018_07_010 crossref_primary_10_3390_molecules29030688 crossref_primary_10_1007_s10010_025_00820_3 crossref_primary_10_1016_j_addlet_2025_100282 crossref_primary_10_3390_en17040908 crossref_primary_10_1016_j_mineng_2019_106097 crossref_primary_10_1016_j_wasman_2019_04_040 crossref_primary_10_1177_00325899251331431 crossref_primary_10_1002_adsu_202400887 crossref_primary_10_1007_s12666_020_01888_x crossref_primary_10_1007_s40831_018_0180_6 crossref_primary_10_3390_met14030314 crossref_primary_10_1016_j_jmmm_2021_168979 crossref_primary_10_1038_s41467_022_31499_7 crossref_primary_10_1021_acssusresmgt_5c00003 crossref_primary_10_1038_s41598_022_24042_7 crossref_primary_10_3390_ma17235927 crossref_primary_10_1038_s44359_025_00097_3 crossref_primary_10_1016_j_mtsust_2024_101042 crossref_primary_10_1016_j_seppur_2022_122946 crossref_primary_10_1177_25726641241233219 crossref_primary_10_1016_j_jallcom_2020_158424 crossref_primary_10_1016_j_seppur_2023_125137 crossref_primary_10_3390_met11050734 crossref_primary_10_1007_s13243_024_00143_6 crossref_primary_10_3390_app10217558 crossref_primary_10_1016_j_seppur_2023_123527 crossref_primary_10_3390_en18154024 crossref_primary_10_1016_j_spc_2019_07_006 crossref_primary_10_1080_07366299_2025_2508300 crossref_primary_10_3390_pr11072070 crossref_primary_10_1016_j_corsci_2021_109290 crossref_primary_10_3389_fenvc_2021_596928 crossref_primary_10_3390_en17040914 crossref_primary_10_1016_j_electacta_2021_138140 crossref_primary_10_1016_j_wasman_2023_12_025 crossref_primary_10_1016_j_jclepro_2020_123299 crossref_primary_10_18596_jotcsa_1337768 crossref_primary_10_1016_j_cej_2021_131086 crossref_primary_10_1016_j_jclepro_2022_134305 crossref_primary_10_1016_j_ijhydene_2025_04_248 crossref_primary_10_1016_j_electacta_2021_139342 crossref_primary_10_1016_j_molliq_2023_123690 crossref_primary_10_1016_j_scitotenv_2023_164368 crossref_primary_10_1016_j_jenvman_2025_125578 crossref_primary_10_1016_j_rser_2020_110616 crossref_primary_10_1016_j_jclepro_2023_138526 crossref_primary_10_1016_j_hydromet_2024_106320 crossref_primary_10_1007_s11696_020_01240_z crossref_primary_10_1016_j_jclepro_2019_02_094 crossref_primary_10_1080_10934529_2023_2264135 crossref_primary_10_1016_j_jre_2020_04_020 crossref_primary_10_1016_j_jenvman_2018_05_054 crossref_primary_10_1016_j_procir_2021_01_014 |
| Cites_doi | 10.1081/SEI-100001376 10.1021/es404596q 10.1039/B603847F 10.1007/s40436-015-0132-3 10.1016/j.hydromet.2015.05.004 10.1252/jcej.11we005 10.1002/adma.201002180 10.1016/j.jallcom.2013.11.188 10.1063/1.4859097 10.1016/j.hydromet.2014.09.015 10.1016/j.jallcom.2003.11.030 10.1252/jcej.10we279 10.1016/j.jiec.2009.09.063 10.7844/kirr 10.1016/j.seppur.2012.08.015 10.1016/j.jallcom.2005.04.088 10.2790/35716 10.1039/C5GC01255D 10.1016/S0925-8388(02)01202-1 10.1002/0470010088 10.1557/JMR.2000.0330 10.1007/s10163-014-0347-6 10.2116/analsci.23.1427 10.1039/C2GC35246J 10.1016/S0925-8388(98)00910-4 10.1002/ente.201402162 10.1016/j.jallcom.2007.01.134 10.1016/j.jclepro.2012.12.037 10.1088/0022-3727/31/7/009 10.1007/s11837-013-0639-7 10.1016/S0925-8388(00)01112-9 10.1016/j.mineng.2014.03.015 10.1021/acs.est.5b01306 10.1021/sc5004456 10.1080/01496390601120763 10.1149/2.072112jes 10.1016/j.wasman.2015.07.041 10.2320/matertrans.44.798 10.1021/es405104k 10.1007/978-1-4899-1406-4 10.1016/S1002-0721(14)60478-6 10.1016/j.jallcom.2004.02.038 10.1016/0925-8388(94)01316-A 10.1016/j.jallcom.2008.10.036 10.1039/C3GC41577E 10.1021/acssuschemeng.5b00852 10.1002/9781119275039.ch13 10.1016/j.jallcom.2008.01.114 10.1016/j.mineng.2013.10.021 10.1021/es305007w 10.1007/978-3-319-26809-5 10.3390/ijms150915320 10.1088/0022-3727/29/9/006 10.1007/s40831-014-0005-1 10.1515/HTMP.1993.11.1-4.175 10.1002/aenm.201200337 10.1016/j.jenvman.2009.06.018 10.1021/ic049377m 10.1016/j.jclepro.2014.04.035 10.15261/serdj.21.137 10.1109/TMAG.2003.815749 10.1016/j.jallcom.2015.05.238 10.1016/j.scriptamat.2012.05.038 10.1179/1743284714Y.0000000672 10.1016/B978-0-12-802328-0.00022-X 10.1016/j.hydromet.2016.01.028 10.1039/C3GC40198G 10.1016/j.hydromet.2016.05.007 10.1179/1743285514Y.0000000084 10.1088/0022-3727/33/17/201 10.1007/s40831-015-0021-9 10.1021/acs.est.5b02264 10.3133/sir20115094 10.1016/j.aca.2004.09.023 10.1016/S0016-7037(01)00849-3 10.1016/j.jmmm.2013.09.042 10.1103/PhysRevB.92.174413 10.1109/TMAG.1984.1063214 10.1088/0953-8984/26/6/064205 10.1016/j.jallcom.2006.01.011 10.1016/j.apenergy.2014.09.064 10.1007/s40553-014-0016-7 10.1039/C4RA13787F 10.1016/j.jclepro.2015.04.123 10.1016/j.jallcom.2005.04.094 10.1039/C5GC00155B 10.1016/j.jclepro.2015.05.033 10.1016/j.apsusc.2016.03.182 10.2116/analsci.19.1097 10.1016/j.jmmm.2004.11.423 10.1111/j.1530-9290.2011.00362.x 10.2320/matertrans.43.55 10.1007/s40831-016-0045-9 10.1021/es203518d 10.1109/TMAG.2004.832241 10.1109/IEMDC.2015.7409220 10.1039/C5GC00230C 10.1016/j.jmmm.2011.07.043 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2016 – notice: The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| DOI | 10.1007/s40831-016-0090-4 |
| DatabaseName | SpringerOpen CrossRef SWEPUB Chalmers tekniska högskola full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Chalmers tekniska högskola SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-3831 |
| EndPage | 149 |
| ExternalDocumentID | oai_research_chalmers_se_72beb573_8b83_4ee5_ac1f_de8f33b849d0 10_1007_s40831_016_0090_4 |
| GroupedDBID | -EM 0R~ 203 4.4 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BGNMA C6C CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z7R Z7V Z7Y Z7Z Z85 ZMTXR AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEUYN AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ KB. PDBOC PHGZM PHGZT PQGLB ABBSD ADTPV AOWAS D8T F1S ZZAVC |
| ID | FETCH-LOGICAL-c540t-486aad02b3c154d0c72b550cd2a6546b098a2392d52ddfad0d6c8fa865b37c883 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 469 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394334600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2199-3823 2199-3831 |
| IngestDate | Wed Nov 05 04:18:34 EST 2025 Wed Sep 17 13:41:00 EDT 2025 Tue Nov 18 21:31:45 EST 2025 Sat Nov 29 02:16:57 EST 2025 Fri Feb 21 02:36:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Rare-earth magnets Recycling Critical raw materials Neodymium Rare earths Urban mining |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-486aad02b3c154d0c72b550cd2a6546b098a2392d52ddfad0d6c8fa865b37c883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4584-6918 |
| OpenAccessLink | https://link.springer.com/10.1007/s40831-016-0090-4 |
| PQID | 1880771792 |
| PQPubID | 2044445 |
| PageCount | 28 |
| ParticipantIDs | swepub_primary_oai_research_chalmers_se_72beb573_8b83_4ee5_ac1f_de8f33b849d0 proquest_journals_1880771792 crossref_primary_10_1007_s40831_016_0090_4 crossref_citationtrail_10_1007_s40831_016_0090_4 springer_journals_10_1007_s40831_016_0090_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of sustainable metallurgy |
| PublicationTitleAbbrev | J. Sustain. Metall |
| PublicationYear | 2017 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | British Geological Survey (BGS) (2010) rare earth elements. 2010. http://www.MineralsUK.com. Accessed 8 May 2016 SagawaMFujimuraSYamamotoHMatsuuraYHiragaKPermanent magnet materials based on the rare earth-iron-boron tetragonal compoundsIEEE Trans Magn19842051584158910.1109/TMAG.1984.1063214 NaganawaHShimojoKMitamuraHSugoYNoroJGotoMA New, “green” extractant of the diglycol amic acid type for lanthanidesSolvent Extr Res Dev, Jpn2007141511591:CAS:528:DC%2BD2sXmt1eltrs%3D AlonsoEShermanAMWallingtonTJEversonMPFieldRRothRKirchainREEvaluating rare earth element availability: a case with revolutionary demand from clean technologiesEnviron Sci Technol201246340634141:CAS:528:DC%2BC38Xhs1Kiurw%3D10.1021/es203518d Högberg S, Bendixen FB, Mijatovic N, Jensen BB, Holbøll J (2015) Influence of demagnetization-temperature on magnetic performance of recycled Nd-Fe-B magnets. In: Proceeding of the IEEE international electric machines and drives conference. pp 1242–1246 VanderHoogerstraete TBlanpainBVan GervenTBinnemansKFrom NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acidRSC Adv2014464099641111:CAS:528:DC%2BC2cXhvFOitLzP10.1039/C4RA13787F VonckenJHLThe rare earth elements, an introduction2016DordrechtSpringerNature10.1007/978-3-319-26809-5 LiuYJeonHSLeeMSSolvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractantsHydrometallurgy201415061671:CAS:528:DC%2BC2cXhslajtLbJ10.1016/j.hydromet.2014.09.015 GutfleischOGüthKWoodcockTGSchultzLRecycling used Nd-Fe-B sintered magnets via a hydrogen-based route to produce anisotropic, resin bonded magnetsAdv Energy Mater201331511551:CAS:528:DC%2BC3sXjtVGjsr4%3D10.1002/aenm.201200337 SaitoTSatoHOzawaSYuJMotegiTThe extraction of Nd from waste NdFeB alloys by the glass slag methodJ Alloys and Compd20033531891931:CAS:528:DC%2BD3sXitlers7k%3D10.1016/S0925-8388(02)01202-1 BandaraHMDFieldKDEmmertMHRare earth recovery from end-of-life motors employing green chemistry design principlesGreen Chem2016187537591:CAS:528:DC%2BC2MXhsVGisrnE10.1039/C5GC01255D EllisTWSchmidtFAJonesLLLiddellKCMethods and opportunities in the recycling of rare earth based materialsMetals and materials waste reduction, recovery, and remediation1994Warrendale, PATMS199206 ItakuraTSasaiRItohHResource recovery from Nd-Fe-B sintered magnet by hydrothermal treatmentJ Alloys Compd2006408–412138213851:CAS:528:DC%2BD28XosFOrtw%3D%3D10.1016/j.jallcom.2005.04.088 Nash KL, Choppin GR (1995) Separation of f elements. Springer Science + Business Media. (eBook). doi 10.1007/978-1-4899-1406-4 HabibKWenzelHExploring rare earths supply constraints for the emerging clean energy technologies and the role of recyclingJ Clean Prod2014843483591:CAS:528:DC%2BC2cXnslehur4%3D10.1016/j.jclepro.2014.04.035 KimASKimDHNamkungSJangTSLeeDHKwonHWHwangDHHDDR processing of magnet scrapIEEE Trans Magn200440287728791:CAS:528:DC%2BD2cXotVCks7c%3D10.1109/TMAG.2004.832241 RianoSBinnemansKExtraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnetsGreen Chem201517293129421:CAS:528:DC%2BC2MXktVCrtr0%3D10.1039/C5GC00230C SprecherBXiaoYWaltonASpeightJHarrisRKleijnRVisserGKramerGJLife Cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnetsEnviron Sci Technol201448395139581:CAS:528:DC%2BC2cXjtlSjtbg%3D10.1021/es404596q Abrahami ST (2012) Rare-earths recovery from post-consumer HDD scrap. Master thesis. Department of Materials Science and Engineering, TU Delft HonkuraYMishimaCHamadaNGutfleischOTexture memory effect of Nd-Fe-B during hydrogen treatmentJ Magn Magn Mat2005290–291P2128212851:CAS:528:DC%2BD2MXisFalsb0%3D10.1016/j.jmmm.2004.11.423 BoundsCLiddellKCThe recycle of sintered magnet swarfMetals and materials waste reduction, recovery and mediation1994Warrendale, PATMS173186 Benecki WT (2013) The permanent magnet market 2015. Presentation in: magnetics 2013 Conference. February 8, 2013 Orlando. http://www.waltbenecki.com/uploads/Magnetics_2013_Benecki_Presentation.pdf. Accessed 8 May 2016 ZhuZXSasakiYSuzukiHSuzukiSKimuraTCumulative study on solvent extraction of elements by N, N, N’, N’-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecaneAnal Chim Acta20045271631681:CAS:528:DC%2BD2cXhtVCmtbjL10.1016/j.aca.2004.09.023 BandaraHMDDarcyJWApelianDEmmertMHValue analysis of neodymium content in shredder feed: towards enabling the feasibility of rare earth magnet recyclingEnviron Sci Technol201448655365601:CAS:528:DC%2BC2cXosVWjsb0%3D10.1021/es405104k LeeJCKimWBJeongJYoonIJExtraction of neodymium from Nd-Fe-B magnet scraps by sulfuric acidJ Korean Inst Met Mater19983669679721:CAS:528:DyaK1cXltlyqu7s%3D EdströmAEffect of doping by 5d elements on magnetic properties of (Fe1 − xCox)2B alloysPhys Rev B2015921744131:CAS:528:DC%2BC28XovVCrs7Y%3D10.1103/PhysRevB.92.174413 MakanyireTSanchez-SegadoSJhaASeparation and recovery of critical metal ions using ionic liquidsAdv Manuf20164133461:CAS:528:DC%2BC28XktVektrk%3D10.1007/s40436-015-0132-3 WaltonAWilliamsARare earth recoveryMater World2011192426 Okabe TH and Shirayama S (2011) Method and apparatus for recovery of rare earth element, US Patent Application Publication: US2011/0023660A1 FirdausMRhamdhaniMADurandetYRankinWJMcGregorKReview of high-temperature recovery of rare earth (Nd/Dy) from magnet wasteJ Sustain Metall201610.1007/s40831-016-0045-9 Herraiz E, Degri M, Bradshaw A, Sheridan RS, Mann VSJ, Harris IR, Walton A (2016) Recycling of rare earth magnets by hydrogen processing and re-sintering. In: 24th international workshop on rare earth permanent magnet and their applications, Darmstadt ZakotnikMTudorCOCommercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materialsWaste Manag20154448541:CAS:528:DC%2BC2MXht1KrtbjO10.1016/j.wasman.2015.07.041 KoyamaKTanakaMMachidaKThe latest technology trend and resource strategy of rare earths2011TokyoCMC Press127131 Goonan T G (2011) Rare earth elements-end use and recyclability. USGS Scientific Investigations Report 2011–5094. https://pubs.usgs.gov/sir/2011/5094/pdf/sir2011-5094.pdf. Accessed 8 May 2016 USGS (2010-2016) Minerals yearbook, rare earths. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/index.html#myb. Accessed 8 May 2016 KikuchiYMatsumiyaMKawakamiSExtraction of rare earth ions from Nd-Fe-B magnet wastes with TBP in tricaprylmethylammonium nitrateSolvent Extr Res Dev, Jpn2014211371451:CAS:528:DC%2BC2cXovVGitLY%3D10.15261/serdj.21.137 RademakerJHKleijnRYangYRecycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recyclingEnviron Sci Technol20134710129101361:CAS:528:DC%2BC3sXht1SrtrzL10.1021/es305007w GutfleischOWillardMABrückEChenCHSankarSGLiuJPMagnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient (review)Adv Mater2011238218421:CAS:528:DC%2BC3MXitVWmu74%3D10.1002/adma.201002180 DupontDBinnemansKRecycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2 N]Green Chem201517215021631:CAS:528:DC%2BC2MXjsF2qtr8%3D10.1039/C5GC00155B MuraseKMachidaKAdachiGRecovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transportJ Alloys Compd19952172182251:CAS:528:DyaK2MXjt1Sltbw%3D10.1016/0925-8388(94)01316-A Constantinides S (2012) The Demand for Rare Earth Materials in Permanent Magnets. Presentation at the 51st annual conference of metallurgists (COM 2012), Sept. 30–Oct. 3, 2012. Niagara Falls. http://www.arnoldmagnetics.com/Portals/0/Files/Tech%20Library/Technical%20Publications/Tech%20Papers/Demand%20for%20rare%20earth%20materials%20in%20permanent%20magnets%20-%20Constantinides%20-%20COM%20-%202012%20psn%20hi-res.pdf?ver=2015-09-21-101252-140. Accessed 17 Sept 2016 Ellis TW, Schmidt FA (1995) Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction. U.S. Patent 5,437,709 HabibKParajulyKWenzelHTracking the flow of resources in electronic waste - the case of end-of-life computer hard disk drivesEnviron Sci Technol2015492012441124491:CAS:528:DC%2BC2MXhsVKlsL%2FL10.1021/acs.est.5b02264 KraikaewJSrinuttrakulWChayavadhanakurCSolvent extraction study of rare earths from nitrate medium by the mixtures of TBP and D2EHPA in keroseneJ Metals Mater Miner200515289951:CAS:528:DC%2BD2MXhtlGnsLrK KobayashiSKobayashiKNohiraTHagiwaraROishiTKonishiHElectrochemical formation of Nd-Ni Alloys in molten LiF-CaF2-NdF3J Electrochem Soc2011158E142E1461:CAS:528:DC%2BC3MXhsVyks7nO10.1149/2.072112jes OkabeTHTakedaOFukudaKUmetsuYDirect extraction and recovery of neodymium metals from magnet scrapMater Trans2003447988011:CAS:528:DC%2BD3sXkslCltL0%3D10.2320/matertrans.44.798 ZakotnikMHarrisIRWiliamsAJMultiple recycling of NdFeB-type sintered magnetsJ Alloys Compd20094693143211:CAS:528:DC%2BD1MXhtVOmtbo%3D10.1016/j.jallcom.2008.01.114 AbreuRDMoraisCAStudy on separation of heavy rare earth elements by solvent extraction with organophosphorous acids and amine reagentsMiner Eng20146182871:CAS:528:DC%2BC2cXntlOnsr4%3D10.1016/j.mineng.2014.03.015 BandaRJeonHLeeMSolvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractantsSep Purif Technol2012984814871:CAS:528:DC%2BC38Xhtl2ktrbO10.1016/j.seppur.2012.08.015 Mann VSJ, Škulj I, Walton A (2016) Production of Sintered magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt ShimojoKNaganawaHNoroJKubotaFGotoMExtraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligandAnal Sci20072312142714301:CAS:528:DC%2BD2sXhsVOrsLrN10.2116/analsci.23.1427 Moham O Gutfleisch (90_CR36) 2003; 39 S Wellens (90_CR18) 2012; 14 HMD Bandara (90_CR76) 2016; 18 R Banda (90_CR93) 2012; 98 K Koyama (90_CR80) 2009; 54 ZX Zhu (90_CR97) 2004; 527 SJ Yoon (90_CR108) 2010; 16 X Li (90_CR71) 2015; 33 90_CR65 K Nakashima (90_CR103) 2003; 19 90_CR63 T Vander Hoogerstraete (90_CR113) 2013; 15 O Gutfleisch (90_CR33) 2000; 33 ST Abrahami (90_CR59) 2015; 124 90_CR62 E Alonso (90_CR25) 2012; 46 90_CR60 90_CR130 90_CR135 90_CR136 C Bounds (90_CR75) 1994 90_CR68 HS Yoon (90_CR92) 2016 T Saito (90_CR129) 2006; 425 F Xie (90_CR91) 2014; 56 A Walton (90_CR41) 2015; 104 M Itoh (90_CR15) 2009; 477 T Saito (90_CR19) 2003; 353 AS Kim (90_CR69) 2004; 40 90_CR72 Y Liu (90_CR94) 2014; 150 90_CR73 90_CR70 HMD Bandara (90_CR52) 2015; 3 S Cotton (90_CR85) 2006 O Takeda (90_CR124) 2004; 379 RS Sheridan (90_CR39) 2012; 324 JHL Voncken (90_CR84) 2016 CK Gupta (90_CR90) 2005 M Firdaus (90_CR11) 2016 O Gutfleisch (90_CR29) 2011; 23 M Zakotnik (90_CR67) 2015; 44 K Koyama (90_CR81) 2011 90_CR88 TH Okabe (90_CR16) 2003; 44 D Dupont (90_CR117) 2015; 17 T Monecke (90_CR86) 2002; 66 JP Meakin (90_CR64) 2016; 378 90_CR118 M Tanaka (90_CR9) 2013 Y Bian (90_CR131) 2016; 4 M Zakotnik (90_CR61) 2009; 469 T Vander Hoogerstraete (90_CR114) 2014; 16 K Murase (90_CR119) 1995; 217 M Moore (90_CR125) 2015; 647 J Kraikaew (90_CR87) 2005; 15 T Elwert (90_CR96) 2014; 67 ZS Hua (90_CR128) 2015; 31 K Binnemans (90_CR8) 2013; 51 O Gutfleisch (90_CR34) 1996; 29 JC Lee (90_CR79) 1998; 36 O Takeda (90_CR10) 2014; 1A F Kubota (90_CR104) 2012; 19 90_CR121 Y Sasaki (90_CR109) 2001; 19 90_CR127 G Finnveden (90_CR134) 2009; 91 K Binnemans (90_CR4) 2015; 1 T Makanyire (90_CR107) 2016; 4 M Sagawa (90_CR24) 1984; 20 HH Dam (90_CR98) 2007; 36 K Shimojo (90_CR111) 2007; 23 M Zakotnik (90_CR12) 2008; 450 O Takeda (90_CR123) 2006; 408–412 LK Jakobsson (90_CR132) 2016 A Walton (90_CR13) 2011; 19 S Kobayashi (90_CR133) 2011; 158 TW Ellis (90_CR78) 1994 90_CR21 S Sawatzki (90_CR31) 2014; 115 90_CR22 RD Abreu (90_CR95) 2014; 61 90_CR20 I Dirba (90_CR42) 2014; 589 K Habib (90_CR53) 2015; 49 Y Kikuchi (90_CR112) 2014; 21 Hoogerstraete T Vander (90_CR115) 2014; 4 D Jiles (90_CR1) 1998 90_CR27 90_CR28 K Binnemans (90_CR3) 2013; 65 90_CR26 90_CR23 T Itakura (90_CR82) 2006; 408–412 MAR Önal (90_CR120) 2015; 1 TG Woodcock (90_CR35) 2012; 67 M Mohammadi (90_CR89) 2015; 156 D Kim (90_CR102) 2015; 49 RS Mottram (90_CR66) 1999; 283 JW Lyman (90_CR17) 1993; 11 D Schüler (90_CR6) 2011 X Du (90_CR49) 2011; 15 A Edström (90_CR32) 2015; 92 A Elshkaki (90_CR5) 2014; 136 MD Kuz’min (90_CR30) 2014; 26 MS Tyumentsev (90_CR101) 2016; 164 M Itoh (90_CR74) 2004; 374 O Gutfleisch (90_CR43) 1998; 31 Y Baba (90_CR105) 2011; 44 T Uda (90_CR14) 2002; 43 JH Rademaker (90_CR2) 2013; 47 O Gutfleisch (90_CR38) 2013; 3 90_CR47 M Ueberschaar (90_CR55) 2015; 17 90_CR48 J Park (90_CR106) 2014; 15 90_CR45 V Prakash (90_CR83) 2016 H Naganawa (90_CR110) 2007; 14 B Sprecher (90_CR137) 2014; 48 Y Honkura (90_CR37) 2005; 290–291 AM El-Aziz (90_CR44) 2000; 311 RL Moss (90_CR7) 2011 90_CR54 SI Sinkov (90_CR100) 2004; 43 Y Xu (90_CR122) 2000; 15 RS Sheridan (90_CR40) 2014; 350 HMD Bandara (90_CR46) 2014; 48 K Habib (90_CR51) 2014; 84 HS Yoon (90_CR77) 2003; 12 Z Hua (90_CR126) 2014; 2 D Guyonnet (90_CR50) 2015; 107 90_CR58 G Modolo (90_CR99) 2007; 42 90_CR56 S Riano (90_CR116) 2015; 17 90_CR57 |
| References_xml | – reference: WoodcockTGZhangYHrkacGCiutaGDempseyNMSchreflTGutfleischOGivordDUnderstanding microstructure and coercivity in high performance NdFeB-based magnets (viewpoint paper)Scripta Mat2012675365411:CAS:528:DC%2BC38XpsVyjs78%3D10.1016/j.scriptamat.2012.05.038 – reference: JilesDIntroduction to magnetism and magnetic materials19982New YorkChapman & Hall – reference: YoonSJLeeJGTajimaHYamasakiAKiyonoFNakazatoTTaoHExtraction of lanthanide ions from aqueous solution by bis(2-ethylhexyl)phosphoric acid with room-temperature ionic liquidsJ Ind Eng Chem20101633503541:CAS:528:DC%2BC3cXmtFymtL4%3D10.1016/j.jiec.2009.09.063 – reference: HuaZSWangLWangJXiaoYPYangYXZhaoZLiuMJExtraction of rare earth elements from NdFeB scrap by AlF3–NaF meltsMater Sci Technol201531100710101:CAS:528:DC%2BC2cXhs1KmurfI10.1179/1743284714Y.0000000672 – reference: ItohMMiuraKMachidaKINovel rare earth recovery process on Nd-FeB magnet scrap by selective chlorination using NH4ClJ Alloys Compd20094774844871:CAS:528:DC%2BD1MXltleiurc%3D10.1016/j.jallcom.2008.10.036 – reference: WaltonAHanYRowsonNASpeightJDMannVSJSheridanRSBradshawAHarrisIRWilliamsAJThe use of hydrogen to separate and recycle neodymium-iron-boron-type magnets from electronic wasteJ Clean Prod20151042362411:CAS:528:DC%2BC2MXovV2ls7o%3D10.1016/j.jclepro.2015.05.033 – reference: ZakotnikMHarrisIRWiliamsAJMultiple recycling of NdFeB-type sintered magnetsJ Alloys Compd20094693143211:CAS:528:DC%2BD1MXhtVOmtbo%3D10.1016/j.jallcom.2008.01.114 – reference: YoonHSKimCJLeeJYKimSDLeeJCSeparation of neodymium from NdFeB permanent magnet scrapJ Korean Inst Resour Recycl200312657631:CAS:528:DC%2BD2cXhtVWqsbw%3D10.7844/kirr – reference: Kuz’minMDSkokovKPJianHRadulovIGutfleischOTowards high-performance permanent magnets without rare earthsJ Phys20142651:CAS:528:DC%2BC2cXjtFaiu7o%3D10.1088/0953-8984/26/6/064205 – reference: SasakiYSugoYSuzukiSTachimoriSThe novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane systemSolvent Extr Ion Exch200119911031:CAS:528:DC%2BD3MXhvVentrY%3D10.1081/SEI-100001376 – reference: TakedaOOkabeTHCurrent status on resource and recycling technology for rare earthsMetall Mater Trans E20141A1601731:CAS:528:DC%2BC28XhslKlu78%3D10.1007/s40553-014-0016-7 – reference: GutfleischOKirchnerAGrünbergerWHinzDNagelHThompsonPChapmanJNMüllerKHHarrisIRSchultzLTextured NdFeB HDDR magnets produced by die-upsetting and backward extrusionJ Phys D1998318078111:CAS:528:DyaK1cXis1Ois78%3D10.1088/0022-3727/31/7/009 – reference: BabaYKubotaFKamiyaNRecent advances in extraction and separation of rare-earth metals using ionic liquidsJ Chem Eng Jpn201144106796851:CAS:528:DC%2BC38XhtlSgsrk%3D10.1252/jcej.10we279 – reference: HabibKWenzelHExploring rare earths supply constraints for the emerging clean energy technologies and the role of recyclingJ Clean Prod2014843483591:CAS:528:DC%2BC2cXnslehur4%3D10.1016/j.jclepro.2014.04.035 – reference: LiXYueMZakotnikMLiuWZhangDZuoTRegeneration of waste sintered Nd-Fe-B magnets to fabricate anisotropic bonded magnetsJ Rare Earths2015337367391:CAS:528:DC%2BC2MXht1elt7fK10.1016/S1002-0721(14)60478-6 – reference: SheridanRSSillitoeRZakotnikMWilliamsAJAnisotropic powder from sintered NdFeB magnets by the HDDR processing routeJ Magn Magn Mater2012324163671:CAS:528:DC%2BC3MXhtVynsbrK10.1016/j.jmmm.2011.07.043 – reference: EllisTWSchmidtFAJonesLLLiddellKCMethods and opportunities in the recycling of rare earth based materialsMetals and materials waste reduction, recovery, and remediation1994Warrendale, PATMS199206 – reference: LeeJCKimWBJeongJYoonIJExtraction of neodymium from Nd-Fe-B magnet scraps by sulfuric acidJ Korean Inst Met Mater19983669679721:CAS:528:DyaK1cXltlyqu7s%3D – reference: TakedaOOkabeTHUmetsuYPhase equilibrium of the system Ag-Fe-Nd, and Nd extraction from magnet scraps using molten silverJ Alloys Compd20043793053131:CAS:528:DC%2BD2cXntlSksLk%3D10.1016/j.jallcom.2004.02.038 – reference: WellensSThijsBBinnemansKAn environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquidsGreen Chem201214165716651:CAS:528:DC%2BC38Xns1Srsrg%3D10.1039/C2GC35246J – reference: Kozawa S (2011) Trends and problems in research of permanent magnets for motors-addressing scarcity problem of rare earth elements. Sci Technol Trends: Quart Rev 38:40–54 http://data.nistep.go.jp/dspace/bitstream/11035/2854/1/NISTEP-STT038E−40.pdf. Accessed 8 May 2016 – reference: ZakotnikMHarrisIRWilliamsAJPossible methods of recycling NdFeB-type sintered magnets using the HD/degassing processJ Alloys Compd20084505255311:CAS:528:DC%2BD1cXltFGj10.1016/j.jallcom.2007.01.134 – reference: OICA (2016) Sales of new vehicles 2005–2015. http://www.oica.net/category/sales-statistics. Accessed 23 May 2016 – reference: Baba K, Hiroshige Y, Nemoto T (2013) Rare-earth magnet recycling. Hitachi Rev 62(8): 452–455. www.hitachi.com/rev/pdf/2013/r2013_08_105.pdf. Accessed 8 May 2016 – reference: Pålsson BI, Wanhainen C, Yurramendi L, Guarde D, Egia A (2015) Cryo-grinding of waste from electronic and electric equipment, implications for recovery of rare earth elements. In: Physical Separation’15, Falmouth, Cornwall, 26 pp – reference: MakanyireTSanchez-SegadoSJhaASeparation and recovery of critical metal ions using ionic liquidsAdv Manuf20164133461:CAS:528:DC%2BC28XktVektrk%3D10.1007/s40436-015-0132-3 – reference: VonckenJHLThe rare earth elements, an introduction2016DordrechtSpringerNature10.1007/978-3-319-26809-5 – reference: DirbaISawatzkiSGutfleischONet-shape and Crack-Free production of Nd-Fe-B magnets by hot deformationJ Alloys Compd20145893013061:CAS:528:DC%2BC2cXhsVyltLc%3D10.1016/j.jallcom.2013.11.188 – reference: ZakotnikMTudorCOCommercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materialsWaste Manag20154448541:CAS:528:DC%2BC2MXht1KrtbjO10.1016/j.wasman.2015.07.041 – reference: AbrahamiSTXiaoYYangYRare-earth elements recovery from post-consumer hard-disc drivesMiner Process Extr Metall (Trans. Inst. Min. Metall. C)201512421061151:CAS:528:DC%2BC2cXitVyht77F10.1179/1743285514Y.0000000084 – reference: KoyamaKKitajimaATanakaMSelective leaching of rare-earth elements from an Nd-Fe-B magnetKidorui (Rare Earths)20095436371:CAS:528:DC%2BD1MXosVKitr8%3D – reference: ParkJJungYKusumahPLeeJKwonKLeeCKApplication of ionic liquids in hydrometallurgyInt J Mol Sci20141515320153431:CAS:528:DC%2BC2cXhvVChsr7P10.3390/ijms150915320 – reference: MohammadiMForsbergKKlooLMartinez De La CruzJRasmusonASeparation of ND(III), DY(III) and Y(III) by solvent extraction using D2EHPA and EHEHPAHydrometallurgy20151562152241:CAS:528:DC%2BC2MXptVOjsr0%3D10.1016/j.hydromet.2015.05.004 – reference: KimASKimDHNamkungSJangTSLeeDHKwonHWHwangDHHDDR processing of magnet scrapIEEE Trans Magn200440287728791:CAS:528:DC%2BD2cXotVCks7c%3D10.1109/TMAG.2004.832241 – reference: LiuYJeonHSLeeMSSolvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractantsHydrometallurgy201415061671:CAS:528:DC%2BC2cXhslajtLbJ10.1016/j.hydromet.2014.09.015 – reference: BandaraHMDFieldKDEmmertMHRare earth recovery from end-of-life motors employing green chemistry design principlesGreen Chem2016187537591:CAS:528:DC%2BC2MXhsVGisrnE10.1039/C5GC01255D – reference: FinnvedenGHauschildMZEkvallTGuineeJHeijungsRHellwegSKoehlerAPenningtonDSuhSRecent developments in life cycle assessmentJ Environ Manag20099112110.1016/j.jenvman.2009.06.018 – reference: GutfleischOKhlopkovKTeresiakAMüllerKHDrazicGMishimaCHonkuraYMemory of texture during HDDR processing of NdFeBIEEE Trans Magn200339292629311:CAS:528:DC%2BD3sXosVOqurw%3D10.1109/TMAG.2003.815749 – reference: RianoSBinnemansKExtraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnetsGreen Chem201517293129421:CAS:528:DC%2BC2MXktVCrtr0%3D10.1039/C5GC00230C – reference: Vander HoogerstraeteTWellensSVerachtertKBinnemansKRemoval of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recyclingGreen Chem2013159199271:CAS:528:DC%2BC3sXksFemt7Y%3D10.1039/C3GC40198G – reference: ItakuraTSasaiRItohHResource recovery from Nd-Fe-B sintered magnet by hydrothermal treatmentJ Alloys Compd2006408–412138213851:CAS:528:DC%2BD28XosFOrtw%3D%3D10.1016/j.jallcom.2005.04.088 – reference: ShimojoKNaganawaHNoroJKubotaFGotoMExtraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligandAnal Sci20072312142714301:CAS:528:DC%2BD2sXhsVOrsLrN10.2116/analsci.23.1427 – reference: GutfleischOHarrisIRFundamental and practical aspects of the HDDR processJ Phys D199629225522651:CAS:528:DyaK28Xlslemsbo%3D10.1088/0022-3727/29/9/006 – reference: KubotaFBabaYGotoMApplication of ionic liquids for the separation of rare earth metalsSolvent Extr Res Dev, Jpn20121917281:CAS:528:DC%2BC38XotlKhsbY%3D10.1252/jcej.11we005 – reference: XieFZhangTADreisingerDDoyleFA critical review on solvent extraction of rare earths from aqueous solutionsMiner Eng20145610281:CAS:528:DC%2BC3sXitVWhtLfK10.1016/j.mineng.2013.10.021 – reference: SheridanRSWilliamsAJHarrisIRWaltonAImproved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnetsJ Magn Magn Mater20143501141181:CAS:528:DC%2BC3sXhvFGrsLvK10.1016/j.jmmm.2013.09.042 – reference: TyumentsevMSForemanMRSEkbergCMatyskinAVReteganTSteenariB-MThe solvent extraction of rare earth elements from nitrate media with novel polyamides containing malonamide groupsHydrometallurgy201616424301:CAS:528:DC%2BC28XhtFOgt7rN10.1016/j.hydromet.2016.05.007 – reference: KikuchiYMatsumiyaMKawakamiSExtraction of rare earth ions from Nd-Fe-B magnet wastes with TBP in tricaprylmethylammonium nitrateSolvent Extr Res Dev, Jpn2014211371451:CAS:528:DC%2BC2cXovVGitLY%3D10.15261/serdj.21.137 – reference: KoyamaKTanakaMMachidaKThe latest technology trend and resource strategy of rare earths2011TokyoCMC Press127131 – reference: Okabe TH and Shirayama S (2011) Method and apparatus for recovery of rare earth element, US Patent Application Publication: US2011/0023660A1 – reference: BinnemansKJonesPTVan AckerKBlanpainBMishraBApelianDRare-earth economics: the balance problemJOM20136584684810.1007/s11837-013-0639-7 – reference: BinnemansKJonesPTBlanpainBVan GervenTYangYWaltonABuchertMRecycling of rare earths: a critical reviewJ Clean Prod2013511221:CAS:528:DC%2BC3sXls1eqsbw%3D10.1016/j.jclepro.2012.12.037 – reference: TakedaOOkabeTHUmetsuYRecovery of neodymium from a mixture of magnet scrap and other scrapJ Alloys Compd2006408–4123873901:CAS:528:DC%2BD28XosFyltg%3D%3D10.1016/j.jallcom.2005.04.094 – reference: TanakaMOkiTKoyamaKNaritaHOishiTJean-ClaudeGBVitalijKPCChapter 255—recycling of rare earths from scrapHandbook on the physics and chemistry of rare earths2013AmsterdamElsevier – reference: AlonsoEShermanAMWallingtonTJEversonMPFieldRRothRKirchainREEvaluating rare earth element availability: a case with revolutionary demand from clean technologiesEnviron Sci Technol201246340634141:CAS:528:DC%2BC38Xhs1Kiurw%3D10.1021/es203518d – reference: Goonan T G (2011) Rare earth elements-end use and recyclability. USGS Scientific Investigations Report 2011–5094. https://pubs.usgs.gov/sir/2011/5094/pdf/sir2011-5094.pdf. Accessed 8 May 2016 – reference: GuptaCKKrishnamurthyNExtractive metallurgy of rare earths2005LondonCRC Press – reference: KimDPowellLEDelmauLHPetersonESHerchenroederJBhaveRRSelective extraction of rare earth elements from permanent magnet scraps with membrane solvent extractionEnviron Sci Technol20154916945294591:CAS:528:DC%2BC2MXhtVGnu7zJ10.1021/acs.est.5b01306 – reference: Högberg S, Bendixen FB, Mijatovic N, Jensen BB, Holbøll J (2015) Influence of demagnetization-temperature on magnetic performance of recycled Nd-Fe-B magnets. In: Proceeding of the IEEE international electric machines and drives conference. pp 1242–1246 – reference: HuaZWangJWangLZhaoZLiXXiaoYYangYSelective extraction of rare earth elements from NdFeB scrap by molten chloridesACS Sustain Chem Eng20142253625431:CAS:528:DC%2BC2cXhs1Cns7zM10.1021/sc5004456 – reference: BandaraHMDDarcyJWApelianDEmmertMHValue analysis of neodymium content in shredder feed: towards enabling the feasibility of rare earth magnet recyclingEnviron Sci Technol201448655365601:CAS:528:DC%2BC2cXosVWjsb0%3D10.1021/es405104k – reference: Bast U (2014) Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben: MORE (Motor Recycling). Final Research Report. http://edok01.tib.uni-hannover.de/edoks/e01fb15/826920594.pdf. Accessed 8 May 2016 – reference: Tanaka M, Sato Y, Huang Y, Narita H, Koyama K (2009) In: Proceedings of the 10th international symposium on east asian resources recycling technology (EARTH2009). The Korean Institute of Resources Recycling, Seoul, pp 200–203 – reference: WaltonAWilliamsARare earth recoveryMater World2011192426 – reference: Farr M, Sitarz P, Saje B, Sheridan RS, Bradshaw A, Mann VSJ, Harris IR, Walton A (2016) NdFeB magnets from recycled hard disk drive voice coil magnets. 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt – reference: PrakashVSunZHISietsmaJYangYDe LimaIBFilhoWLSimultaneous electrochemical recovery of rare earth elements and iron from magnet scrap: a theoretical analysis (Chap. 22)Rare earths industry technological, economic, and environmental implications2016AmsterdamElsevier33534610.1016/B978-0-12-802328-0.00022-X – reference: DuXGraedelTEGlobal rare earth in-use stocks in NdFeB permanent magnetsJ Ind Ecol20111568368431:CAS:528:DC%2BC38XhtlOrtb0%3D10.1111/j.1530-9290.2011.00362.x – reference: Baba K, Nemoto T, Maruyama H, Taketani N, Itayagoshi K, Hirose Y (2010) Hitachi’s involvement in material resource recycling. Hitachi Rev 59(4): 180–187. www.hitachi.com/rev/pdf/2010/r2010_04_110.pdf. Accessed 8 May 2016 – reference: DupontDBinnemansKRecycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2 N]Green Chem201517215021631:CAS:528:DC%2BC2MXjsF2qtr8%3D10.1039/C5GC00155B – reference: KobayashiSKobayashiKNohiraTHagiwaraROishiTKonishiHElectrochemical formation of Nd-Ni Alloys in molten LiF-CaF2-NdF3J Electrochem Soc2011158E142E1461:CAS:528:DC%2BC3MXhsVyks7nO10.1149/2.072112jes – reference: SchülerDBuchertMLiuRDittrichSMerzCStudy on rare earths and their recycling: final report for the Greens/EFA Group in the European Parliament2011DarmstadÖko-Institute e.V – reference: EdströmAEffect of doping by 5d elements on magnetic properties of (Fe1 − xCox)2B alloysPhys Rev B2015921744131:CAS:528:DC%2BC28XovVCrs7Y%3D10.1103/PhysRevB.92.174413 – reference: ModoloGVijgenHSerrano-PurroyDChristiansenBMalmbeckRSorelCBaronPDIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrateSep Sci Technol2007424394521:CAS:528:DC%2BD2sXisFCktbg%3D10.1080/01496390601120763 – reference: HabibKParajulyKWenzelHTracking the flow of resources in electronic waste - the case of end-of-life computer hard disk drivesEnviron Sci Technol2015492012441124491:CAS:528:DC%2BC2MXhsVKlsL%2FL10.1021/acs.est.5b02264 – reference: ElwertTGoldmannDRömerFSeparation of lanthanides from NdFeB magnets on a mixer-settler plant with PC-88AWorld Metall2014672872961:CAS:528:DC%2BC2cXitFaqtbnP – reference: USGS (2010-2016) Minerals yearbook, rare earths. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/index.html#myb. Accessed 8 May 2016 – reference: Benecki WT (2013) The permanent magnet market 2015. Presentation in: magnetics 2013 Conference. February 8, 2013 Orlando. http://www.waltbenecki.com/uploads/Magnetics_2013_Benecki_Presentation.pdf. Accessed 8 May 2016 – reference: HonkuraYMishimaCHamadaNGutfleischOTexture memory effect of Nd-Fe-B during hydrogen treatmentJ Magn Magn Mat2005290–291P2128212851:CAS:528:DC%2BD2MXisFalsb0%3D10.1016/j.jmmm.2004.11.423 – reference: Constantinides S (2016) Permanent magnets in a changing world market. Magnetics Magazine: Business and Technology (Spring 2016, Feb 26, 2016). http://www.magneticsmagazine.com/main/articles/permanent-magnets-in-a-changing-world-market. Accessed 8 May 2016 – reference: SagawaMFujimuraSYamamotoHMatsuuraYHiragaKPermanent magnet materials based on the rare earth-iron-boron tetragonal compoundsIEEE Trans Magn19842051584158910.1109/TMAG.1984.1063214 – reference: El-AzizAMKirchnerAGutfleischOGebertASchultzLInvestigations of the corrosion behaviour of nanocrystalline Nd-Fe-B hot pressed magnetsJ Alloys Comd20003112993041:CAS:528:DC%2BD3cXmslOjsrY%3D10.1016/S0925-8388(00)01112-9 – reference: BandaRJeonHLeeMSolvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractantsSep Purif Technol2012984814871:CAS:528:DC%2BC38Xhtl2ktrbO10.1016/j.seppur.2012.08.015 – reference: ZhuZXSasakiYSuzukiHSuzukiSKimuraTCumulative study on solvent extraction of elements by N, N, N’, N’-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecaneAnal Chim Acta20045271631681:CAS:528:DC%2BD2cXhtVCmtbjL10.1016/j.aca.2004.09.023 – reference: BoundsCLiddellKCThe recycle of sintered magnet swarfMetals and materials waste reduction, recovery and mediation1994Warrendale, PATMS173186 – reference: Yang Y, Abrahami ST, Xiao Y (2013) Recovery of rare earth elements from EOL permanent magnets with molten slag extraction. In: Proceedings of the 3rd international slag valorisation symposium. Leuven, pp 249–252. http://www.slag-valorisation-symposium.eu/2013/images/papers/ps3_1_Yang.pdf. Accessed 8 May 2016 – reference: Nash KL, Choppin GR (1995) Separation of f elements. Springer Science + Business Media. (eBook). doi 10.1007/978-1-4899-1406-4 – reference: ItohMMasudaMSuzukiSMachidaK-IRecycling of rare earth sintered magnets as isotropic bonded magnets by melt-spinningJ Alloys Compd20043743933961:CAS:528:DC%2BD2cXks1Kjt7o%3D10.1016/j.jallcom.2003.11.030 – reference: MottramRSKianvashAHarrisIRThe use of metal hydrides in powder blending for the production of NdFeB-type magnetsJ Alloys Compd19992832822881:CAS:528:DyaK1MXksFGkuw%3D%3D10.1016/S0925-8388(98)00910-4 – reference: FirdausMRhamdhaniMADurandetYRankinWJMcGregorKReview of high-temperature recovery of rare earth (Nd/Dy) from magnet wasteJ Sustain Metall201610.1007/s40831-016-0045-9 – reference: Walton A, Han Y, Speight JD, Harris IR, Williams AJ (2012) The use of hydrogen to extract and re-process NdFeB magnets from electronic waste. In: Proceeding of the 22nd international Workshop on Rare Earth Permanent Magnets and Their Applications. Nagasaki, pp 11–13 – reference: AbreuRDMoraisCAStudy on separation of heavy rare earth elements by solvent extraction with organophosphorous acids and amine reagentsMiner Eng20146182871:CAS:528:DC%2BC2cXntlOnsr4%3D10.1016/j.mineng.2014.03.015 – reference: MooreMGebertAStoicaMA route for recycling Nd from Nd-Fe-B magnets using Cu meltsJ Alloys Compd201564799710061:CAS:528:DC%2BC2MXhsVOqu7zJ10.1016/j.jallcom.2015.05.238 – reference: BianYGuoSJiangLLiuJTangKDingWRecovery of rare earth elements from NdFeB magnet by VIM–HMS methodACS Sustain Chem Eng201648108181:CAS:528:DC%2BC28XhslShtLk%3D10.1021/acssuschemeng.5b00852 – reference: Walton A, Campbell A, Sheridan RS, Mann VSJ, Speight JD, Harris IR, Guerrero B, Bagan C, Conesa A, Schaller V (2014) Recycling of rare earth magnets. In: Proceeding od the 23rd international workshop on rare earth magnets and their applications, Annapolis, pp 26–30 – reference: KraikaewJSrinuttrakulWChayavadhanakurCSolvent extraction study of rare earths from nitrate medium by the mixtures of TBP and D2EHPA in keroseneJ Metals Mater Miner200515289951:CAS:528:DC%2BD2MXhtlGnsLrK – reference: XuYChumbleyLSLaabsFCLiquid metal extraction of Nd from NdFeB magnet scrapJ Mater Res200015229623041:CAS:528:DC%2BD3cXot1GjtLk%3D10.1557/JMR.2000.0330 – reference: GuyonnetDPlanchonMRollatAEscalonVTuduriJCharlesNVaxelaireSDuboisDFargierHMaterial flow analysis applied to rare earth elements in EuropeJ Clean Prod20151072152281:CAS:528:DC%2BC2MXot1eqsbw%3D10.1016/j.jclepro.2015.04.123 – reference: BandaraHMDMantellMADarcyJWClosing the lifecycle of rare earth magnets: discovery of neodymium in slag from steel millsEnergy Technol201531181201:CAS:528:DC%2BC2MXis1aiurg%3D10.1002/ente.201402162 – reference: SawatzkiSDirksADirbaISchultz Land GutfleischOCoercivity enhancement in hot-pressed Nd-Fe-B permanent magnets by low melting eutecticsJ Appl Phys201411517A7051:CAS:528:DC%2BC2cXns1Gjsrk%3D10.1063/1.4859097 – reference: NaganawaHShimojoKMitamuraHSugoYNoroJGotoMA New, “green” extractant of the diglycol amic acid type for lanthanidesSolvent Extr Res Dev, Jpn2007141511591:CAS:528:DC%2BD2sXmt1eltrs%3D – reference: ÖnalMARBorraCRGuoMBlanpainBVan GervenTRecycling of NdFeB magnets using sulfation, selective roasting, and water leachingJ Sustain Metall2015119921510.1007/s40831-015-0021-9 – reference: UeberschaarMRotterVSEnabling the recycling of rare earth elements through product design and trend analyses of hard disk drivesJ Mater Cycles Waste Manag20151722662811:CAS:528:DC%2BC2MXhtlKktbw%3D10.1007/s10163-014-0347-6 – reference: CottonSLanthanide and actinide chemistry2006West SussexJohn Wiley & Sons Ltd10.1002/0470010088 – reference: Vander HoogerstraeteTBinnemansKHighly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteriesGreen Chem201416159416061:CAS:528:DC%2BC2cXivFOksbc%3D10.1039/C3GC41577E – reference: British Geological Survey (BGS) (2010) rare earth elements. 2010. http://www.MineralsUK.com. Accessed 8 May 2016 – reference: Abrahami ST (2012) Rare-earths recovery from post-consumer HDD scrap. Master thesis. Department of Materials Science and Engineering, TU Delft – reference: UdaTRecovery of rare earths from magnet sludge by FeCl2Mater Trans20024355621:CAS:528:DC%2BD38XitlSrtb4%3D10.2320/matertrans.43.55 – reference: Herraiz E, Degri M, Bradshaw A, Sheridan RS, Mann VSJ, Harris IR, Walton A (2016) Recycling of rare earth magnets by hydrogen processing and re-sintering. In: 24th international workshop on rare earth permanent magnet and their applications, Darmstadt – reference: Farr M, Sitarz P, Saje B, Sheridan RS, Bradshaw A, Mann VSJ, Harris IR, Walton A (2016) Production of injection moulded NdFeB magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Magnets and their Applications. Darmstadt – reference: DamHHReinhoudtDNVerboomWMulticoordinate ligands for actinide/lanthanide separationsChem Soc Rev2007363673771:CAS:528:DC%2BD2sXhtVKltbY%3D10.1039/B603847F – reference: MuraseKMachidaKAdachiGRecovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transportJ Alloys Compd19952172182251:CAS:528:DyaK2MXjt1Sltbw%3D10.1016/0925-8388(94)01316-A – reference: Walachowicz F, March A, Fiedler S, Buchert M, Sutte J, Merz C (2014) Recycling von Elektromotoren-MORE: Ökobilanz der Recyclingverfahren. Final Report, Berlin. http://de.slideshare.net/AndrewMarch/morelcaendberichtfinal17okt2014. Accessed 8 May 2016 – reference: SaitoTSatoHOzawaSYuJMotegiTThe extraction of Nd from waste NdFeB alloys by the glass slag methodJ Alloys and Compd20033531891931:CAS:528:DC%2BD3sXitlers7k%3D10.1016/S0925-8388(02)01202-1 – reference: VanderHoogerstraete TBlanpainBVan GervenTBinnemansKFrom NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acidRSC Adv2014464099641111:CAS:528:DC%2BC2cXhvFOitLzP10.1039/C4RA13787F – reference: GutfleischOWillardMABrückEChenCHSankarSGLiuJPMagnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient (review)Adv Mater2011238218421:CAS:528:DC%2BC3MXitVWmu74%3D10.1002/adma.201002180 – reference: NakashimaKKubotaFMaruyamaTGotoMIonic liquids as a novel solvent for lanthanide extractionAnal Sci2003198109710981:CAS:528:DC%2BD3sXmsFOltL4%3D10.2116/analsci.19.1097 – reference: ElshkakiAGraedelTEDysprosium, the balance problem, and wind power technologyAppl Energy201413654855910.1016/j.apenergy.2014.09.064 – reference: BinnemansKJonesPTRare earths and the balance problemJ Sustain Metall20151293810.1007/s40831-014-0005-1 – reference: GutfleischOGüthKWoodcockTGSchultzLRecycling used Nd-Fe-B sintered magnets via a hydrogen-based route to produce anisotropic, resin bonded magnetsAdv Energy Mater201331511551:CAS:528:DC%2BC3sXjtVGjsr4%3D10.1002/aenm.201200337 – reference: Mann VSJ, Škulj I, Walton A (2016) Production of Sintered magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt – reference: MoneckeTKempeUMoneckeJSalaMWolfDTetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal depositsGeochim Cosmochim Acta200266118511961:CAS:528:DC%2BD38XitlWhs7s%3D10.1016/S0016-7037(01)00849-3 – reference: JakobssonLKKennedyMWAuneRETranellGKirchainRERecovery of rare earth elements from the ferrous fraction of electronic wasteREWAS 2016-towards materials resource sustainability2016Warrendale, PATMS899310.1002/9781119275039.ch13 – reference: RademakerJHKleijnRYangYRecycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recyclingEnviron Sci Technol20134710129101361:CAS:528:DC%2BC3sXht1SrtrzL10.1021/es305007w – reference: LymanJWPalmerGRRecycling of rare earths and iron from NdFeB magnet scrapHigh Temp Mater Process1993111–41751871:CAS:528:DyaK2cXjsFSntQ%3D%3D10.1515/HTMP.1993.11.1-4.175 – reference: SprecherBXiaoYWaltonASpeightJHarrisRKleijnRVisserGKramerGJLife Cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnetsEnviron Sci Technol201448395139581:CAS:528:DC%2BC2cXjtlSjtbg%3D10.1021/es404596q – reference: Shaw S, Constantinides S (2012) Permanent magnets: the demand for rare earths. Presentation in: 8th International Rare Earths Conference. 13–15 November 2012, Hong Kong. http://roskill.com/wp/wp-content/uploads/2014/11/download-roskills-paper-on-permanent-magnets-the-demand-for-rare-earths.attachment1.pdf. Accessed 8 May 2016 – reference: MossRLTzimasEKaraHWillisPKooroshyJCritical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low carbon energy technologiesEur Comm JRC Inst Energy Transp201110.2790/35716 – reference: MeakinJPSpeightJDSheridanRSBradshawAHarrisIRWilliamsAJWaltonA3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditionsAppl Surf Sci20163785405441:CAS:528:DC%2BC28XkvV2qu7o%3D10.1016/j.apsusc.2016.03.182 – reference: Constantinides S (2012) The Demand for Rare Earth Materials in Permanent Magnets. Presentation at the 51st annual conference of metallurgists (COM 2012), Sept. 30–Oct. 3, 2012. Niagara Falls. http://www.arnoldmagnetics.com/Portals/0/Files/Tech%20Library/Technical%20Publications/Tech%20Papers/Demand%20for%20rare%20earth%20materials%20in%20permanent%20magnets%20-%20Constantinides%20-%20COM%20-%202012%20psn%20hi-res.pdf?ver=2015-09-21-101252-140. Accessed 17 Sept 2016 – reference: GutfleischOControlling the properties of high density permanent magnetic materials (TOPICAL REVIEW)J Phys D200033R157R1721:CAS:528:DC%2BD3cXmsF2is7w%3D10.1088/0022-3727/33/17/201 – reference: YoonHSKimCJChungKWKimSDLeeJYKumarJRSolvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: waste recycling strategies for permanent magnet processingHydrometallurgy201610.1016/j.hydromet.2016.01.028 – reference: UNEP (2013) Metal recycling: opportunities, limits, infrastructure, contributors. In: Reuter MA, Hudson C, van Schaik A, Heiskanen K, Meskers C, Hagelüken CA (eds). Report of the Working Group on the Global Metal Flows to the International Resource Panel – reference: OkabeTHTakedaOFukudaKUmetsuYDirect extraction and recovery of neodymium metals from magnet scrapMater Trans2003447988011:CAS:528:DC%2BD3sXkslCltL0%3D10.2320/matertrans.44.798 – reference: Ellis TW, Schmidt FA (1995) Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction. U.S. Patent 5,437,709 – reference: SinkovSIRapkoBMLumettaGJHayBPHutchisonJEParksBWBicyclic and acyclic diamides: comparison of their aqueous phase binding constants with Nd(III), Am(III), Pu(IV), Np(V), Pu(VI), and U(VI)Inorg Chem200443840484131:CAS:528:DC%2BD2cXhtVWhsLbP10.1021/ic049377m – reference: SaitoTSatoHMotegiTRecovery of rare earths from sludges containing rare-earth elementsJ Alloys Compd20064251451471:CAS:528:DC%2BD28XhtFOntrjN10.1016/j.jallcom.2006.01.011 – reference: Zakotnik M, Williams AJ, Harris IR (2004) Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing or HDDR processes. In: Proceedings of 18th international Workshop on Rare Earth Permanent Magnets & Their Applications – volume: 19 start-page: 91 year: 2001 ident: 90_CR109 publication-title: Solvent Extr Ion Exch doi: 10.1081/SEI-100001376 – volume: 48 start-page: 3951 year: 2014 ident: 90_CR137 publication-title: Environ Sci Technol doi: 10.1021/es404596q – volume: 36 start-page: 367 year: 2007 ident: 90_CR98 publication-title: Chem Soc Rev doi: 10.1039/B603847F – volume: 4 start-page: 33 issue: 1 year: 2016 ident: 90_CR107 publication-title: Adv Manuf doi: 10.1007/s40436-015-0132-3 – volume: 156 start-page: 215 year: 2015 ident: 90_CR89 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.05.004 – volume: 19 start-page: 17 year: 2012 ident: 90_CR104 publication-title: Solvent Extr Res Dev, Jpn doi: 10.1252/jcej.11we005 – volume: 15 start-page: 89 issue: 2 year: 2005 ident: 90_CR87 publication-title: J Metals Mater Miner – volume: 23 start-page: 821 year: 2011 ident: 90_CR29 publication-title: Adv Mater doi: 10.1002/adma.201002180 – ident: 90_CR47 – volume: 67 start-page: 287 year: 2014 ident: 90_CR96 publication-title: World Metall – ident: 90_CR73 – volume: 589 start-page: 301 year: 2014 ident: 90_CR42 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2013.11.188 – volume: 115 start-page: 17A705 year: 2014 ident: 90_CR31 publication-title: J Appl Phys doi: 10.1063/1.4859097 – volume: 150 start-page: 61 year: 2014 ident: 90_CR94 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.09.015 – volume: 374 start-page: 393 year: 2004 ident: 90_CR74 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2003.11.030 – volume: 19 start-page: 24 year: 2011 ident: 90_CR13 publication-title: Mater World – volume: 44 start-page: 679 issue: 10 year: 2011 ident: 90_CR105 publication-title: J Chem Eng Jpn doi: 10.1252/jcej.10we279 – volume: 16 start-page: 350 issue: 3 year: 2010 ident: 90_CR108 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2009.09.063 – ident: 90_CR56 – volume: 12 start-page: 57 issue: 6 year: 2003 ident: 90_CR77 publication-title: J Korean Inst Resour Recycl doi: 10.7844/kirr – volume: 98 start-page: 481 year: 2012 ident: 90_CR93 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2012.08.015 – volume: 408–412 start-page: 1382 year: 2006 ident: 90_CR82 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2005.04.088 – volume-title: Introduction to magnetism and magnetic materials year: 1998 ident: 90_CR1 – year: 2011 ident: 90_CR7 publication-title: Eur Comm JRC Inst Energy Transp doi: 10.2790/35716 – volume: 18 start-page: 753 year: 2016 ident: 90_CR76 publication-title: Green Chem doi: 10.1039/C5GC01255D – volume: 353 start-page: 189 year: 2003 ident: 90_CR19 publication-title: J Alloys and Compd doi: 10.1016/S0925-8388(02)01202-1 – volume-title: Lanthanide and actinide chemistry year: 2006 ident: 90_CR85 doi: 10.1002/0470010088 – ident: 90_CR70 – volume: 15 start-page: 2296 year: 2000 ident: 90_CR122 publication-title: J Mater Res doi: 10.1557/JMR.2000.0330 – volume: 17 start-page: 266 issue: 2 year: 2015 ident: 90_CR55 publication-title: J Mater Cycles Waste Manag doi: 10.1007/s10163-014-0347-6 – volume: 23 start-page: 1427 issue: 12 year: 2007 ident: 90_CR111 publication-title: Anal Sci doi: 10.2116/analsci.23.1427 – ident: 90_CR135 – volume: 14 start-page: 1657 year: 2012 ident: 90_CR18 publication-title: Green Chem doi: 10.1039/C2GC35246J – start-page: 173 volume-title: Metals and materials waste reduction, recovery and mediation year: 1994 ident: 90_CR75 – volume-title: Extractive metallurgy of rare earths year: 2005 ident: 90_CR90 – volume: 283 start-page: 282 year: 1999 ident: 90_CR66 publication-title: J Alloys Compd doi: 10.1016/S0925-8388(98)00910-4 – volume: 3 start-page: 118 year: 2015 ident: 90_CR52 publication-title: Energy Technol doi: 10.1002/ente.201402162 – volume: 450 start-page: 525 year: 2008 ident: 90_CR12 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2007.01.134 – volume: 51 start-page: 1 year: 2013 ident: 90_CR8 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2012.12.037 – volume: 31 start-page: 807 year: 1998 ident: 90_CR43 publication-title: J Phys D doi: 10.1088/0022-3727/31/7/009 – volume: 65 start-page: 846 year: 2013 ident: 90_CR3 publication-title: JOM doi: 10.1007/s11837-013-0639-7 – volume: 311 start-page: 299 year: 2000 ident: 90_CR44 publication-title: J Alloys Comd doi: 10.1016/S0925-8388(00)01112-9 – volume: 61 start-page: 82 year: 2014 ident: 90_CR95 publication-title: Miner Eng doi: 10.1016/j.mineng.2014.03.015 – volume: 49 start-page: 9452 issue: 16 year: 2015 ident: 90_CR102 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b01306 – ident: 90_CR22 – volume: 2 start-page: 2536 year: 2014 ident: 90_CR126 publication-title: ACS Sustain Chem Eng doi: 10.1021/sc5004456 – ident: 90_CR121 – volume: 42 start-page: 439 year: 2007 ident: 90_CR99 publication-title: Sep Sci Technol doi: 10.1080/01496390601120763 – volume: 158 start-page: E142 year: 2011 ident: 90_CR133 publication-title: J Electrochem Soc doi: 10.1149/2.072112jes – volume: 44 start-page: 48 year: 2015 ident: 90_CR67 publication-title: Waste Manag doi: 10.1016/j.wasman.2015.07.041 – ident: 90_CR130 – ident: 90_CR58 – volume: 44 start-page: 798 year: 2003 ident: 90_CR16 publication-title: Mater Trans doi: 10.2320/matertrans.44.798 – volume: 48 start-page: 6553 year: 2014 ident: 90_CR46 publication-title: Environ Sci Technol doi: 10.1021/es405104k – ident: 90_CR72 – ident: 90_CR27 – ident: 90_CR88 doi: 10.1007/978-1-4899-1406-4 – volume: 33 start-page: 736 year: 2015 ident: 90_CR71 publication-title: J Rare Earths doi: 10.1016/S1002-0721(14)60478-6 – volume: 379 start-page: 305 year: 2004 ident: 90_CR124 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2004.02.038 – volume: 217 start-page: 218 year: 1995 ident: 90_CR119 publication-title: J Alloys Compd doi: 10.1016/0925-8388(94)01316-A – volume: 477 start-page: 484 year: 2009 ident: 90_CR15 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2008.10.036 – volume: 16 start-page: 1594 year: 2014 ident: 90_CR114 publication-title: Green Chem doi: 10.1039/C3GC41577E – volume: 4 start-page: 810 year: 2016 ident: 90_CR131 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.5b00852 – start-page: 89 volume-title: REWAS 2016-towards materials resource sustainability year: 2016 ident: 90_CR132 doi: 10.1002/9781119275039.ch13 – volume: 36 start-page: 967 issue: 6 year: 1998 ident: 90_CR79 publication-title: J Korean Inst Met Mater – ident: 90_CR57 – ident: 90_CR127 – volume: 469 start-page: 314 year: 2009 ident: 90_CR61 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2008.01.114 – volume: 56 start-page: 10 year: 2014 ident: 90_CR91 publication-title: Miner Eng doi: 10.1016/j.mineng.2013.10.021 – ident: 90_CR118 – volume: 47 start-page: 10129 year: 2013 ident: 90_CR2 publication-title: Environ Sci Technol doi: 10.1021/es305007w – ident: 90_CR28 – volume-title: The rare earth elements, an introduction year: 2016 ident: 90_CR84 doi: 10.1007/978-3-319-26809-5 – volume: 15 start-page: 15320 year: 2014 ident: 90_CR106 publication-title: Int J Mol Sci doi: 10.3390/ijms150915320 – volume: 29 start-page: 2255 year: 1996 ident: 90_CR34 publication-title: J Phys D doi: 10.1088/0022-3727/29/9/006 – volume: 1 start-page: 29 year: 2015 ident: 90_CR4 publication-title: J Sustain Metall doi: 10.1007/s40831-014-0005-1 – ident: 90_CR136 – volume: 11 start-page: 175 issue: 1–4 year: 1993 ident: 90_CR17 publication-title: High Temp Mater Process doi: 10.1515/HTMP.1993.11.1-4.175 – ident: 90_CR60 – volume: 3 start-page: 151 year: 2013 ident: 90_CR38 publication-title: Adv Energy Mater doi: 10.1002/aenm.201200337 – volume: 91 start-page: 1 year: 2009 ident: 90_CR134 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2009.06.018 – volume: 43 start-page: 8404 year: 2004 ident: 90_CR100 publication-title: Inorg Chem doi: 10.1021/ic049377m – volume: 84 start-page: 348 year: 2014 ident: 90_CR51 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2014.04.035 – volume: 21 start-page: 137 year: 2014 ident: 90_CR112 publication-title: Solvent Extr Res Dev, Jpn doi: 10.15261/serdj.21.137 – volume: 39 start-page: 2926 year: 2003 ident: 90_CR36 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2003.815749 – volume: 647 start-page: 997 year: 2015 ident: 90_CR125 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2015.05.238 – volume: 67 start-page: 536 year: 2012 ident: 90_CR35 publication-title: Scripta Mat doi: 10.1016/j.scriptamat.2012.05.038 – volume: 31 start-page: 1007 year: 2015 ident: 90_CR128 publication-title: Mater Sci Technol doi: 10.1179/1743284714Y.0000000672 – start-page: 335 volume-title: Rare earths industry technological, economic, and environmental implications year: 2016 ident: 90_CR83 doi: 10.1016/B978-0-12-802328-0.00022-X – year: 2016 ident: 90_CR92 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.01.028 – volume: 15 start-page: 919 year: 2013 ident: 90_CR113 publication-title: Green Chem doi: 10.1039/C3GC40198G – volume: 164 start-page: 24 year: 2016 ident: 90_CR101 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2016.05.007 – volume: 124 start-page: 106 issue: 2 year: 2015 ident: 90_CR59 publication-title: Miner Process Extr Metall (Trans. Inst. Min. Metall. C) doi: 10.1179/1743285514Y.0000000084 – volume: 33 start-page: R157 year: 2000 ident: 90_CR33 publication-title: J Phys D doi: 10.1088/0022-3727/33/17/201 – volume: 1 start-page: 199 year: 2015 ident: 90_CR120 publication-title: J Sustain Metall doi: 10.1007/s40831-015-0021-9 – volume: 49 start-page: 12441 issue: 20 year: 2015 ident: 90_CR53 publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b02264 – ident: 90_CR21 doi: 10.3133/sir20115094 – volume: 527 start-page: 163 year: 2004 ident: 90_CR97 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2004.09.023 – volume: 66 start-page: 1185 year: 2002 ident: 90_CR86 publication-title: Geochim Cosmochim Acta doi: 10.1016/S0016-7037(01)00849-3 – volume: 350 start-page: 114 year: 2014 ident: 90_CR40 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2013.09.042 – volume: 92 start-page: 174413 year: 2015 ident: 90_CR32 publication-title: Phys Rev B doi: 10.1103/PhysRevB.92.174413 – volume: 20 start-page: 1584 issue: 5 year: 1984 ident: 90_CR24 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.1984.1063214 – volume: 26 start-page: 5 year: 2014 ident: 90_CR30 publication-title: J Phys doi: 10.1088/0953-8984/26/6/064205 – volume: 425 start-page: 145 year: 2006 ident: 90_CR129 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2006.01.011 – ident: 90_CR45 – ident: 90_CR26 – volume: 136 start-page: 548 year: 2014 ident: 90_CR5 publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.09.064 – ident: 90_CR68 – volume: 14 start-page: 151 year: 2007 ident: 90_CR110 publication-title: Solvent Extr Res Dev, Jpn – start-page: 199 volume-title: Metals and materials waste reduction, recovery, and remediation year: 1994 ident: 90_CR78 – volume: 1A start-page: 160 year: 2014 ident: 90_CR10 publication-title: Metall Mater Trans E doi: 10.1007/s40553-014-0016-7 – volume: 4 start-page: 64099 year: 2014 ident: 90_CR115 publication-title: RSC Adv doi: 10.1039/C4RA13787F – volume: 107 start-page: 215 year: 2015 ident: 90_CR50 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.04.123 – ident: 90_CR62 – volume: 408–412 start-page: 387 year: 2006 ident: 90_CR123 publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2005.04.094 – volume: 17 start-page: 2150 year: 2015 ident: 90_CR117 publication-title: Green Chem doi: 10.1039/C5GC00155B – volume: 104 start-page: 236 year: 2015 ident: 90_CR41 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.05.033 – start-page: 127 volume-title: The latest technology trend and resource strategy of rare earths year: 2011 ident: 90_CR81 – ident: 90_CR20 – ident: 90_CR54 – volume: 378 start-page: 540 year: 2016 ident: 90_CR64 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2016.03.182 – volume: 19 start-page: 1097 issue: 8 year: 2003 ident: 90_CR103 publication-title: Anal Sci doi: 10.2116/analsci.19.1097 – volume: 290–291 start-page: 1282 issue: P2 year: 2005 ident: 90_CR37 publication-title: J Magn Magn Mat doi: 10.1016/j.jmmm.2004.11.423 – volume: 54 start-page: 36 year: 2009 ident: 90_CR80 publication-title: Kidorui (Rare Earths) – volume: 15 start-page: 836 issue: 6 year: 2011 ident: 90_CR49 publication-title: J Ind Ecol doi: 10.1111/j.1530-9290.2011.00362.x – ident: 90_CR48 – volume: 43 start-page: 55 year: 2002 ident: 90_CR14 publication-title: Mater Trans doi: 10.2320/matertrans.43.55 – volume-title: Study on rare earths and their recycling: final report for the Greens/EFA Group in the European Parliament year: 2011 ident: 90_CR6 – year: 2016 ident: 90_CR11 publication-title: J Sustain Metall doi: 10.1007/s40831-016-0045-9 – ident: 90_CR23 – volume: 46 start-page: 3406 year: 2012 ident: 90_CR25 publication-title: Environ Sci Technol doi: 10.1021/es203518d – ident: 90_CR65 – volume: 40 start-page: 2877 year: 2004 ident: 90_CR69 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2004.832241 – ident: 90_CR63 doi: 10.1109/IEMDC.2015.7409220 – volume: 17 start-page: 2931 year: 2015 ident: 90_CR116 publication-title: Green Chem doi: 10.1039/C5GC00230C – volume-title: Handbook on the physics and chemistry of rare earths year: 2013 ident: 90_CR9 – volume: 324 start-page: 63 issue: 1 year: 2012 ident: 90_CR39 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2011.07.043 |
| SSID | ssj0002734771 |
| Score | 2.5507185 |
| SecondaryResourceType | review_article |
| Snippet | NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind... NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind... |
| SourceID | swepub proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122 |
| SubjectTerms | Critical raw materials Earth and Environmental Science Electrolysis Electronics End of life Environment Green Rare Earth Elements--Innovations in Ore Processing Hybrid electric vehicles Hydrometallurgy Metallic Materials Neodymium Permanent magnets R&D Rare earth elements Rare earths Rare-earth magnets Recovery Recycling Research & development Sustainable Development Thematic Section: Green Rare Earth Elements--Innovations in Ore Processing Urban mining Wind turbines |
| Title | REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review |
| URI | https://link.springer.com/article/10.1007/s40831-016-0090-4 https://www.proquest.com/docview/1880771792 https://research.chalmers.se/publication/251342 |
| Volume | 3 |
| WOSCitedRecordID | wos000394334600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2199-3831 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734771 issn: 2199-3831 databaseCode: RSV dateStart: 20150301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYo9NAegD4Qy0s-cAJZSmwnsbkB2hUHWCEoiJvl2GNAQgFttpX67xlnk_BQQSqXXOLY0XjsmfF4vo-QbQgyuBwKlvqCMwkl7oMOHykkaQCX6aBcQzZRjMfq6kqftnXcdXfbvUtJNjt1X-wmIykWhr4YASc6YfITWUBrp-JqPDu_7A9WIl5L0QRauBg1i3muLpv5r15e2qMnJ7PPi77CEG3szmjpQ3-8TBZbN5Puz_TiG5mD6jv5-gx88Ac5ORsOaYw-UZn_0lhmQoeVZ_eBHd8GoGM_ggN6GjfuCg0TPbHXFUzpuZvYhz26TzuOBDrLLvwkF6Phr8Mj1pIrMIdO2pRJlVvrE14Kh16UT1zBS4xWnOc21jeVKFnL0XnyGfc-YEufOxWsyrNSFE4psULmq_sKVgmVgcsQuXQ1tzIXwibSY1QJQgudKh0GJOlEbFyLPB4JMO5Mj5ncSMrE22ZRUkYOyE7_ycMMduO9xhvdvJl2BdYm4syhGhSaD8huNz3PXr_d2fFsuvtxIwB3i7x0Y9xNQ2tTmxoMSgzKrBBGlUoYCZAZ69JgPKggRKmk9snafw2-Tr7w6DY0d9w2yPx08hs2yWf3Z3pbT7YaPX8ELbr0Jg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RgtRy4KtUXSjgAyeQJcd2EptbQbsqYndVtQX1Zjn2uK2E0mqzrdR_j51NQkGARC-5JLGj8dgzk5l5D-AtBhlcgSXNfMmpxCqegy5eMmRZQJfroFxLNlHO5-rkRB90fdxNX-3epyTbk3podpOJFCuGvjECZppRuQb3ZTRYqY7v8Ojb8GMl4bWUbaAVN6OmKc_VZzP_NMqv9uinkznkRX_DEG3tzuTxnb74CTzq3Eyyt9KLp3AP62fw8Bb44BbMDsdjkqLPqMw3JLWZkHHt6UWg0_OAZO4n-JEcpIO7joaJzOxpjUty5Bb28gPZIz1HAlllF57D18n4-NM-7cgVqItO2pJKVVjrGa-Ei16UZ67kVYxWnOc29TdVTCvLo_Pkc-59iE_6wqlgVZFXonRKiW1Yry9q3AEiA5chcelqbmUhhGXSx6gShRY6UzqMgPUiNq5DHk8EGN_NgJncSsqkarMkKSNH8G545XIFu_Gvh3f7dTPdDmxMwpmLalBqPoL3_fLcuv33waar5R7mTQDcHfLSmXFnLa1NYxo0UWJY5aUwqlLCSMTcWJcF41EFISoltWcv_mvyN7Cxfzybmunn-ZeXsMmTC9HWu-3C-nJxha_ggbtenjeL163O_wCmhPcK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQQgOfBaxUMAHTiCrju0kNrcCuwKxXa0ooN4sxx7TSihdbQIS_x47XxQESIhLLknsaDy252U87wE8wSCDK7CkmS85lVjFddDFS4YsC-hyHZTrxCbK1UodH-v1oHPajKfdx5RkX9OQWJrqdn_jw_5U-CaTQFaEwRENM82ovAiXZNIMSnD96OP0kyVxt5Qd6IoTU9OU8xozm79r5ee96UfAOeVIf-ET7fagxY3__vqbcH0IP8lB7y-34ALWt-HaOVLCO3D4bj4nCZVGJ_9GUvkJmdeengW6PA1IVn6BL8g6Leh17JIc2k81tuTIbe3mOTkgo3YC6bMOu_BhMX__8jUdRBeoi8FbS6UqrPWMV8LF6MozV_IqohjnuU11TxXTyvIYVPmcex_ik75wKlhV5JUonVLiLuzUZzXeAyIDlyFp7GpuZSGEZdJHtIlCC50pHWbARnMbNzCSJ2GMz2biUu4sZdIptGQpI2fwdHpl09Nx_O3hvXEMzTAzG5P456JLlJrP4Nk4VOdu_7mxZT_0U7-JmHtgZDox7qSTu2lMgyZaDKu8FEZVShiJmBvrsmA8qiBEpaT27P4_df4YrqxfLczyzertA7jKU2TRHYPbg512-wUfwmX3tT1tto869_8OwFj_7g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REE+Recovery+from+End-of-Life+NdFeB+Permanent+Magnet+Scrap%3A+A+Critical+Review&rft.jtitle=Journal+of+sustainable+metallurgy&rft.au=Yang%2C+Yongxiang&rft.au=Walton%2C+Allan&rft.au=Sheridan%2C+Richard&rft.au=G%C3%BCth%2C+Konrad&rft.date=2017-03-01&rft.pub=Springer+International+Publishing&rft.issn=2199-3823&rft.eissn=2199-3831&rft.volume=3&rft.issue=1&rft.spage=122&rft.epage=149&rft_id=info:doi/10.1007%2Fs40831-016-0090-4&rft.externalDocID=10_1007_s40831_016_0090_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-3823&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-3823&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-3823&client=summon |