REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review

NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sustainable metallurgy Vol. 3; no. 1; pp. 122 - 149
Main Authors: Yang, Yongxiang, Walton, Allan, Sheridan, Richard, Güth, Konrad, Gauß, Roland, Gutfleisch, Oliver, Buchert, Matthias, Steenari, Britt-Marie, Van Gerven, Tom, Jones, Peter Tom, Binnemans, Koen
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.03.2017
Springer Nature B.V
Subjects:
ISSN:2199-3823, 2199-3831, 2199-3831
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be as large as 1000–2000 kg in the generators of modern wind turbines. NdFeB permanent magnets contain about 31–32 wt% of rare-earth elements (REEs). Recycling of REEs contained in this type of magnets from the End-of-Life (EOL) products will play an important and complementary role in the total supply of REEs in the future. However, collection and recovery of the magnets from small consumer electronics imposes great social and technological challenges. This paper gives an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of the various available technologies to recover the REEs from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery. At present, no commercial operation has been identified for recycling the EOL NdFeB permanent magnets and the recovery of the associated REE content. Most of the processing methods are still at various research and development stages. It is estimated that in the coming 10–15 years, the recycled REEs from EOL permanent magnets will play a significant role in the total REE supply in the magnet sector, provided that efficient technologies will be developed and implemented in practice.
AbstractList NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be as large as 1000–2000 kg in the generators of modern wind turbines. NdFeB permanent magnets contain about 31–32 wt% of rare-earth elements (REEs). Recycling of REEs contained in this type of magnets from the End-of-Life (EOL) products will play an important and complementary role in the total supply of REEs in the future. However, collection and recovery of the magnets from small consumer electronics imposes great social and technological challenges. This paper gives an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of the various available technologies to recover the REEs from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery. At present, no commercial operation has been identified for recycling the EOL NdFeB permanent magnets and the recovery of the associated REE content. Most of the processing methods are still at various research and development stages. It is estimated that in the coming 10–15 years, the recycled REEs from EOL permanent magnets will play a significant role in the total REE supply in the magnet sector, provided that efficient technologies will be developed and implemented in practice.
NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be as large as 1000–2000 kg in the generators of modern wind turbines. NdFeB permanent magnets contain about 31–32 wt% of rare-earth elements (REEs). Recycling of REEs contained in this type of magnets from the End-of-Life (EOL) products will play an important and complementary role in the total supply of REEs in the future. However, collection and recovery of the magnets from small consumer electronics imposes great social and technological challenges. This paper gives an overview of the sources of NdFeB permanent magnets related to their applications, followed by a summary of the various available technologies to recover the REEs from these magnets, including physical processing and separation, direct alloy production, and metallurgical extraction and recovery. At present, no commercial operation has been identified for recycling the EOL NdFeB permanent magnets and the recovery of the associated REE content. Most of the processing methods are still at various research and development stages. It is estimated that in the coming 10–15 years, the recycled REEs from EOL permanent magnets will play a significant role in the total REE supply in the magnet sector, provided that efficient technologies will be developed and implemented in practice.
Author Gauß, Roland
Jones, Peter Tom
Walton, Allan
Sheridan, Richard
Van Gerven, Tom
Güth, Konrad
Gutfleisch, Oliver
Binnemans, Koen
Yang, Yongxiang
Buchert, Matthias
Steenari, Britt-Marie
Author_xml – sequence: 1
  givenname: Yongxiang
  orcidid: 0000-0003-4584-6918
  surname: Yang
  fullname: Yang, Yongxiang
  email: y.yang@tudelft.nl
  organization: Department of Materials Science and Engineering, Delft University of Technology
– sequence: 2
  givenname: Allan
  surname: Walton
  fullname: Walton, Allan
  organization: School of Metallurgy and Materials, University of Birmingham
– sequence: 3
  givenname: Richard
  surname: Sheridan
  fullname: Sheridan, Richard
  organization: School of Metallurgy and Materials, University of Birmingham
– sequence: 4
  givenname: Konrad
  surname: Güth
  fullname: Güth, Konrad
  organization: Fraunhofer ISC, Project Group IWKS
– sequence: 5
  givenname: Roland
  surname: Gauß
  fullname: Gauß, Roland
  organization: Fraunhofer ISC, Project Group IWKS
– sequence: 6
  givenname: Oliver
  surname: Gutfleisch
  fullname: Gutfleisch, Oliver
  organization: Institute of Material Science, Technische Universität Darmstadt
– sequence: 7
  givenname: Matthias
  surname: Buchert
  fullname: Buchert, Matthias
  organization: Resources & Transport Division, Öko-Institut e.V
– sequence: 8
  givenname: Britt-Marie
  surname: Steenari
  fullname: Steenari, Britt-Marie
  organization: Department of Chemistry and Chemical Engineering, Chalmers University of Technology
– sequence: 9
  givenname: Tom
  surname: Van Gerven
  fullname: Van Gerven, Tom
  organization: Department of Chemical Engineering, KU Leuven
– sequence: 10
  givenname: Peter Tom
  surname: Jones
  fullname: Jones, Peter Tom
  organization: Department of Materials Engineering, KU Leuven
– sequence: 11
  givenname: Koen
  surname: Binnemans
  fullname: Binnemans, Koen
  organization: Department of Chemistry, KU Leuven
BackLink https://research.chalmers.se/publication/251342$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9UVtrVDEQDlLBWvsDfAv4HJ3czsnxrS7bC2xVWn0OOcmcNmU3WZOzLf33pmwpIujTDMN3mZnvLTlIOSEh7zl85AD9p6rASM6AdwxgAKZekUPBh4HJNj546YV8Q45rvQMA0UvV9_yQXF4tl_QKfb7H8kinkjd0mQLLE1vFCenXcIpf6HcsG5cwzfTS3SSc6bUvbvuZntBFiXP0bt0k7iM-vCOvJ7euePxcj8jP0-WPxTlbfTu7WJysmNcKZqZM51wAMUrPtQrgezFqDT4I12nVjTAYJ-QgghYhTA0ZOm8mZzo9yt4bI4_I9V63PuB2N9ptiRtXHm120Ras6Iq_tf7WrTdYqq1omwGOupfWjEZahait83yyAc0k5WjUEKCpftirbkv-tcM627u8K6kdYrkx0P7VD6Kh-B7lS6614PTizsE-xWH3cdgWh32Kw6rG6f_i-Di7OeY0FxfX_2WK50ubS7rB8sdO_yT9BkCPnmo
CitedBy_id crossref_primary_10_1016_j_actamat_2024_119871
crossref_primary_10_1080_01496395_2024_2315604
crossref_primary_10_1007_s10967_024_09466_x
crossref_primary_10_1016_j_jclepro_2019_02_223
crossref_primary_10_1016_j_jmmm_2023_171698
crossref_primary_10_1016_j_seppur_2021_119158
crossref_primary_10_1016_j_matdes_2022_110525
crossref_primary_10_1007_s11367_022_02081_6
crossref_primary_10_1016_j_exis_2023_101367
crossref_primary_10_3390_met8090721
crossref_primary_10_1016_j_jclepro_2018_01_260
crossref_primary_10_1557_s43577_022_00301_w
crossref_primary_10_3390_met9020269
crossref_primary_10_1016_j_hydromet_2022_105855
crossref_primary_10_1016_j_jclepro_2019_07_048
crossref_primary_10_1080_08827508_2023_2232932
crossref_primary_10_3390_ma16196565
crossref_primary_10_1016_j_jre_2024_02_001
crossref_primary_10_1021_acselectrochem_4c00120
crossref_primary_10_1007_s11106_023_00344_x
crossref_primary_10_1016_j_scriptamat_2017_11_020
crossref_primary_10_1016_j_jallcom_2020_157993
crossref_primary_10_1016_j_wear_2021_204134
crossref_primary_10_1016_j_radphyschem_2025_113077
crossref_primary_10_1016_j_cep_2020_107831
crossref_primary_10_1016_j_resourpol_2023_104137
crossref_primary_10_1007_s11837_019_03732_0
crossref_primary_10_3390_ma18132989
crossref_primary_10_1007_s42461_018_0042_6
crossref_primary_10_1016_j_hydromet_2021_105581
crossref_primary_10_3390_en18092274
crossref_primary_10_1016_j_jallcom_2025_180148
crossref_primary_10_1016_j_jece_2025_117751
crossref_primary_10_1016_j_jre_2023_04_019
crossref_primary_10_2497_jjspm_14E_T16_02
crossref_primary_10_1007_s11085_023_10212_z
crossref_primary_10_1002_chem_202002844
crossref_primary_10_1016_j_jwpe_2025_107010
crossref_primary_10_1016_j_seppur_2018_03_022
crossref_primary_10_1016_j_molliq_2024_124697
crossref_primary_10_1002_cssc_202402372
crossref_primary_10_1016_j_jre_2025_04_020
crossref_primary_10_1016_j_seppur_2024_129469
crossref_primary_10_3390_pr11020577
crossref_primary_10_1016_j_jmmm_2019_01_095
crossref_primary_10_1016_j_procir_2020_02_052
crossref_primary_10_1016_j_seppur_2024_128498
crossref_primary_10_3390_min10040340
crossref_primary_10_1016_j_seppur_2022_122958
crossref_primary_10_1016_j_apenergy_2025_125707
crossref_primary_10_2116_analsci_20SAR11
crossref_primary_10_3390_ma17112487
crossref_primary_10_1007_s42250_019_00048_z
crossref_primary_10_1016_j_jallcom_2023_168709
crossref_primary_10_1134_S0018143925600053
crossref_primary_10_1016_j_jmmm_2024_172166
crossref_primary_10_1109_TIE_2017_2762625
crossref_primary_10_1007_s13563_022_00304_8
crossref_primary_10_1007_s40831_018_0200_6
crossref_primary_10_1016_j_resenv_2025_100260
crossref_primary_10_1016_j_mineng_2022_107632
crossref_primary_10_1016_j_susmat_2024_e01041
crossref_primary_10_1002_ejic_201700801
crossref_primary_10_56958_jesi_2021_6_2_7
crossref_primary_10_1002_celc_201900286
crossref_primary_10_1016_j_susmat_2024_e01043
crossref_primary_10_1016_j_mineng_2025_109538
crossref_primary_10_1002_cssc_201902342
crossref_primary_10_1016_j_mattod_2025_05_010
crossref_primary_10_1002_cjce_25138
crossref_primary_10_3390_ma18174019
crossref_primary_10_1002_adem_202100459
crossref_primary_10_1007_s41403_021_00231_0
crossref_primary_10_3390_ma16145181
crossref_primary_10_1007_s11837_017_2698_7
crossref_primary_10_1021_acssensors_5c00833
crossref_primary_10_1002_adem_202402815
crossref_primary_10_3390_met12071204
crossref_primary_10_1016_j_resconrec_2024_107966
crossref_primary_10_1080_00084433_2022_2058152
crossref_primary_10_1016_j_actamat_2024_120532
crossref_primary_10_1088_1361_6463_aab7d1
crossref_primary_10_1007_s43615_022_00204_7
crossref_primary_10_1016_j_commatsci_2023_112527
crossref_primary_10_1007_s40516_022_00180_8
crossref_primary_10_1039_D5SU00222B
crossref_primary_10_1007_s12666_021_02221_w
crossref_primary_10_1016_j_jtice_2019_01_006
crossref_primary_10_1016_j_jwpe_2024_106442
crossref_primary_10_1007_s11837_020_04409_9
crossref_primary_10_1016_j_cej_2019_04_026
crossref_primary_10_1080_2329194X_2020_1836498
crossref_primary_10_1007_s12666_019_01702_3
crossref_primary_10_3390_met11081149
crossref_primary_10_1016_j_cej_2025_160892
crossref_primary_10_1126_science_aau7628
crossref_primary_10_3390_pr11061783
crossref_primary_10_1002_adem_202300252
crossref_primary_10_1007_s40831_018_0198_9
crossref_primary_10_1016_j_ces_2025_122073
crossref_primary_10_3390_ma15155281
crossref_primary_10_3390_met12081268
crossref_primary_10_3390_su16072681
crossref_primary_10_1002_chem_202303923
crossref_primary_10_1016_j_jclepro_2020_125087
crossref_primary_10_1016_j_micromeso_2021_110919
crossref_primary_10_1016_j_spc_2020_07_012
crossref_primary_10_1109_TMAG_2020_3002098
crossref_primary_10_1016_j_mineng_2018_12_022
crossref_primary_10_1016_j_procir_2020_02_005
crossref_primary_10_1016_j_resourpol_2019_101448
crossref_primary_10_1007_s11696_020_01083_8
crossref_primary_10_1016_j_matpr_2023_11_037
crossref_primary_10_3390_min13070862
crossref_primary_10_3390_ma17040808
crossref_primary_10_3390_met13040779
crossref_primary_10_1002_slct_202402192
crossref_primary_10_1007_s40831_025_01010_9
crossref_primary_10_1002_adem_202201027
crossref_primary_10_3390_ma18132946
crossref_primary_10_1016_j_jece_2024_114389
crossref_primary_10_3390_w14030401
crossref_primary_10_1016_j_elecom_2022_107287
crossref_primary_10_1016_j_clay_2020_105825
crossref_primary_10_1109_TMAG_2020_3013556
crossref_primary_10_3390_ma17225528
crossref_primary_10_1007_s42765_024_00442_4
crossref_primary_10_1016_j_jclepro_2024_142251
crossref_primary_10_1016_j_psep_2019_01_026
crossref_primary_10_3390_met8110867
crossref_primary_10_3390_jmmp8020081
crossref_primary_10_1016_j_jclepro_2025_146483
crossref_primary_10_1002_aesr_202300184
crossref_primary_10_1016_j_electacta_2019_03_161
crossref_primary_10_1016_j_jhazmat_2019_121632
crossref_primary_10_1016_j_wasman_2024_01_023
crossref_primary_10_1016_j_heliyon_2024_e34811
crossref_primary_10_1016_j_jece_2022_108946
crossref_primary_10_1016_j_resconrec_2024_108113
crossref_primary_10_1007_s13563_023_00381_3
crossref_primary_10_1002_adem_202501217
crossref_primary_10_1007_s11696_022_02428_1
crossref_primary_10_1016_j_resourpol_2025_105491
crossref_primary_10_1007_s11157_023_09647_2
crossref_primary_10_3390_min13101274
crossref_primary_10_3390_min13070846
crossref_primary_10_3390_ma18010184
crossref_primary_10_3390_met12101615
crossref_primary_10_1007_s11356_021_17761_3
crossref_primary_10_1016_j_resconrec_2020_104923
crossref_primary_10_1021_acs_chemrev_5c00103
crossref_primary_10_1007_s11837_019_03844_7
crossref_primary_10_3390_nano9060814
crossref_primary_10_1016_j_seppur_2024_126701
crossref_primary_10_3390_met10060841
crossref_primary_10_3390_nano12060974
crossref_primary_10_1016_j_jallcom_2024_177980
crossref_primary_10_1016_j_seppur_2024_127914
crossref_primary_10_1088_1755_1315_677_5_052063
crossref_primary_10_1007_s10163_021_01277_6
crossref_primary_10_1016_j_procir_2024_12_078
crossref_primary_10_1039_D2RA06883D
crossref_primary_10_1016_j_jallcom_2020_158272
crossref_primary_10_1080_08827508_2022_2073591
crossref_primary_10_1016_j_jmmm_2022_170250
crossref_primary_10_1021_acsestengg_5c00508
crossref_primary_10_1016_j_mineng_2022_107446
crossref_primary_10_1146_annurev_chembioeng_100722_114853
crossref_primary_10_1016_j_hydromet_2022_105942
crossref_primary_10_1016_j_scriptamat_2018_01_032
crossref_primary_10_1016_j_matchar_2022_111824
crossref_primary_10_1021_jacs_5c04150
crossref_primary_10_1016_j_micromeso_2020_110747
crossref_primary_10_1016_j_chroma_2022_463528
crossref_primary_10_5796_electrochemistry_23_69105
crossref_primary_10_1016_j_actamat_2022_118454
crossref_primary_10_1016_j_jmmm_2024_172360
crossref_primary_10_1016_j_seppur_2023_124332
crossref_primary_10_1016_j_hydromet_2024_106284
crossref_primary_10_1016_j_jallcom_2025_178567
crossref_primary_10_1016_j_cogsc_2024_100884
crossref_primary_10_1007_s40831_024_00873_8
crossref_primary_10_1016_j_hydromet_2019_105154
crossref_primary_10_1016_j_jclepro_2022_135112
crossref_primary_10_3390_pr13092830
crossref_primary_10_1016_j_jclepro_2017_09_051
crossref_primary_10_1016_j_jece_2023_111001
crossref_primary_10_1515_psr_2018_0022
crossref_primary_10_1039_D2NJ02776C
crossref_primary_10_1088_1361_6463_abfad4
crossref_primary_10_1016_j_cogsc_2018_02_008
crossref_primary_10_3390_pr9050857
crossref_primary_10_1039_D3SU00390F
crossref_primary_10_1016_j_mineng_2025_109479
crossref_primary_10_1016_j_psep_2024_09_053
crossref_primary_10_1039_C9RA08996A
crossref_primary_10_3390_ma17040848
crossref_primary_10_3390_recycling7050068
crossref_primary_10_3390_min12080948
crossref_primary_10_3390_resources6040059
crossref_primary_10_1016_j_jclepro_2022_135004
crossref_primary_10_1080_12269328_2024_2425351
crossref_primary_10_1016_j_heliyon_2024_e38766
crossref_primary_10_1016_j_molliq_2022_120012
crossref_primary_10_1016_j_molliq_2023_122258
crossref_primary_10_1002_ente_201901025
crossref_primary_10_1007_s11837_023_06235_1
crossref_primary_10_1007_s13762_021_03546_1
crossref_primary_10_3390_eng3020020
crossref_primary_10_1111_jiec_13058
crossref_primary_10_1109_ACCESS_2020_3008214
crossref_primary_10_1177_0954407020971246
crossref_primary_10_3390_app14135638
crossref_primary_10_1007_s11837_021_04592_3
crossref_primary_10_1180_mgm_2020_9
crossref_primary_10_1016_j_hydromet_2021_105626
crossref_primary_10_1016_j_jclepro_2024_142453
crossref_primary_10_1016_j_jiec_2023_04_027
crossref_primary_10_1016_j_seppur_2017_11_025
crossref_primary_10_1016_j_seppur_2025_134703
crossref_primary_10_1038_s41893_019_0252_z
crossref_primary_10_1007_s11696_023_02745_z
crossref_primary_10_1016_j_egyr_2024_07_022
crossref_primary_10_3390_cryst10090815
crossref_primary_10_1016_j_cej_2022_137418
crossref_primary_10_3390_ma16196614
crossref_primary_10_1016_j_scriptamat_2020_113686
crossref_primary_10_3390_met12050794
crossref_primary_10_1016_j_hydromet_2019_105213
crossref_primary_10_1007_s12540_019_00605_8
crossref_primary_10_1007_s40831_025_01239_4
crossref_primary_10_1016_j_resconrec_2024_107582
crossref_primary_10_1016_j_procir_2024_12_067
crossref_primary_10_1007_s40831_019_00259_1
crossref_primary_10_1016_j_jece_2024_113169
crossref_primary_10_1016_j_resconrec_2023_107037
crossref_primary_10_1109_TIE_2024_3368104
crossref_primary_10_1016_j_resconrec_2023_106864
crossref_primary_10_1080_2374068X_2022_2095142
crossref_primary_10_1002_adfm_202407018
crossref_primary_10_1007_s40831_018_0204_2
crossref_primary_10_3390_met11060978
crossref_primary_10_1111_jfb_15860
crossref_primary_10_1016_j_jclepro_2025_145794
crossref_primary_10_1016_j_jre_2025_09_003
crossref_primary_10_1016_j_rser_2022_112523
crossref_primary_10_1016_j_wasman_2018_01_033
crossref_primary_10_1063_5_0172155
crossref_primary_10_1002_adem_202400234
crossref_primary_10_1016_j_seppur_2024_129850
crossref_primary_10_1039_D4RA08474H
crossref_primary_10_3390_met14060658
crossref_primary_10_3390_min11121374
crossref_primary_10_1016_j_jclepro_2022_132672
crossref_primary_10_1007_s10163_024_02108_0
crossref_primary_10_1016_j_seppur_2022_122699
crossref_primary_10_1016_j_jallcom_2019_152215
crossref_primary_10_1016_j_ces_2025_121351
crossref_primary_10_1680_jemmr_18_00046
crossref_primary_10_3389_fceng_2024_1420008
crossref_primary_10_1016_j_scp_2022_100623
crossref_primary_10_1016_j_actamat_2024_120493
crossref_primary_10_1016_j_cej_2018_06_112
crossref_primary_10_1016_j_resconrec_2018_11_024
crossref_primary_10_1016_j_apt_2021_08_040
crossref_primary_10_1016_j_cej_2023_141708
crossref_primary_10_1007_s11783_021_1412_8
crossref_primary_10_1016_j_jclepro_2019_119762
crossref_primary_10_1007_s40831_018_0171_7
crossref_primary_10_1016_j_resconrec_2024_108094
crossref_primary_10_1016_j_mineng_2024_108779
crossref_primary_10_1016_j_hydromet_2017_11_010
crossref_primary_10_3390_molecules29194624
crossref_primary_10_3390_min13060714
crossref_primary_10_1016_j_sajce_2020_04_003
crossref_primary_10_4028_www_scientific_net_KEM_845_81
crossref_primary_10_1007_s40831_022_00574_0
crossref_primary_10_3390_en18102436
crossref_primary_10_1016_j_envint_2023_108177
crossref_primary_10_1016_j_resconrec_2019_06_031
crossref_primary_10_3390_ma12091498
crossref_primary_10_1007_s11837_020_04185_6
crossref_primary_10_1016_j_susmat_2018_e00074
crossref_primary_10_1007_s11837_019_03523_7
crossref_primary_10_1149_1945_7111_ade509
crossref_primary_10_1038_s41598_025_94667_x
crossref_primary_10_3390_met11091494
crossref_primary_10_1007_s10163_025_02162_2
crossref_primary_10_1016_j_jclepro_2017_12_035
crossref_primary_10_1016_j_seppur_2024_127892
crossref_primary_10_1088_1674_1056_add006
crossref_primary_10_1016_j_electacta_2024_144817
crossref_primary_10_1016_j_jenvman_2025_126513
crossref_primary_10_1088_1757_899X_550_1_012034
crossref_primary_10_1109_TTE_2024_3476161
crossref_primary_10_1016_j_resconrec_2020_104781
crossref_primary_10_1016_j_seppur_2024_126447
crossref_primary_10_1002_cssc_202400286
crossref_primary_10_1039_D2RA05876F
crossref_primary_10_1007_s10098_024_02935_7
crossref_primary_10_1007_s12613_020_2228_4
crossref_primary_10_1007_s10854_022_08992_2
crossref_primary_10_1016_j_resconrec_2023_107245
crossref_primary_10_1016_j_seppur_2023_125924
crossref_primary_10_1016_j_jclepro_2023_136252
crossref_primary_10_1016_j_solidstatesciences_2018_12_022
crossref_primary_10_3390_su12072624
crossref_primary_10_1016_j_scitotenv_2024_177995
crossref_primary_10_3390_met15090942
crossref_primary_10_3390_en17235861
crossref_primary_10_1007_s41403_021_00216_z
crossref_primary_10_3390_met13030559
crossref_primary_10_1016_j_matchemphys_2024_129648
crossref_primary_10_5796_electrochemistry_23_69163
crossref_primary_10_3390_su16198726
crossref_primary_10_3390_met12091464
crossref_primary_10_1038_s41578_021_00308_w
crossref_primary_10_3390_en14175540
crossref_primary_10_3390_membranes13050467
crossref_primary_10_1016_j_jmmm_2023_171475
crossref_primary_10_1016_j_resourpol_2018_07_010
crossref_primary_10_3390_molecules29030688
crossref_primary_10_1007_s10010_025_00820_3
crossref_primary_10_1016_j_addlet_2025_100282
crossref_primary_10_3390_en17040908
crossref_primary_10_1016_j_mineng_2019_106097
crossref_primary_10_1016_j_wasman_2019_04_040
crossref_primary_10_1177_00325899251331431
crossref_primary_10_1002_adsu_202400887
crossref_primary_10_1007_s12666_020_01888_x
crossref_primary_10_1007_s40831_018_0180_6
crossref_primary_10_3390_met14030314
crossref_primary_10_1016_j_jmmm_2021_168979
crossref_primary_10_1038_s41467_022_31499_7
crossref_primary_10_1021_acssusresmgt_5c00003
crossref_primary_10_1038_s41598_022_24042_7
crossref_primary_10_3390_ma17235927
crossref_primary_10_1038_s44359_025_00097_3
crossref_primary_10_1016_j_mtsust_2024_101042
crossref_primary_10_1016_j_seppur_2022_122946
crossref_primary_10_1177_25726641241233219
crossref_primary_10_1016_j_jallcom_2020_158424
crossref_primary_10_1016_j_seppur_2023_125137
crossref_primary_10_3390_met11050734
crossref_primary_10_1007_s13243_024_00143_6
crossref_primary_10_3390_app10217558
crossref_primary_10_1016_j_seppur_2023_123527
crossref_primary_10_3390_en18154024
crossref_primary_10_1016_j_spc_2019_07_006
crossref_primary_10_1080_07366299_2025_2508300
crossref_primary_10_3390_pr11072070
crossref_primary_10_1016_j_corsci_2021_109290
crossref_primary_10_3389_fenvc_2021_596928
crossref_primary_10_3390_en17040914
crossref_primary_10_1016_j_electacta_2021_138140
crossref_primary_10_1016_j_wasman_2023_12_025
crossref_primary_10_1016_j_jclepro_2020_123299
crossref_primary_10_18596_jotcsa_1337768
crossref_primary_10_1016_j_cej_2021_131086
crossref_primary_10_1016_j_jclepro_2022_134305
crossref_primary_10_1016_j_ijhydene_2025_04_248
crossref_primary_10_1016_j_electacta_2021_139342
crossref_primary_10_1016_j_molliq_2023_123690
crossref_primary_10_1016_j_scitotenv_2023_164368
crossref_primary_10_1016_j_jenvman_2025_125578
crossref_primary_10_1016_j_rser_2020_110616
crossref_primary_10_1016_j_jclepro_2023_138526
crossref_primary_10_1016_j_hydromet_2024_106320
crossref_primary_10_1007_s11696_020_01240_z
crossref_primary_10_1016_j_jclepro_2019_02_094
crossref_primary_10_1080_10934529_2023_2264135
crossref_primary_10_1016_j_jre_2020_04_020
crossref_primary_10_1016_j_jenvman_2018_05_054
crossref_primary_10_1016_j_procir_2021_01_014
Cites_doi 10.1081/SEI-100001376
10.1021/es404596q
10.1039/B603847F
10.1007/s40436-015-0132-3
10.1016/j.hydromet.2015.05.004
10.1252/jcej.11we005
10.1002/adma.201002180
10.1016/j.jallcom.2013.11.188
10.1063/1.4859097
10.1016/j.hydromet.2014.09.015
10.1016/j.jallcom.2003.11.030
10.1252/jcej.10we279
10.1016/j.jiec.2009.09.063
10.7844/kirr
10.1016/j.seppur.2012.08.015
10.1016/j.jallcom.2005.04.088
10.2790/35716
10.1039/C5GC01255D
10.1016/S0925-8388(02)01202-1
10.1002/0470010088
10.1557/JMR.2000.0330
10.1007/s10163-014-0347-6
10.2116/analsci.23.1427
10.1039/C2GC35246J
10.1016/S0925-8388(98)00910-4
10.1002/ente.201402162
10.1016/j.jallcom.2007.01.134
10.1016/j.jclepro.2012.12.037
10.1088/0022-3727/31/7/009
10.1007/s11837-013-0639-7
10.1016/S0925-8388(00)01112-9
10.1016/j.mineng.2014.03.015
10.1021/acs.est.5b01306
10.1021/sc5004456
10.1080/01496390601120763
10.1149/2.072112jes
10.1016/j.wasman.2015.07.041
10.2320/matertrans.44.798
10.1021/es405104k
10.1007/978-1-4899-1406-4
10.1016/S1002-0721(14)60478-6
10.1016/j.jallcom.2004.02.038
10.1016/0925-8388(94)01316-A
10.1016/j.jallcom.2008.10.036
10.1039/C3GC41577E
10.1021/acssuschemeng.5b00852
10.1002/9781119275039.ch13
10.1016/j.jallcom.2008.01.114
10.1016/j.mineng.2013.10.021
10.1021/es305007w
10.1007/978-3-319-26809-5
10.3390/ijms150915320
10.1088/0022-3727/29/9/006
10.1007/s40831-014-0005-1
10.1515/HTMP.1993.11.1-4.175
10.1002/aenm.201200337
10.1016/j.jenvman.2009.06.018
10.1021/ic049377m
10.1016/j.jclepro.2014.04.035
10.15261/serdj.21.137
10.1109/TMAG.2003.815749
10.1016/j.jallcom.2015.05.238
10.1016/j.scriptamat.2012.05.038
10.1179/1743284714Y.0000000672
10.1016/B978-0-12-802328-0.00022-X
10.1016/j.hydromet.2016.01.028
10.1039/C3GC40198G
10.1016/j.hydromet.2016.05.007
10.1179/1743285514Y.0000000084
10.1088/0022-3727/33/17/201
10.1007/s40831-015-0021-9
10.1021/acs.est.5b02264
10.3133/sir20115094
10.1016/j.aca.2004.09.023
10.1016/S0016-7037(01)00849-3
10.1016/j.jmmm.2013.09.042
10.1103/PhysRevB.92.174413
10.1109/TMAG.1984.1063214
10.1088/0953-8984/26/6/064205
10.1016/j.jallcom.2006.01.011
10.1016/j.apenergy.2014.09.064
10.1007/s40553-014-0016-7
10.1039/C4RA13787F
10.1016/j.jclepro.2015.04.123
10.1016/j.jallcom.2005.04.094
10.1039/C5GC00155B
10.1016/j.jclepro.2015.05.033
10.1016/j.apsusc.2016.03.182
10.2116/analsci.19.1097
10.1016/j.jmmm.2004.11.423
10.1111/j.1530-9290.2011.00362.x
10.2320/matertrans.43.55
10.1007/s40831-016-0045-9
10.1021/es203518d
10.1109/TMAG.2004.832241
10.1109/IEMDC.2015.7409220
10.1039/C5GC00230C
10.1016/j.jmmm.2011.07.043
ContentType Journal Article
Copyright The Author(s) 2016
The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2016
– notice: The Author(s) 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
DOI 10.1007/s40831-016-0090-4
DatabaseName Springer Nature OA Free Journals
CrossRef
SWEPUB Chalmers tekniska högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3831
EndPage 149
ExternalDocumentID oai_research_chalmers_se_72beb573_8b83_4ee5_ac1f_de8f33b849d0
10_1007_s40831_016_0090_4
GroupedDBID -EM
0R~
203
4.4
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BGNMA
C6C
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7R
Z7V
Z7Y
Z7Z
Z85
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PQGLB
ABBSD
ADTPV
AOWAS
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c540t-486aad02b3c154d0c72b550cd2a6546b098a2392d52ddfad0d6c8fa865b37c883
IEDL.DBID RSV
ISICitedReferencesCount 469
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000394334600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2199-3823
2199-3831
IngestDate Wed Nov 05 04:18:34 EST 2025
Wed Sep 17 13:41:00 EDT 2025
Tue Nov 18 21:31:45 EST 2025
Sat Nov 29 02:16:57 EST 2025
Fri Feb 21 02:36:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rare-earth magnets
Recycling
Critical raw materials
Neodymium
Rare earths
Urban mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-486aad02b3c154d0c72b550cd2a6546b098a2392d52ddfad0d6c8fa865b37c883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4584-6918
OpenAccessLink https://link.springer.com/10.1007/s40831-016-0090-4
PQID 1880771792
PQPubID 2044445
PageCount 28
ParticipantIDs swepub_primary_oai_research_chalmers_se_72beb573_8b83_4ee5_ac1f_de8f33b849d0
proquest_journals_1880771792
crossref_primary_10_1007_s40831_016_0090_4
crossref_citationtrail_10_1007_s40831_016_0090_4
springer_journals_10_1007_s40831_016_0090_4
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of sustainable metallurgy
PublicationTitleAbbrev J. Sustain. Metall
PublicationYear 2017
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References British Geological Survey (BGS) (2010) rare earth elements. 2010. http://www.MineralsUK.com. Accessed 8 May 2016
SagawaMFujimuraSYamamotoHMatsuuraYHiragaKPermanent magnet materials based on the rare earth-iron-boron tetragonal compoundsIEEE Trans Magn19842051584158910.1109/TMAG.1984.1063214
NaganawaHShimojoKMitamuraHSugoYNoroJGotoMA New, “green” extractant of the diglycol amic acid type for lanthanidesSolvent Extr Res Dev, Jpn2007141511591:CAS:528:DC%2BD2sXmt1eltrs%3D
AlonsoEShermanAMWallingtonTJEversonMPFieldRRothRKirchainREEvaluating rare earth element availability: a case with revolutionary demand from clean technologiesEnviron Sci Technol201246340634141:CAS:528:DC%2BC38Xhs1Kiurw%3D10.1021/es203518d
Högberg S, Bendixen FB, Mijatovic N, Jensen BB, Holbøll J (2015) Influence of demagnetization-temperature on magnetic performance of recycled Nd-Fe-B magnets. In: Proceeding of the IEEE international electric machines and drives conference. pp 1242–1246
VanderHoogerstraete TBlanpainBVan GervenTBinnemansKFrom NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acidRSC Adv2014464099641111:CAS:528:DC%2BC2cXhvFOitLzP10.1039/C4RA13787F
VonckenJHLThe rare earth elements, an introduction2016DordrechtSpringerNature10.1007/978-3-319-26809-5
LiuYJeonHSLeeMSSolvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractantsHydrometallurgy201415061671:CAS:528:DC%2BC2cXhslajtLbJ10.1016/j.hydromet.2014.09.015
GutfleischOGüthKWoodcockTGSchultzLRecycling used Nd-Fe-B sintered magnets via a hydrogen-based route to produce anisotropic, resin bonded magnetsAdv Energy Mater201331511551:CAS:528:DC%2BC3sXjtVGjsr4%3D10.1002/aenm.201200337
SaitoTSatoHOzawaSYuJMotegiTThe extraction of Nd from waste NdFeB alloys by the glass slag methodJ Alloys and Compd20033531891931:CAS:528:DC%2BD3sXitlers7k%3D10.1016/S0925-8388(02)01202-1
BandaraHMDFieldKDEmmertMHRare earth recovery from end-of-life motors employing green chemistry design principlesGreen Chem2016187537591:CAS:528:DC%2BC2MXhsVGisrnE10.1039/C5GC01255D
EllisTWSchmidtFAJonesLLLiddellKCMethods and opportunities in the recycling of rare earth based materialsMetals and materials waste reduction, recovery, and remediation1994Warrendale, PATMS199206
ItakuraTSasaiRItohHResource recovery from Nd-Fe-B sintered magnet by hydrothermal treatmentJ Alloys Compd2006408–412138213851:CAS:528:DC%2BD28XosFOrtw%3D%3D10.1016/j.jallcom.2005.04.088
Nash KL, Choppin GR (1995) Separation of f elements. Springer Science + Business Media. (eBook). doi 10.1007/978-1-4899-1406-4
HabibKWenzelHExploring rare earths supply constraints for the emerging clean energy technologies and the role of recyclingJ Clean Prod2014843483591:CAS:528:DC%2BC2cXnslehur4%3D10.1016/j.jclepro.2014.04.035
KimASKimDHNamkungSJangTSLeeDHKwonHWHwangDHHDDR processing of magnet scrapIEEE Trans Magn200440287728791:CAS:528:DC%2BD2cXotVCks7c%3D10.1109/TMAG.2004.832241
RianoSBinnemansKExtraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnetsGreen Chem201517293129421:CAS:528:DC%2BC2MXktVCrtr0%3D10.1039/C5GC00230C
SprecherBXiaoYWaltonASpeightJHarrisRKleijnRVisserGKramerGJLife Cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnetsEnviron Sci Technol201448395139581:CAS:528:DC%2BC2cXjtlSjtbg%3D10.1021/es404596q
Abrahami ST (2012) Rare-earths recovery from post-consumer HDD scrap. Master thesis. Department of Materials Science and Engineering, TU Delft
HonkuraYMishimaCHamadaNGutfleischOTexture memory effect of Nd-Fe-B during hydrogen treatmentJ Magn Magn Mat2005290–291P2128212851:CAS:528:DC%2BD2MXisFalsb0%3D10.1016/j.jmmm.2004.11.423
BoundsCLiddellKCThe recycle of sintered magnet swarfMetals and materials waste reduction, recovery and mediation1994Warrendale, PATMS173186
Benecki WT (2013) The permanent magnet market 2015. Presentation in: magnetics 2013 Conference. February 8, 2013 Orlando. http://www.waltbenecki.com/uploads/Magnetics_2013_Benecki_Presentation.pdf. Accessed 8 May 2016
ZhuZXSasakiYSuzukiHSuzukiSKimuraTCumulative study on solvent extraction of elements by N, N, N’, N’-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecaneAnal Chim Acta20045271631681:CAS:528:DC%2BD2cXhtVCmtbjL10.1016/j.aca.2004.09.023
BandaraHMDDarcyJWApelianDEmmertMHValue analysis of neodymium content in shredder feed: towards enabling the feasibility of rare earth magnet recyclingEnviron Sci Technol201448655365601:CAS:528:DC%2BC2cXosVWjsb0%3D10.1021/es405104k
LeeJCKimWBJeongJYoonIJExtraction of neodymium from Nd-Fe-B magnet scraps by sulfuric acidJ Korean Inst Met Mater19983669679721:CAS:528:DyaK1cXltlyqu7s%3D
EdströmAEffect of doping by 5d elements on magnetic properties of (Fe1 − xCox)2B alloysPhys Rev B2015921744131:CAS:528:DC%2BC28XovVCrs7Y%3D10.1103/PhysRevB.92.174413
MakanyireTSanchez-SegadoSJhaASeparation and recovery of critical metal ions using ionic liquidsAdv Manuf20164133461:CAS:528:DC%2BC28XktVektrk%3D10.1007/s40436-015-0132-3
WaltonAWilliamsARare earth recoveryMater World2011192426
Okabe TH and Shirayama S (2011) Method and apparatus for recovery of rare earth element, US Patent Application Publication: US2011/0023660A1
FirdausMRhamdhaniMADurandetYRankinWJMcGregorKReview of high-temperature recovery of rare earth (Nd/Dy) from magnet wasteJ Sustain Metall201610.1007/s40831-016-0045-9
Herraiz E, Degri M, Bradshaw A, Sheridan RS, Mann VSJ, Harris IR, Walton A (2016) Recycling of rare earth magnets by hydrogen processing and re-sintering. In: 24th international workshop on rare earth permanent magnet and their applications, Darmstadt
ZakotnikMTudorCOCommercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materialsWaste Manag20154448541:CAS:528:DC%2BC2MXht1KrtbjO10.1016/j.wasman.2015.07.041
KoyamaKTanakaMMachidaKThe latest technology trend and resource strategy of rare earths2011TokyoCMC Press127131
Goonan T G (2011) Rare earth elements-end use and recyclability. USGS Scientific Investigations Report 2011–5094. https://pubs.usgs.gov/sir/2011/5094/pdf/sir2011-5094.pdf. Accessed 8 May 2016
USGS (2010-2016) Minerals yearbook, rare earths. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/index.html#myb. Accessed 8 May 2016
KikuchiYMatsumiyaMKawakamiSExtraction of rare earth ions from Nd-Fe-B magnet wastes with TBP in tricaprylmethylammonium nitrateSolvent Extr Res Dev, Jpn2014211371451:CAS:528:DC%2BC2cXovVGitLY%3D10.15261/serdj.21.137
RademakerJHKleijnRYangYRecycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recyclingEnviron Sci Technol20134710129101361:CAS:528:DC%2BC3sXht1SrtrzL10.1021/es305007w
GutfleischOWillardMABrückEChenCHSankarSGLiuJPMagnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient (review)Adv Mater2011238218421:CAS:528:DC%2BC3MXitVWmu74%3D10.1002/adma.201002180
DupontDBinnemansKRecycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2 N]Green Chem201517215021631:CAS:528:DC%2BC2MXjsF2qtr8%3D10.1039/C5GC00155B
MuraseKMachidaKAdachiGRecovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transportJ Alloys Compd19952172182251:CAS:528:DyaK2MXjt1Sltbw%3D10.1016/0925-8388(94)01316-A
Constantinides S (2012) The Demand for Rare Earth Materials in Permanent Magnets. Presentation at the 51st annual conference of metallurgists (COM 2012), Sept. 30–Oct. 3, 2012. Niagara Falls. http://www.arnoldmagnetics.com/Portals/0/Files/Tech%20Library/Technical%20Publications/Tech%20Papers/Demand%20for%20rare%20earth%20materials%20in%20permanent%20magnets%20-%20Constantinides%20-%20COM%20-%202012%20psn%20hi-res.pdf?ver=2015-09-21-101252-140. Accessed 17 Sept 2016
Ellis TW, Schmidt FA (1995) Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction. U.S. Patent 5,437,709
HabibKParajulyKWenzelHTracking the flow of resources in electronic waste - the case of end-of-life computer hard disk drivesEnviron Sci Technol2015492012441124491:CAS:528:DC%2BC2MXhsVKlsL%2FL10.1021/acs.est.5b02264
KraikaewJSrinuttrakulWChayavadhanakurCSolvent extraction study of rare earths from nitrate medium by the mixtures of TBP and D2EHPA in keroseneJ Metals Mater Miner200515289951:CAS:528:DC%2BD2MXhtlGnsLrK
KobayashiSKobayashiKNohiraTHagiwaraROishiTKonishiHElectrochemical formation of Nd-Ni Alloys in molten LiF-CaF2-NdF3J Electrochem Soc2011158E142E1461:CAS:528:DC%2BC3MXhsVyks7nO10.1149/2.072112jes
OkabeTHTakedaOFukudaKUmetsuYDirect extraction and recovery of neodymium metals from magnet scrapMater Trans2003447988011:CAS:528:DC%2BD3sXkslCltL0%3D10.2320/matertrans.44.798
ZakotnikMHarrisIRWiliamsAJMultiple recycling of NdFeB-type sintered magnetsJ Alloys Compd20094693143211:CAS:528:DC%2BD1MXhtVOmtbo%3D10.1016/j.jallcom.2008.01.114
AbreuRDMoraisCAStudy on separation of heavy rare earth elements by solvent extraction with organophosphorous acids and amine reagentsMiner Eng20146182871:CAS:528:DC%2BC2cXntlOnsr4%3D10.1016/j.mineng.2014.03.015
BandaRJeonHLeeMSolvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractantsSep Purif Technol2012984814871:CAS:528:DC%2BC38Xhtl2ktrbO10.1016/j.seppur.2012.08.015
Mann VSJ, Škulj I, Walton A (2016) Production of Sintered magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt
ShimojoKNaganawaHNoroJKubotaFGotoMExtraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligandAnal Sci20072312142714301:CAS:528:DC%2BD2sXhsVOrsLrN10.2116/analsci.23.1427
Moham
O Gutfleisch (90_CR36) 2003; 39
S Wellens (90_CR18) 2012; 14
HMD Bandara (90_CR76) 2016; 18
R Banda (90_CR93) 2012; 98
K Koyama (90_CR80) 2009; 54
ZX Zhu (90_CR97) 2004; 527
SJ Yoon (90_CR108) 2010; 16
X Li (90_CR71) 2015; 33
90_CR65
K Nakashima (90_CR103) 2003; 19
90_CR63
T Vander Hoogerstraete (90_CR113) 2013; 15
O Gutfleisch (90_CR33) 2000; 33
ST Abrahami (90_CR59) 2015; 124
90_CR62
E Alonso (90_CR25) 2012; 46
90_CR60
90_CR130
90_CR135
90_CR136
C Bounds (90_CR75) 1994
90_CR68
HS Yoon (90_CR92) 2016
T Saito (90_CR129) 2006; 425
F Xie (90_CR91) 2014; 56
A Walton (90_CR41) 2015; 104
M Itoh (90_CR15) 2009; 477
T Saito (90_CR19) 2003; 353
AS Kim (90_CR69) 2004; 40
90_CR72
Y Liu (90_CR94) 2014; 150
90_CR73
90_CR70
HMD Bandara (90_CR52) 2015; 3
S Cotton (90_CR85) 2006
O Takeda (90_CR124) 2004; 379
RS Sheridan (90_CR39) 2012; 324
JHL Voncken (90_CR84) 2016
CK Gupta (90_CR90) 2005
M Firdaus (90_CR11) 2016
O Gutfleisch (90_CR29) 2011; 23
M Zakotnik (90_CR67) 2015; 44
K Koyama (90_CR81) 2011
90_CR88
TH Okabe (90_CR16) 2003; 44
D Dupont (90_CR117) 2015; 17
T Monecke (90_CR86) 2002; 66
JP Meakin (90_CR64) 2016; 378
90_CR118
M Tanaka (90_CR9) 2013
Y Bian (90_CR131) 2016; 4
M Zakotnik (90_CR61) 2009; 469
T Vander Hoogerstraete (90_CR114) 2014; 16
K Murase (90_CR119) 1995; 217
M Moore (90_CR125) 2015; 647
J Kraikaew (90_CR87) 2005; 15
T Elwert (90_CR96) 2014; 67
ZS Hua (90_CR128) 2015; 31
K Binnemans (90_CR8) 2013; 51
O Gutfleisch (90_CR34) 1996; 29
JC Lee (90_CR79) 1998; 36
O Takeda (90_CR10) 2014; 1A
F Kubota (90_CR104) 2012; 19
90_CR121
Y Sasaki (90_CR109) 2001; 19
90_CR127
G Finnveden (90_CR134) 2009; 91
K Binnemans (90_CR4) 2015; 1
T Makanyire (90_CR107) 2016; 4
M Sagawa (90_CR24) 1984; 20
HH Dam (90_CR98) 2007; 36
K Shimojo (90_CR111) 2007; 23
M Zakotnik (90_CR12) 2008; 450
O Takeda (90_CR123) 2006; 408–412
LK Jakobsson (90_CR132) 2016
A Walton (90_CR13) 2011; 19
S Kobayashi (90_CR133) 2011; 158
TW Ellis (90_CR78) 1994
90_CR21
S Sawatzki (90_CR31) 2014; 115
90_CR22
RD Abreu (90_CR95) 2014; 61
90_CR20
I Dirba (90_CR42) 2014; 589
K Habib (90_CR53) 2015; 49
Y Kikuchi (90_CR112) 2014; 21
Hoogerstraete T Vander (90_CR115) 2014; 4
D Jiles (90_CR1) 1998
90_CR27
90_CR28
K Binnemans (90_CR3) 2013; 65
90_CR26
90_CR23
T Itakura (90_CR82) 2006; 408–412
MAR Önal (90_CR120) 2015; 1
TG Woodcock (90_CR35) 2012; 67
M Mohammadi (90_CR89) 2015; 156
D Kim (90_CR102) 2015; 49
RS Mottram (90_CR66) 1999; 283
JW Lyman (90_CR17) 1993; 11
D Schüler (90_CR6) 2011
X Du (90_CR49) 2011; 15
A Edström (90_CR32) 2015; 92
A Elshkaki (90_CR5) 2014; 136
MD Kuz’min (90_CR30) 2014; 26
MS Tyumentsev (90_CR101) 2016; 164
M Itoh (90_CR74) 2004; 374
O Gutfleisch (90_CR43) 1998; 31
Y Baba (90_CR105) 2011; 44
T Uda (90_CR14) 2002; 43
JH Rademaker (90_CR2) 2013; 47
O Gutfleisch (90_CR38) 2013; 3
90_CR47
M Ueberschaar (90_CR55) 2015; 17
90_CR48
J Park (90_CR106) 2014; 15
90_CR45
V Prakash (90_CR83) 2016
H Naganawa (90_CR110) 2007; 14
B Sprecher (90_CR137) 2014; 48
Y Honkura (90_CR37) 2005; 290–291
AM El-Aziz (90_CR44) 2000; 311
RL Moss (90_CR7) 2011
90_CR54
SI Sinkov (90_CR100) 2004; 43
Y Xu (90_CR122) 2000; 15
RS Sheridan (90_CR40) 2014; 350
HMD Bandara (90_CR46) 2014; 48
K Habib (90_CR51) 2014; 84
HS Yoon (90_CR77) 2003; 12
Z Hua (90_CR126) 2014; 2
D Guyonnet (90_CR50) 2015; 107
90_CR58
G Modolo (90_CR99) 2007; 42
90_CR56
S Riano (90_CR116) 2015; 17
90_CR57
References_xml – reference: WoodcockTGZhangYHrkacGCiutaGDempseyNMSchreflTGutfleischOGivordDUnderstanding microstructure and coercivity in high performance NdFeB-based magnets (viewpoint paper)Scripta Mat2012675365411:CAS:528:DC%2BC38XpsVyjs78%3D10.1016/j.scriptamat.2012.05.038
– reference: JilesDIntroduction to magnetism and magnetic materials19982New YorkChapman & Hall
– reference: YoonSJLeeJGTajimaHYamasakiAKiyonoFNakazatoTTaoHExtraction of lanthanide ions from aqueous solution by bis(2-ethylhexyl)phosphoric acid with room-temperature ionic liquidsJ Ind Eng Chem20101633503541:CAS:528:DC%2BC3cXmtFymtL4%3D10.1016/j.jiec.2009.09.063
– reference: HuaZSWangLWangJXiaoYPYangYXZhaoZLiuMJExtraction of rare earth elements from NdFeB scrap by AlF3–NaF meltsMater Sci Technol201531100710101:CAS:528:DC%2BC2cXhs1KmurfI10.1179/1743284714Y.0000000672
– reference: ItohMMiuraKMachidaKINovel rare earth recovery process on Nd-FeB magnet scrap by selective chlorination using NH4ClJ Alloys Compd20094774844871:CAS:528:DC%2BD1MXltleiurc%3D10.1016/j.jallcom.2008.10.036
– reference: WaltonAHanYRowsonNASpeightJDMannVSJSheridanRSBradshawAHarrisIRWilliamsAJThe use of hydrogen to separate and recycle neodymium-iron-boron-type magnets from electronic wasteJ Clean Prod20151042362411:CAS:528:DC%2BC2MXovV2ls7o%3D10.1016/j.jclepro.2015.05.033
– reference: ZakotnikMHarrisIRWiliamsAJMultiple recycling of NdFeB-type sintered magnetsJ Alloys Compd20094693143211:CAS:528:DC%2BD1MXhtVOmtbo%3D10.1016/j.jallcom.2008.01.114
– reference: YoonHSKimCJLeeJYKimSDLeeJCSeparation of neodymium from NdFeB permanent magnet scrapJ Korean Inst Resour Recycl200312657631:CAS:528:DC%2BD2cXhtVWqsbw%3D10.7844/kirr
– reference: Kuz’minMDSkokovKPJianHRadulovIGutfleischOTowards high-performance permanent magnets without rare earthsJ Phys20142651:CAS:528:DC%2BC2cXjtFaiu7o%3D10.1088/0953-8984/26/6/064205
– reference: SasakiYSugoYSuzukiSTachimoriSThe novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–n-dodecane systemSolvent Extr Ion Exch200119911031:CAS:528:DC%2BD3MXhvVentrY%3D10.1081/SEI-100001376
– reference: TakedaOOkabeTHCurrent status on resource and recycling technology for rare earthsMetall Mater Trans E20141A1601731:CAS:528:DC%2BC28XhslKlu78%3D10.1007/s40553-014-0016-7
– reference: GutfleischOKirchnerAGrünbergerWHinzDNagelHThompsonPChapmanJNMüllerKHHarrisIRSchultzLTextured NdFeB HDDR magnets produced by die-upsetting and backward extrusionJ Phys D1998318078111:CAS:528:DyaK1cXis1Ois78%3D10.1088/0022-3727/31/7/009
– reference: BabaYKubotaFKamiyaNRecent advances in extraction and separation of rare-earth metals using ionic liquidsJ Chem Eng Jpn201144106796851:CAS:528:DC%2BC38XhtlSgsrk%3D10.1252/jcej.10we279
– reference: HabibKWenzelHExploring rare earths supply constraints for the emerging clean energy technologies and the role of recyclingJ Clean Prod2014843483591:CAS:528:DC%2BC2cXnslehur4%3D10.1016/j.jclepro.2014.04.035
– reference: LiXYueMZakotnikMLiuWZhangDZuoTRegeneration of waste sintered Nd-Fe-B magnets to fabricate anisotropic bonded magnetsJ Rare Earths2015337367391:CAS:528:DC%2BC2MXht1elt7fK10.1016/S1002-0721(14)60478-6
– reference: SheridanRSSillitoeRZakotnikMWilliamsAJAnisotropic powder from sintered NdFeB magnets by the HDDR processing routeJ Magn Magn Mater2012324163671:CAS:528:DC%2BC3MXhtVynsbrK10.1016/j.jmmm.2011.07.043
– reference: EllisTWSchmidtFAJonesLLLiddellKCMethods and opportunities in the recycling of rare earth based materialsMetals and materials waste reduction, recovery, and remediation1994Warrendale, PATMS199206
– reference: LeeJCKimWBJeongJYoonIJExtraction of neodymium from Nd-Fe-B magnet scraps by sulfuric acidJ Korean Inst Met Mater19983669679721:CAS:528:DyaK1cXltlyqu7s%3D
– reference: TakedaOOkabeTHUmetsuYPhase equilibrium of the system Ag-Fe-Nd, and Nd extraction from magnet scraps using molten silverJ Alloys Compd20043793053131:CAS:528:DC%2BD2cXntlSksLk%3D10.1016/j.jallcom.2004.02.038
– reference: WellensSThijsBBinnemansKAn environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquidsGreen Chem201214165716651:CAS:528:DC%2BC38Xns1Srsrg%3D10.1039/C2GC35246J
– reference: Kozawa S (2011) Trends and problems in research of permanent magnets for motors-addressing scarcity problem of rare earth elements. Sci Technol Trends: Quart Rev 38:40–54 http://data.nistep.go.jp/dspace/bitstream/11035/2854/1/NISTEP-STT038E−40.pdf. Accessed 8 May 2016
– reference: ZakotnikMHarrisIRWilliamsAJPossible methods of recycling NdFeB-type sintered magnets using the HD/degassing processJ Alloys Compd20084505255311:CAS:528:DC%2BD1cXltFGj10.1016/j.jallcom.2007.01.134
– reference: OICA (2016) Sales of new vehicles 2005–2015. http://www.oica.net/category/sales-statistics. Accessed 23 May 2016
– reference: Baba K, Hiroshige Y, Nemoto T (2013) Rare-earth magnet recycling. Hitachi Rev 62(8): 452–455. www.hitachi.com/rev/pdf/2013/r2013_08_105.pdf. Accessed 8 May 2016
– reference: Pålsson BI, Wanhainen C, Yurramendi L, Guarde D, Egia A (2015) Cryo-grinding of waste from electronic and electric equipment, implications for recovery of rare earth elements. In: Physical Separation’15, Falmouth, Cornwall, 26 pp
– reference: MakanyireTSanchez-SegadoSJhaASeparation and recovery of critical metal ions using ionic liquidsAdv Manuf20164133461:CAS:528:DC%2BC28XktVektrk%3D10.1007/s40436-015-0132-3
– reference: VonckenJHLThe rare earth elements, an introduction2016DordrechtSpringerNature10.1007/978-3-319-26809-5
– reference: DirbaISawatzkiSGutfleischONet-shape and Crack-Free production of Nd-Fe-B magnets by hot deformationJ Alloys Compd20145893013061:CAS:528:DC%2BC2cXhsVyltLc%3D10.1016/j.jallcom.2013.11.188
– reference: ZakotnikMTudorCOCommercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with ‘designer properties’ that exceed those of starting materialsWaste Manag20154448541:CAS:528:DC%2BC2MXht1KrtbjO10.1016/j.wasman.2015.07.041
– reference: AbrahamiSTXiaoYYangYRare-earth elements recovery from post-consumer hard-disc drivesMiner Process Extr Metall (Trans. Inst. Min. Metall. C)201512421061151:CAS:528:DC%2BC2cXitVyht77F10.1179/1743285514Y.0000000084
– reference: KoyamaKKitajimaATanakaMSelective leaching of rare-earth elements from an Nd-Fe-B magnetKidorui (Rare Earths)20095436371:CAS:528:DC%2BD1MXosVKitr8%3D
– reference: ParkJJungYKusumahPLeeJKwonKLeeCKApplication of ionic liquids in hydrometallurgyInt J Mol Sci20141515320153431:CAS:528:DC%2BC2cXhvVChsr7P10.3390/ijms150915320
– reference: MohammadiMForsbergKKlooLMartinez De La CruzJRasmusonASeparation of ND(III), DY(III) and Y(III) by solvent extraction using D2EHPA and EHEHPAHydrometallurgy20151562152241:CAS:528:DC%2BC2MXptVOjsr0%3D10.1016/j.hydromet.2015.05.004
– reference: KimASKimDHNamkungSJangTSLeeDHKwonHWHwangDHHDDR processing of magnet scrapIEEE Trans Magn200440287728791:CAS:528:DC%2BD2cXotVCks7c%3D10.1109/TMAG.2004.832241
– reference: LiuYJeonHSLeeMSSolvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractantsHydrometallurgy201415061671:CAS:528:DC%2BC2cXhslajtLbJ10.1016/j.hydromet.2014.09.015
– reference: BandaraHMDFieldKDEmmertMHRare earth recovery from end-of-life motors employing green chemistry design principlesGreen Chem2016187537591:CAS:528:DC%2BC2MXhsVGisrnE10.1039/C5GC01255D
– reference: FinnvedenGHauschildMZEkvallTGuineeJHeijungsRHellwegSKoehlerAPenningtonDSuhSRecent developments in life cycle assessmentJ Environ Manag20099112110.1016/j.jenvman.2009.06.018
– reference: GutfleischOKhlopkovKTeresiakAMüllerKHDrazicGMishimaCHonkuraYMemory of texture during HDDR processing of NdFeBIEEE Trans Magn200339292629311:CAS:528:DC%2BD3sXosVOqurw%3D10.1109/TMAG.2003.815749
– reference: RianoSBinnemansKExtraction and separation of neodymium and dysprosium from used NdFeB magnets: an application of ionic liquids in solvent extraction towards the recycling of magnetsGreen Chem201517293129421:CAS:528:DC%2BC2MXktVCrtr0%3D10.1039/C5GC00230C
– reference: Vander HoogerstraeteTWellensSVerachtertKBinnemansKRemoval of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: separations relevant to rare-earth magnet recyclingGreen Chem2013159199271:CAS:528:DC%2BC3sXksFemt7Y%3D10.1039/C3GC40198G
– reference: ItakuraTSasaiRItohHResource recovery from Nd-Fe-B sintered magnet by hydrothermal treatmentJ Alloys Compd2006408–412138213851:CAS:528:DC%2BD28XosFOrtw%3D%3D10.1016/j.jallcom.2005.04.088
– reference: ShimojoKNaganawaHNoroJKubotaFGotoMExtraction behavior and separation of lanthanides with a diglycol amic acid derivative and a nitrogen-donor ligandAnal Sci20072312142714301:CAS:528:DC%2BD2sXhsVOrsLrN10.2116/analsci.23.1427
– reference: GutfleischOHarrisIRFundamental and practical aspects of the HDDR processJ Phys D199629225522651:CAS:528:DyaK28Xlslemsbo%3D10.1088/0022-3727/29/9/006
– reference: KubotaFBabaYGotoMApplication of ionic liquids for the separation of rare earth metalsSolvent Extr Res Dev, Jpn20121917281:CAS:528:DC%2BC38XotlKhsbY%3D10.1252/jcej.11we005
– reference: XieFZhangTADreisingerDDoyleFA critical review on solvent extraction of rare earths from aqueous solutionsMiner Eng20145610281:CAS:528:DC%2BC3sXitVWhtLfK10.1016/j.mineng.2013.10.021
– reference: SheridanRSWilliamsAJHarrisIRWaltonAImproved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnetsJ Magn Magn Mater20143501141181:CAS:528:DC%2BC3sXhvFGrsLvK10.1016/j.jmmm.2013.09.042
– reference: TyumentsevMSForemanMRSEkbergCMatyskinAVReteganTSteenariB-MThe solvent extraction of rare earth elements from nitrate media with novel polyamides containing malonamide groupsHydrometallurgy201616424301:CAS:528:DC%2BC28XhtFOgt7rN10.1016/j.hydromet.2016.05.007
– reference: KikuchiYMatsumiyaMKawakamiSExtraction of rare earth ions from Nd-Fe-B magnet wastes with TBP in tricaprylmethylammonium nitrateSolvent Extr Res Dev, Jpn2014211371451:CAS:528:DC%2BC2cXovVGitLY%3D10.15261/serdj.21.137
– reference: KoyamaKTanakaMMachidaKThe latest technology trend and resource strategy of rare earths2011TokyoCMC Press127131
– reference: Okabe TH and Shirayama S (2011) Method and apparatus for recovery of rare earth element, US Patent Application Publication: US2011/0023660A1
– reference: BinnemansKJonesPTVan AckerKBlanpainBMishraBApelianDRare-earth economics: the balance problemJOM20136584684810.1007/s11837-013-0639-7
– reference: BinnemansKJonesPTBlanpainBVan GervenTYangYWaltonABuchertMRecycling of rare earths: a critical reviewJ Clean Prod2013511221:CAS:528:DC%2BC3sXls1eqsbw%3D10.1016/j.jclepro.2012.12.037
– reference: TakedaOOkabeTHUmetsuYRecovery of neodymium from a mixture of magnet scrap and other scrapJ Alloys Compd2006408–4123873901:CAS:528:DC%2BD28XosFyltg%3D%3D10.1016/j.jallcom.2005.04.094
– reference: TanakaMOkiTKoyamaKNaritaHOishiTJean-ClaudeGBVitalijKPCChapter 255—recycling of rare earths from scrapHandbook on the physics and chemistry of rare earths2013AmsterdamElsevier
– reference: AlonsoEShermanAMWallingtonTJEversonMPFieldRRothRKirchainREEvaluating rare earth element availability: a case with revolutionary demand from clean technologiesEnviron Sci Technol201246340634141:CAS:528:DC%2BC38Xhs1Kiurw%3D10.1021/es203518d
– reference: Goonan T G (2011) Rare earth elements-end use and recyclability. USGS Scientific Investigations Report 2011–5094. https://pubs.usgs.gov/sir/2011/5094/pdf/sir2011-5094.pdf. Accessed 8 May 2016
– reference: GuptaCKKrishnamurthyNExtractive metallurgy of rare earths2005LondonCRC Press
– reference: KimDPowellLEDelmauLHPetersonESHerchenroederJBhaveRRSelective extraction of rare earth elements from permanent magnet scraps with membrane solvent extractionEnviron Sci Technol20154916945294591:CAS:528:DC%2BC2MXhtVGnu7zJ10.1021/acs.est.5b01306
– reference: Högberg S, Bendixen FB, Mijatovic N, Jensen BB, Holbøll J (2015) Influence of demagnetization-temperature on magnetic performance of recycled Nd-Fe-B magnets. In: Proceeding of the IEEE international electric machines and drives conference. pp 1242–1246
– reference: HuaZWangJWangLZhaoZLiXXiaoYYangYSelective extraction of rare earth elements from NdFeB scrap by molten chloridesACS Sustain Chem Eng20142253625431:CAS:528:DC%2BC2cXhs1Cns7zM10.1021/sc5004456
– reference: BandaraHMDDarcyJWApelianDEmmertMHValue analysis of neodymium content in shredder feed: towards enabling the feasibility of rare earth magnet recyclingEnviron Sci Technol201448655365601:CAS:528:DC%2BC2cXosVWjsb0%3D10.1021/es405104k
– reference: Bast U (2014) Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben: MORE (Motor Recycling). Final Research Report. http://edok01.tib.uni-hannover.de/edoks/e01fb15/826920594.pdf. Accessed 8 May 2016
– reference: Tanaka M, Sato Y, Huang Y, Narita H, Koyama K (2009) In: Proceedings of the 10th international symposium on east asian resources recycling technology (EARTH2009). The Korean Institute of Resources Recycling, Seoul, pp 200–203
– reference: WaltonAWilliamsARare earth recoveryMater World2011192426
– reference: Farr M, Sitarz P, Saje B, Sheridan RS, Bradshaw A, Mann VSJ, Harris IR, Walton A (2016) NdFeB magnets from recycled hard disk drive voice coil magnets. 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt
– reference: PrakashVSunZHISietsmaJYangYDe LimaIBFilhoWLSimultaneous electrochemical recovery of rare earth elements and iron from magnet scrap: a theoretical analysis (Chap. 22)Rare earths industry technological, economic, and environmental implications2016AmsterdamElsevier33534610.1016/B978-0-12-802328-0.00022-X
– reference: DuXGraedelTEGlobal rare earth in-use stocks in NdFeB permanent magnetsJ Ind Ecol20111568368431:CAS:528:DC%2BC38XhtlOrtb0%3D10.1111/j.1530-9290.2011.00362.x
– reference: Baba K, Nemoto T, Maruyama H, Taketani N, Itayagoshi K, Hirose Y (2010) Hitachi’s involvement in material resource recycling. Hitachi Rev 59(4): 180–187. www.hitachi.com/rev/pdf/2010/r2010_04_110.pdf. Accessed 8 May 2016
– reference: DupontDBinnemansKRecycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf2 N]Green Chem201517215021631:CAS:528:DC%2BC2MXjsF2qtr8%3D10.1039/C5GC00155B
– reference: KobayashiSKobayashiKNohiraTHagiwaraROishiTKonishiHElectrochemical formation of Nd-Ni Alloys in molten LiF-CaF2-NdF3J Electrochem Soc2011158E142E1461:CAS:528:DC%2BC3MXhsVyks7nO10.1149/2.072112jes
– reference: SchülerDBuchertMLiuRDittrichSMerzCStudy on rare earths and their recycling: final report for the Greens/EFA Group in the European Parliament2011DarmstadÖko-Institute e.V
– reference: EdströmAEffect of doping by 5d elements on magnetic properties of (Fe1 − xCox)2B alloysPhys Rev B2015921744131:CAS:528:DC%2BC28XovVCrs7Y%3D10.1103/PhysRevB.92.174413
– reference: ModoloGVijgenHSerrano-PurroyDChristiansenBMalmbeckRSorelCBaronPDIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrateSep Sci Technol2007424394521:CAS:528:DC%2BD2sXisFCktbg%3D10.1080/01496390601120763
– reference: HabibKParajulyKWenzelHTracking the flow of resources in electronic waste - the case of end-of-life computer hard disk drivesEnviron Sci Technol2015492012441124491:CAS:528:DC%2BC2MXhsVKlsL%2FL10.1021/acs.est.5b02264
– reference: ElwertTGoldmannDRömerFSeparation of lanthanides from NdFeB magnets on a mixer-settler plant with PC-88AWorld Metall2014672872961:CAS:528:DC%2BC2cXitFaqtbnP
– reference: USGS (2010-2016) Minerals yearbook, rare earths. http://minerals.usgs.gov/minerals/pubs/commodity/rare_earths/index.html#myb. Accessed 8 May 2016
– reference: Benecki WT (2013) The permanent magnet market 2015. Presentation in: magnetics 2013 Conference. February 8, 2013 Orlando. http://www.waltbenecki.com/uploads/Magnetics_2013_Benecki_Presentation.pdf. Accessed 8 May 2016
– reference: HonkuraYMishimaCHamadaNGutfleischOTexture memory effect of Nd-Fe-B during hydrogen treatmentJ Magn Magn Mat2005290–291P2128212851:CAS:528:DC%2BD2MXisFalsb0%3D10.1016/j.jmmm.2004.11.423
– reference: Constantinides S (2016) Permanent magnets in a changing world market. Magnetics Magazine: Business and Technology (Spring 2016, Feb 26, 2016). http://www.magneticsmagazine.com/main/articles/permanent-magnets-in-a-changing-world-market. Accessed 8 May 2016
– reference: SagawaMFujimuraSYamamotoHMatsuuraYHiragaKPermanent magnet materials based on the rare earth-iron-boron tetragonal compoundsIEEE Trans Magn19842051584158910.1109/TMAG.1984.1063214
– reference: El-AzizAMKirchnerAGutfleischOGebertASchultzLInvestigations of the corrosion behaviour of nanocrystalline Nd-Fe-B hot pressed magnetsJ Alloys Comd20003112993041:CAS:528:DC%2BD3cXmslOjsrY%3D10.1016/S0925-8388(00)01112-9
– reference: BandaRJeonHLeeMSolvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractantsSep Purif Technol2012984814871:CAS:528:DC%2BC38Xhtl2ktrbO10.1016/j.seppur.2012.08.015
– reference: ZhuZXSasakiYSuzukiHSuzukiSKimuraTCumulative study on solvent extraction of elements by N, N, N’, N’-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecaneAnal Chim Acta20045271631681:CAS:528:DC%2BD2cXhtVCmtbjL10.1016/j.aca.2004.09.023
– reference: BoundsCLiddellKCThe recycle of sintered magnet swarfMetals and materials waste reduction, recovery and mediation1994Warrendale, PATMS173186
– reference: Yang Y, Abrahami ST, Xiao Y (2013) Recovery of rare earth elements from EOL permanent magnets with molten slag extraction. In: Proceedings of the 3rd international slag valorisation symposium. Leuven, pp 249–252. http://www.slag-valorisation-symposium.eu/2013/images/papers/ps3_1_Yang.pdf. Accessed 8 May 2016
– reference: Nash KL, Choppin GR (1995) Separation of f elements. Springer Science + Business Media. (eBook). doi 10.1007/978-1-4899-1406-4
– reference: ItohMMasudaMSuzukiSMachidaK-IRecycling of rare earth sintered magnets as isotropic bonded magnets by melt-spinningJ Alloys Compd20043743933961:CAS:528:DC%2BD2cXks1Kjt7o%3D10.1016/j.jallcom.2003.11.030
– reference: MottramRSKianvashAHarrisIRThe use of metal hydrides in powder blending for the production of NdFeB-type magnetsJ Alloys Compd19992832822881:CAS:528:DyaK1MXksFGkuw%3D%3D10.1016/S0925-8388(98)00910-4
– reference: FirdausMRhamdhaniMADurandetYRankinWJMcGregorKReview of high-temperature recovery of rare earth (Nd/Dy) from magnet wasteJ Sustain Metall201610.1007/s40831-016-0045-9
– reference: Walton A, Han Y, Speight JD, Harris IR, Williams AJ (2012) The use of hydrogen to extract and re-process NdFeB magnets from electronic waste. In: Proceeding of the 22nd international Workshop on Rare Earth Permanent Magnets and Their Applications. Nagasaki, pp 11–13
– reference: AbreuRDMoraisCAStudy on separation of heavy rare earth elements by solvent extraction with organophosphorous acids and amine reagentsMiner Eng20146182871:CAS:528:DC%2BC2cXntlOnsr4%3D10.1016/j.mineng.2014.03.015
– reference: MooreMGebertAStoicaMA route for recycling Nd from Nd-Fe-B magnets using Cu meltsJ Alloys Compd201564799710061:CAS:528:DC%2BC2MXhsVOqu7zJ10.1016/j.jallcom.2015.05.238
– reference: BianYGuoSJiangLLiuJTangKDingWRecovery of rare earth elements from NdFeB magnet by VIM–HMS methodACS Sustain Chem Eng201648108181:CAS:528:DC%2BC28XhslShtLk%3D10.1021/acssuschemeng.5b00852
– reference: Walton A, Campbell A, Sheridan RS, Mann VSJ, Speight JD, Harris IR, Guerrero B, Bagan C, Conesa A, Schaller V (2014) Recycling of rare earth magnets. In: Proceeding od the 23rd international workshop on rare earth magnets and their applications, Annapolis, pp 26–30
– reference: KraikaewJSrinuttrakulWChayavadhanakurCSolvent extraction study of rare earths from nitrate medium by the mixtures of TBP and D2EHPA in keroseneJ Metals Mater Miner200515289951:CAS:528:DC%2BD2MXhtlGnsLrK
– reference: XuYChumbleyLSLaabsFCLiquid metal extraction of Nd from NdFeB magnet scrapJ Mater Res200015229623041:CAS:528:DC%2BD3cXot1GjtLk%3D10.1557/JMR.2000.0330
– reference: GuyonnetDPlanchonMRollatAEscalonVTuduriJCharlesNVaxelaireSDuboisDFargierHMaterial flow analysis applied to rare earth elements in EuropeJ Clean Prod20151072152281:CAS:528:DC%2BC2MXot1eqsbw%3D10.1016/j.jclepro.2015.04.123
– reference: BandaraHMDMantellMADarcyJWClosing the lifecycle of rare earth magnets: discovery of neodymium in slag from steel millsEnergy Technol201531181201:CAS:528:DC%2BC2MXis1aiurg%3D10.1002/ente.201402162
– reference: SawatzkiSDirksADirbaISchultz Land GutfleischOCoercivity enhancement in hot-pressed Nd-Fe-B permanent magnets by low melting eutecticsJ Appl Phys201411517A7051:CAS:528:DC%2BC2cXns1Gjsrk%3D10.1063/1.4859097
– reference: NaganawaHShimojoKMitamuraHSugoYNoroJGotoMA New, “green” extractant of the diglycol amic acid type for lanthanidesSolvent Extr Res Dev, Jpn2007141511591:CAS:528:DC%2BD2sXmt1eltrs%3D
– reference: ÖnalMARBorraCRGuoMBlanpainBVan GervenTRecycling of NdFeB magnets using sulfation, selective roasting, and water leachingJ Sustain Metall2015119921510.1007/s40831-015-0021-9
– reference: UeberschaarMRotterVSEnabling the recycling of rare earth elements through product design and trend analyses of hard disk drivesJ Mater Cycles Waste Manag20151722662811:CAS:528:DC%2BC2MXhtlKktbw%3D10.1007/s10163-014-0347-6
– reference: CottonSLanthanide and actinide chemistry2006West SussexJohn Wiley & Sons Ltd10.1002/0470010088
– reference: Vander HoogerstraeteTBinnemansKHighly efficient separation of rare earths from nickel and cobalt by solvent extraction with the ionic liquid trihexyl(tetradecyl)phosphonium nitrate: process relevant to the recycling of rare earths from permanent magnets and nickel metal hydride batteriesGreen Chem201416159416061:CAS:528:DC%2BC2cXivFOksbc%3D10.1039/C3GC41577E
– reference: British Geological Survey (BGS) (2010) rare earth elements. 2010. http://www.MineralsUK.com. Accessed 8 May 2016
– reference: Abrahami ST (2012) Rare-earths recovery from post-consumer HDD scrap. Master thesis. Department of Materials Science and Engineering, TU Delft
– reference: UdaTRecovery of rare earths from magnet sludge by FeCl2Mater Trans20024355621:CAS:528:DC%2BD38XitlSrtb4%3D10.2320/matertrans.43.55
– reference: Herraiz E, Degri M, Bradshaw A, Sheridan RS, Mann VSJ, Harris IR, Walton A (2016) Recycling of rare earth magnets by hydrogen processing and re-sintering. In: 24th international workshop on rare earth permanent magnet and their applications, Darmstadt
– reference: Farr M, Sitarz P, Saje B, Sheridan RS, Bradshaw A, Mann VSJ, Harris IR, Walton A (2016) Production of injection moulded NdFeB magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Magnets and their Applications. Darmstadt
– reference: DamHHReinhoudtDNVerboomWMulticoordinate ligands for actinide/lanthanide separationsChem Soc Rev2007363673771:CAS:528:DC%2BD2sXhtVKltbY%3D10.1039/B603847F
– reference: MuraseKMachidaKAdachiGRecovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transportJ Alloys Compd19952172182251:CAS:528:DyaK2MXjt1Sltbw%3D10.1016/0925-8388(94)01316-A
– reference: Walachowicz F, March A, Fiedler S, Buchert M, Sutte J, Merz C (2014) Recycling von Elektromotoren-MORE: Ökobilanz der Recyclingverfahren. Final Report, Berlin. http://de.slideshare.net/AndrewMarch/morelcaendberichtfinal17okt2014. Accessed 8 May 2016
– reference: SaitoTSatoHOzawaSYuJMotegiTThe extraction of Nd from waste NdFeB alloys by the glass slag methodJ Alloys and Compd20033531891931:CAS:528:DC%2BD3sXitlers7k%3D10.1016/S0925-8388(02)01202-1
– reference: VanderHoogerstraete TBlanpainBVan GervenTBinnemansKFrom NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acidRSC Adv2014464099641111:CAS:528:DC%2BC2cXhvFOitLzP10.1039/C4RA13787F
– reference: GutfleischOWillardMABrückEChenCHSankarSGLiuJPMagnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient (review)Adv Mater2011238218421:CAS:528:DC%2BC3MXitVWmu74%3D10.1002/adma.201002180
– reference: NakashimaKKubotaFMaruyamaTGotoMIonic liquids as a novel solvent for lanthanide extractionAnal Sci2003198109710981:CAS:528:DC%2BD3sXmsFOltL4%3D10.2116/analsci.19.1097
– reference: ElshkakiAGraedelTEDysprosium, the balance problem, and wind power technologyAppl Energy201413654855910.1016/j.apenergy.2014.09.064
– reference: BinnemansKJonesPTRare earths and the balance problemJ Sustain Metall20151293810.1007/s40831-014-0005-1
– reference: GutfleischOGüthKWoodcockTGSchultzLRecycling used Nd-Fe-B sintered magnets via a hydrogen-based route to produce anisotropic, resin bonded magnetsAdv Energy Mater201331511551:CAS:528:DC%2BC3sXjtVGjsr4%3D10.1002/aenm.201200337
– reference: Mann VSJ, Škulj I, Walton A (2016) Production of Sintered magnets from recycled hard disk drive voice coil magnets. In: 24th international Workshop on Rare Earth Permanent Magnets and their Applications. Darmstadt
– reference: MoneckeTKempeUMoneckeJSalaMWolfDTetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal depositsGeochim Cosmochim Acta200266118511961:CAS:528:DC%2BD38XitlWhs7s%3D10.1016/S0016-7037(01)00849-3
– reference: JakobssonLKKennedyMWAuneRETranellGKirchainRERecovery of rare earth elements from the ferrous fraction of electronic wasteREWAS 2016-towards materials resource sustainability2016Warrendale, PATMS899310.1002/9781119275039.ch13
– reference: RademakerJHKleijnRYangYRecycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recyclingEnviron Sci Technol20134710129101361:CAS:528:DC%2BC3sXht1SrtrzL10.1021/es305007w
– reference: LymanJWPalmerGRRecycling of rare earths and iron from NdFeB magnet scrapHigh Temp Mater Process1993111–41751871:CAS:528:DyaK2cXjsFSntQ%3D%3D10.1515/HTMP.1993.11.1-4.175
– reference: SprecherBXiaoYWaltonASpeightJHarrisRKleijnRVisserGKramerGJLife Cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnetsEnviron Sci Technol201448395139581:CAS:528:DC%2BC2cXjtlSjtbg%3D10.1021/es404596q
– reference: Shaw S, Constantinides S (2012) Permanent magnets: the demand for rare earths. Presentation in: 8th International Rare Earths Conference. 13–15 November 2012, Hong Kong. http://roskill.com/wp/wp-content/uploads/2014/11/download-roskills-paper-on-permanent-magnets-the-demand-for-rare-earths.attachment1.pdf. Accessed 8 May 2016
– reference: MossRLTzimasEKaraHWillisPKooroshyJCritical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low carbon energy technologiesEur Comm JRC Inst Energy Transp201110.2790/35716
– reference: MeakinJPSpeightJDSheridanRSBradshawAHarrisIRWilliamsAJWaltonA3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditionsAppl Surf Sci20163785405441:CAS:528:DC%2BC28XkvV2qu7o%3D10.1016/j.apsusc.2016.03.182
– reference: Constantinides S (2012) The Demand for Rare Earth Materials in Permanent Magnets. Presentation at the 51st annual conference of metallurgists (COM 2012), Sept. 30–Oct. 3, 2012. Niagara Falls. http://www.arnoldmagnetics.com/Portals/0/Files/Tech%20Library/Technical%20Publications/Tech%20Papers/Demand%20for%20rare%20earth%20materials%20in%20permanent%20magnets%20-%20Constantinides%20-%20COM%20-%202012%20psn%20hi-res.pdf?ver=2015-09-21-101252-140. Accessed 17 Sept 2016
– reference: GutfleischOControlling the properties of high density permanent magnetic materials (TOPICAL REVIEW)J Phys D200033R157R1721:CAS:528:DC%2BD3cXmsF2is7w%3D10.1088/0022-3727/33/17/201
– reference: YoonHSKimCJChungKWKimSDLeeJYKumarJRSolvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: waste recycling strategies for permanent magnet processingHydrometallurgy201610.1016/j.hydromet.2016.01.028
– reference: UNEP (2013) Metal recycling: opportunities, limits, infrastructure, contributors. In: Reuter MA, Hudson C, van Schaik A, Heiskanen K, Meskers C, Hagelüken CA (eds). Report of the Working Group on the Global Metal Flows to the International Resource Panel
– reference: OkabeTHTakedaOFukudaKUmetsuYDirect extraction and recovery of neodymium metals from magnet scrapMater Trans2003447988011:CAS:528:DC%2BD3sXkslCltL0%3D10.2320/matertrans.44.798
– reference: Ellis TW, Schmidt FA (1995) Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction. U.S. Patent 5,437,709
– reference: SinkovSIRapkoBMLumettaGJHayBPHutchisonJEParksBWBicyclic and acyclic diamides: comparison of their aqueous phase binding constants with Nd(III), Am(III), Pu(IV), Np(V), Pu(VI), and U(VI)Inorg Chem200443840484131:CAS:528:DC%2BD2cXhtVWhsLbP10.1021/ic049377m
– reference: SaitoTSatoHMotegiTRecovery of rare earths from sludges containing rare-earth elementsJ Alloys Compd20064251451471:CAS:528:DC%2BD28XhtFOntrjN10.1016/j.jallcom.2006.01.011
– reference: Zakotnik M, Williams AJ, Harris IR (2004) Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing or HDDR processes. In: Proceedings of 18th international Workshop on Rare Earth Permanent Magnets & Their Applications
– volume: 19
  start-page: 91
  year: 2001
  ident: 90_CR109
  publication-title: Solvent Extr Ion Exch
  doi: 10.1081/SEI-100001376
– volume: 48
  start-page: 3951
  year: 2014
  ident: 90_CR137
  publication-title: Environ Sci Technol
  doi: 10.1021/es404596q
– volume: 36
  start-page: 367
  year: 2007
  ident: 90_CR98
  publication-title: Chem Soc Rev
  doi: 10.1039/B603847F
– volume: 4
  start-page: 33
  issue: 1
  year: 2016
  ident: 90_CR107
  publication-title: Adv Manuf
  doi: 10.1007/s40436-015-0132-3
– volume: 156
  start-page: 215
  year: 2015
  ident: 90_CR89
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.05.004
– volume: 19
  start-page: 17
  year: 2012
  ident: 90_CR104
  publication-title: Solvent Extr Res Dev, Jpn
  doi: 10.1252/jcej.11we005
– volume: 15
  start-page: 89
  issue: 2
  year: 2005
  ident: 90_CR87
  publication-title: J Metals Mater Miner
– volume: 23
  start-page: 821
  year: 2011
  ident: 90_CR29
  publication-title: Adv Mater
  doi: 10.1002/adma.201002180
– ident: 90_CR47
– volume: 67
  start-page: 287
  year: 2014
  ident: 90_CR96
  publication-title: World Metall
– ident: 90_CR73
– volume: 589
  start-page: 301
  year: 2014
  ident: 90_CR42
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2013.11.188
– volume: 115
  start-page: 17A705
  year: 2014
  ident: 90_CR31
  publication-title: J Appl Phys
  doi: 10.1063/1.4859097
– volume: 150
  start-page: 61
  year: 2014
  ident: 90_CR94
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.09.015
– volume: 374
  start-page: 393
  year: 2004
  ident: 90_CR74
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2003.11.030
– volume: 19
  start-page: 24
  year: 2011
  ident: 90_CR13
  publication-title: Mater World
– volume: 44
  start-page: 679
  issue: 10
  year: 2011
  ident: 90_CR105
  publication-title: J Chem Eng Jpn
  doi: 10.1252/jcej.10we279
– volume: 16
  start-page: 350
  issue: 3
  year: 2010
  ident: 90_CR108
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2009.09.063
– ident: 90_CR56
– volume: 12
  start-page: 57
  issue: 6
  year: 2003
  ident: 90_CR77
  publication-title: J Korean Inst Resour Recycl
  doi: 10.7844/kirr
– volume: 98
  start-page: 481
  year: 2012
  ident: 90_CR93
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2012.08.015
– volume: 408–412
  start-page: 1382
  year: 2006
  ident: 90_CR82
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2005.04.088
– volume-title: Introduction to magnetism and magnetic materials
  year: 1998
  ident: 90_CR1
– year: 2011
  ident: 90_CR7
  publication-title: Eur Comm JRC Inst Energy Transp
  doi: 10.2790/35716
– volume: 18
  start-page: 753
  year: 2016
  ident: 90_CR76
  publication-title: Green Chem
  doi: 10.1039/C5GC01255D
– volume: 353
  start-page: 189
  year: 2003
  ident: 90_CR19
  publication-title: J Alloys and Compd
  doi: 10.1016/S0925-8388(02)01202-1
– volume-title: Lanthanide and actinide chemistry
  year: 2006
  ident: 90_CR85
  doi: 10.1002/0470010088
– ident: 90_CR70
– volume: 15
  start-page: 2296
  year: 2000
  ident: 90_CR122
  publication-title: J Mater Res
  doi: 10.1557/JMR.2000.0330
– volume: 17
  start-page: 266
  issue: 2
  year: 2015
  ident: 90_CR55
  publication-title: J Mater Cycles Waste Manag
  doi: 10.1007/s10163-014-0347-6
– volume: 23
  start-page: 1427
  issue: 12
  year: 2007
  ident: 90_CR111
  publication-title: Anal Sci
  doi: 10.2116/analsci.23.1427
– ident: 90_CR135
– volume: 14
  start-page: 1657
  year: 2012
  ident: 90_CR18
  publication-title: Green Chem
  doi: 10.1039/C2GC35246J
– start-page: 173
  volume-title: Metals and materials waste reduction, recovery and mediation
  year: 1994
  ident: 90_CR75
– volume-title: Extractive metallurgy of rare earths
  year: 2005
  ident: 90_CR90
– volume: 283
  start-page: 282
  year: 1999
  ident: 90_CR66
  publication-title: J Alloys Compd
  doi: 10.1016/S0925-8388(98)00910-4
– volume: 3
  start-page: 118
  year: 2015
  ident: 90_CR52
  publication-title: Energy Technol
  doi: 10.1002/ente.201402162
– volume: 450
  start-page: 525
  year: 2008
  ident: 90_CR12
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2007.01.134
– volume: 51
  start-page: 1
  year: 2013
  ident: 90_CR8
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2012.12.037
– volume: 31
  start-page: 807
  year: 1998
  ident: 90_CR43
  publication-title: J Phys D
  doi: 10.1088/0022-3727/31/7/009
– volume: 65
  start-page: 846
  year: 2013
  ident: 90_CR3
  publication-title: JOM
  doi: 10.1007/s11837-013-0639-7
– volume: 311
  start-page: 299
  year: 2000
  ident: 90_CR44
  publication-title: J Alloys Comd
  doi: 10.1016/S0925-8388(00)01112-9
– volume: 61
  start-page: 82
  year: 2014
  ident: 90_CR95
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2014.03.015
– volume: 49
  start-page: 9452
  issue: 16
  year: 2015
  ident: 90_CR102
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b01306
– ident: 90_CR22
– volume: 2
  start-page: 2536
  year: 2014
  ident: 90_CR126
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/sc5004456
– ident: 90_CR121
– volume: 42
  start-page: 439
  year: 2007
  ident: 90_CR99
  publication-title: Sep Sci Technol
  doi: 10.1080/01496390601120763
– volume: 158
  start-page: E142
  year: 2011
  ident: 90_CR133
  publication-title: J Electrochem Soc
  doi: 10.1149/2.072112jes
– volume: 44
  start-page: 48
  year: 2015
  ident: 90_CR67
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2015.07.041
– ident: 90_CR130
– ident: 90_CR58
– volume: 44
  start-page: 798
  year: 2003
  ident: 90_CR16
  publication-title: Mater Trans
  doi: 10.2320/matertrans.44.798
– volume: 48
  start-page: 6553
  year: 2014
  ident: 90_CR46
  publication-title: Environ Sci Technol
  doi: 10.1021/es405104k
– ident: 90_CR72
– ident: 90_CR27
– ident: 90_CR88
  doi: 10.1007/978-1-4899-1406-4
– volume: 33
  start-page: 736
  year: 2015
  ident: 90_CR71
  publication-title: J Rare Earths
  doi: 10.1016/S1002-0721(14)60478-6
– volume: 379
  start-page: 305
  year: 2004
  ident: 90_CR124
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2004.02.038
– volume: 217
  start-page: 218
  year: 1995
  ident: 90_CR119
  publication-title: J Alloys Compd
  doi: 10.1016/0925-8388(94)01316-A
– volume: 477
  start-page: 484
  year: 2009
  ident: 90_CR15
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2008.10.036
– volume: 16
  start-page: 1594
  year: 2014
  ident: 90_CR114
  publication-title: Green Chem
  doi: 10.1039/C3GC41577E
– volume: 4
  start-page: 810
  year: 2016
  ident: 90_CR131
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.5b00852
– start-page: 89
  volume-title: REWAS 2016-towards materials resource sustainability
  year: 2016
  ident: 90_CR132
  doi: 10.1002/9781119275039.ch13
– volume: 36
  start-page: 967
  issue: 6
  year: 1998
  ident: 90_CR79
  publication-title: J Korean Inst Met Mater
– ident: 90_CR57
– ident: 90_CR127
– volume: 469
  start-page: 314
  year: 2009
  ident: 90_CR61
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2008.01.114
– volume: 56
  start-page: 10
  year: 2014
  ident: 90_CR91
  publication-title: Miner Eng
  doi: 10.1016/j.mineng.2013.10.021
– ident: 90_CR118
– volume: 47
  start-page: 10129
  year: 2013
  ident: 90_CR2
  publication-title: Environ Sci Technol
  doi: 10.1021/es305007w
– ident: 90_CR28
– volume-title: The rare earth elements, an introduction
  year: 2016
  ident: 90_CR84
  doi: 10.1007/978-3-319-26809-5
– volume: 15
  start-page: 15320
  year: 2014
  ident: 90_CR106
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms150915320
– volume: 29
  start-page: 2255
  year: 1996
  ident: 90_CR34
  publication-title: J Phys D
  doi: 10.1088/0022-3727/29/9/006
– volume: 1
  start-page: 29
  year: 2015
  ident: 90_CR4
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-014-0005-1
– ident: 90_CR136
– volume: 11
  start-page: 175
  issue: 1–4
  year: 1993
  ident: 90_CR17
  publication-title: High Temp Mater Process
  doi: 10.1515/HTMP.1993.11.1-4.175
– ident: 90_CR60
– volume: 3
  start-page: 151
  year: 2013
  ident: 90_CR38
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201200337
– volume: 91
  start-page: 1
  year: 2009
  ident: 90_CR134
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2009.06.018
– volume: 43
  start-page: 8404
  year: 2004
  ident: 90_CR100
  publication-title: Inorg Chem
  doi: 10.1021/ic049377m
– volume: 84
  start-page: 348
  year: 2014
  ident: 90_CR51
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2014.04.035
– volume: 21
  start-page: 137
  year: 2014
  ident: 90_CR112
  publication-title: Solvent Extr Res Dev, Jpn
  doi: 10.15261/serdj.21.137
– volume: 39
  start-page: 2926
  year: 2003
  ident: 90_CR36
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2003.815749
– volume: 647
  start-page: 997
  year: 2015
  ident: 90_CR125
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2015.05.238
– volume: 67
  start-page: 536
  year: 2012
  ident: 90_CR35
  publication-title: Scripta Mat
  doi: 10.1016/j.scriptamat.2012.05.038
– volume: 31
  start-page: 1007
  year: 2015
  ident: 90_CR128
  publication-title: Mater Sci Technol
  doi: 10.1179/1743284714Y.0000000672
– start-page: 335
  volume-title: Rare earths industry technological, economic, and environmental implications
  year: 2016
  ident: 90_CR83
  doi: 10.1016/B978-0-12-802328-0.00022-X
– year: 2016
  ident: 90_CR92
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.01.028
– volume: 15
  start-page: 919
  year: 2013
  ident: 90_CR113
  publication-title: Green Chem
  doi: 10.1039/C3GC40198G
– volume: 164
  start-page: 24
  year: 2016
  ident: 90_CR101
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2016.05.007
– volume: 124
  start-page: 106
  issue: 2
  year: 2015
  ident: 90_CR59
  publication-title: Miner Process Extr Metall (Trans. Inst. Min. Metall. C)
  doi: 10.1179/1743285514Y.0000000084
– volume: 33
  start-page: R157
  year: 2000
  ident: 90_CR33
  publication-title: J Phys D
  doi: 10.1088/0022-3727/33/17/201
– volume: 1
  start-page: 199
  year: 2015
  ident: 90_CR120
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-015-0021-9
– volume: 49
  start-page: 12441
  issue: 20
  year: 2015
  ident: 90_CR53
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b02264
– ident: 90_CR21
  doi: 10.3133/sir20115094
– volume: 527
  start-page: 163
  year: 2004
  ident: 90_CR97
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2004.09.023
– volume: 66
  start-page: 1185
  year: 2002
  ident: 90_CR86
  publication-title: Geochim Cosmochim Acta
  doi: 10.1016/S0016-7037(01)00849-3
– volume: 350
  start-page: 114
  year: 2014
  ident: 90_CR40
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2013.09.042
– volume: 92
  start-page: 174413
  year: 2015
  ident: 90_CR32
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.92.174413
– volume: 20
  start-page: 1584
  issue: 5
  year: 1984
  ident: 90_CR24
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.1984.1063214
– volume: 26
  start-page: 5
  year: 2014
  ident: 90_CR30
  publication-title: J Phys
  doi: 10.1088/0953-8984/26/6/064205
– volume: 425
  start-page: 145
  year: 2006
  ident: 90_CR129
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2006.01.011
– ident: 90_CR45
– ident: 90_CR26
– volume: 136
  start-page: 548
  year: 2014
  ident: 90_CR5
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.09.064
– ident: 90_CR68
– volume: 14
  start-page: 151
  year: 2007
  ident: 90_CR110
  publication-title: Solvent Extr Res Dev, Jpn
– start-page: 199
  volume-title: Metals and materials waste reduction, recovery, and remediation
  year: 1994
  ident: 90_CR78
– volume: 1A
  start-page: 160
  year: 2014
  ident: 90_CR10
  publication-title: Metall Mater Trans E
  doi: 10.1007/s40553-014-0016-7
– volume: 4
  start-page: 64099
  year: 2014
  ident: 90_CR115
  publication-title: RSC Adv
  doi: 10.1039/C4RA13787F
– volume: 107
  start-page: 215
  year: 2015
  ident: 90_CR50
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.04.123
– ident: 90_CR62
– volume: 408–412
  start-page: 387
  year: 2006
  ident: 90_CR123
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2005.04.094
– volume: 17
  start-page: 2150
  year: 2015
  ident: 90_CR117
  publication-title: Green Chem
  doi: 10.1039/C5GC00155B
– volume: 104
  start-page: 236
  year: 2015
  ident: 90_CR41
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.05.033
– start-page: 127
  volume-title: The latest technology trend and resource strategy of rare earths
  year: 2011
  ident: 90_CR81
– ident: 90_CR20
– ident: 90_CR54
– volume: 378
  start-page: 540
  year: 2016
  ident: 90_CR64
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2016.03.182
– volume: 19
  start-page: 1097
  issue: 8
  year: 2003
  ident: 90_CR103
  publication-title: Anal Sci
  doi: 10.2116/analsci.19.1097
– volume: 290–291
  start-page: 1282
  issue: P2
  year: 2005
  ident: 90_CR37
  publication-title: J Magn Magn Mat
  doi: 10.1016/j.jmmm.2004.11.423
– volume: 54
  start-page: 36
  year: 2009
  ident: 90_CR80
  publication-title: Kidorui (Rare Earths)
– volume: 15
  start-page: 836
  issue: 6
  year: 2011
  ident: 90_CR49
  publication-title: J Ind Ecol
  doi: 10.1111/j.1530-9290.2011.00362.x
– ident: 90_CR48
– volume: 43
  start-page: 55
  year: 2002
  ident: 90_CR14
  publication-title: Mater Trans
  doi: 10.2320/matertrans.43.55
– volume-title: Study on rare earths and their recycling: final report for the Greens/EFA Group in the European Parliament
  year: 2011
  ident: 90_CR6
– year: 2016
  ident: 90_CR11
  publication-title: J Sustain Metall
  doi: 10.1007/s40831-016-0045-9
– ident: 90_CR23
– volume: 46
  start-page: 3406
  year: 2012
  ident: 90_CR25
  publication-title: Environ Sci Technol
  doi: 10.1021/es203518d
– ident: 90_CR65
– volume: 40
  start-page: 2877
  year: 2004
  ident: 90_CR69
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2004.832241
– ident: 90_CR63
  doi: 10.1109/IEMDC.2015.7409220
– volume: 17
  start-page: 2931
  year: 2015
  ident: 90_CR116
  publication-title: Green Chem
  doi: 10.1039/C5GC00230C
– volume-title: Handbook on the physics and chemistry of rare earths
  year: 2013
  ident: 90_CR9
– volume: 324
  start-page: 63
  issue: 1
  year: 2012
  ident: 90_CR39
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2011.07.043
SSID ssj0002734771
Score 2.5507185
SecondaryResourceType review_article
Snippet NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind...
NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122
SubjectTerms Critical raw materials
Earth and Environmental Science
Electrolysis
Electronics
End of life
Environment
Green Rare Earth Elements--Innovations in Ore Processing
Hybrid electric vehicles
Hydrometallurgy
Metallic Materials
Neodymium
Permanent magnets
R&D
Rare earth elements
Rare earths
Rare-earth magnets
Recovery
Recycling
Research & development
Sustainable Development
Thematic Section: Green Rare Earth Elements--Innovations in Ore Processing
Urban mining
Wind turbines
Title REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review
URI https://link.springer.com/article/10.1007/s40831-016-0090-4
https://www.proquest.com/docview/1880771792
https://research.chalmers.se/publication/251342
Volume 3
WOSCitedRecordID wos000394334600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 2199-3831
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734771
  issn: 2199-3831
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYK5QAH2vIQFIp86AlkyYmd2OkN0K56WFaIl_Zm-cmuhLJosyD133ecTdJtRZHgHNtjjceemczMNwh9L5h2mgdKbEIZ4Umak0JYRnQCE7IIpVNn-d4NxHAoR6Pisqnjrtps9zYkWb_UXbEbj02xwPUFD5gWlPAV9BG0nYy38er6rvuxEvFaRO1owWUsSIxztdHMl1b5Wx_9MTK7uOg_GKK13ul_eteOP6PNxszEpwu5-II--HILbSyBD26ji6teD0fvE4T5F45lJrhXOjINZDAJHg9d35_hy_hwl6CY8IW-L_0cX9uZfvyBT3HbIwEvogs76Lbfuzn_SZrmCsSCkTYnXOZaO5oaZsGKctSK1IC3Yl2qY32TAc7qFIwnl6XOBRjpciuDlnlmmLBSsl20Wk5Lv4cwCzKjLCRGF447b7QVGtwU7kXugUq6j2jLYmUb5PHYAONBdZjJNadUzDaLnFJ8Hx13Ux4XsBuvDT5sz001N7BSEWcOxEAUQP6kPZ6lz_9fbLA47o5uBOBukJfGyo7rtjaVqrwCjnmTCaakkUxx7zOlbRKU8zIwZiQvHP36JuIHaD2NZkOd43aIVuezJ_8Nrdnn-aSaHdVy_hvgnPQ5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgQSoceLWIhdL6wKmVJSd2YptbQbsqanZV9aXeLD_bSiitNgsS_55xNkkLKkhwju2xxmPPTGbmG4Q-KGa84ZESl1FGeJaXRAnHiMlgQpGgdNos37NKzOfy_FwddnXcTZ_t3ock25d6KHbjqSkWuL7gAVNFCX-IHnFQWCmP7-j4bPixkvBaROtowWVUJMW5-mjmfav8qo9ujcwhLvobhmird6bP_2vHL9CzzszEeyu5eIkehPoVenoHfHAdzY4mE5y8TxDmHziVmeBJ7cl1JNVVDHjup-ETPkwPdw2KCc_MRR2W-NgtzM1HvIf7Hgl4FV3YQKfTycnnfdI1VyAOjLQl4bI0xtPcMgdWlKdO5Ba8Fedzk-qbLFXS5GA8-SL3PsJIXzoZjSwLy4STkr1Go_q6Dm8QZlEWlMXMGuW5D9Y4YcBN4UGUAajkY0R7FmvXIY-nBhhf9YCZ3HJKp2yzxCnNx2hnmHKzgt342-DN_tx0dwMbnXDmQAyEAvK7_fHc-fznxarVcQ90EwB3h7x0qd1l29am0U3QwLFgC8G0tJJpHkKhjcui9kFGxqzkytO3_0R8G63tn8wqXX2ZH7xDT_JkQrT5bptotFx8C-_RY_d9edUstlqZ_wlaWfcd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIFQO5Vm1tIAPnEBWndiJ7d7asisQ29WKQtWb5SetVKWrTUDi3-PJqwUBEuIc2xONx_FMZub7EHqlmPGGR0pcRhnhWV4SJRwjJksTCoDSaat8T2diPpdnZ2rR85zWQ7X7kJLsehoApalq9pY-7o2NbxwIslIYnKJhqijht9EdDpxBEK6fnI4_WQC7RbRBVzqYikDOa8hs_m6Vn--ma4dzzJH-gifa3kHTB__99g_RRu9-4oPOXh6hW6F6jO7fACV8go4_TiYYotJk5N8xtJ_gSeXJVSSzixjw3E_DIV7AB71KIvGx-VKFBp-4lVnu4wM8cCfgLuvwFH2eTj4dvSM96QJxyXlrCJelMZ7mlrnkXXnqRG5TFON8bqDvyVIlTZ6cKl_k3sc00pdORiPLwjLhpGSbaK26qsIWwizKgrKYWaM898EaJ0wKX3gQZUhS8m1EB3Vr1yOSAzHGpR6xlFtNaahCA01pvo1ej1OWHRzH3wbvDnuo-5NZa8CfSyYhVBL_ZtiqG4__vNis2_pRLgBz94hM59qdt3Q3ta6DThoLthBMSyuZ5iEU2rgsah9kZMxKrjx99k_CX6J7i7dTPXs__7CD1nPwLNoyuF201qy-huforvvWXNSrF635_wBWAgAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REE+Recovery+from+End-of-Life+NdFeB+Permanent+Magnet+Scrap%3A+A+Critical+Review&rft.jtitle=Journal+of+sustainable+metallurgy&rft.au=Yang%2C+Yongxiang&rft.au=Walton%2C+Allan&rft.au=Sheridan%2C+Richard&rft.au=G%C3%BCth%2C+Konrad&rft.date=2017-03-01&rft.issn=2199-3831&rft.eissn=2199-3831&rft.volume=3&rft.issue=1&rft.spage=122&rft_id=info:doi/10.1007%2Fs40831-016-0090-4&rft.externalDocID=oai_research_chalmers_se_72beb573_8b83_4ee5_ac1f_de8f33b849d0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-3823&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-3823&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-3823&client=summon