Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers
Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound...
Saved in:
| Published in: | Molecular cell Vol. 54; no. 5; p. 844 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
05.06.2014
|
| Subjects: | |
| ISSN: | 1097-4164, 1097-4164 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features. |
|---|---|
| AbstractList | Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features.Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features. Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes are gatekeepers of TF binding sites. However, because of their complexity mammalian genomes contain millions of randomly occurring, unbound TF consensus binding sites. We hypothesized that the information controlling nucleosome assembly may coincide with the information that enables TFs to bind cis-regulatory elements while ignoring randomly occurring sites. Hence, nucleosomes would selectively mask genomic sites that can be contacted by TFs and thus be potentially functional. The hematopoietic pioneer TF Pu.1 maintained nucleosome depletion at macrophage-specific enhancers that displayed a broad range of nucleosome occupancy in other cell types and in reconstituted chromatin. We identified a minimal set of DNA sequence and shape features that accurately predicted both Pu.1 binding and nucleosome occupancy genome-wide. These data reveal a basic organizational principle of mammalian cis-regulatory elements whereby TF recruitment and nucleosome deposition are controlled by overlapping DNA sequence features. |
| Author | Bonifacio, Silvia Barozzi, Iros Yang, Lin Ghisletti, Serena Rohs, Remo Simonatto, Marta Natoli, Gioacchino |
| Author_xml | – sequence: 1 givenname: Iros surname: Barozzi fullname: Barozzi, Iros organization: Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, I-20139 Milan, Italy – sequence: 2 givenname: Marta surname: Simonatto fullname: Simonatto, Marta organization: Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, I-20139 Milan, Italy – sequence: 3 givenname: Silvia surname: Bonifacio fullname: Bonifacio, Silvia organization: Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, I-20139 Milan, Italy – sequence: 4 givenname: Lin surname: Yang fullname: Yang, Lin organization: Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA – sequence: 5 givenname: Remo surname: Rohs fullname: Rohs, Remo organization: Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA – sequence: 6 givenname: Serena surname: Ghisletti fullname: Ghisletti, Serena organization: Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, I-20139 Milan, Italy – sequence: 7 givenname: Gioacchino surname: Natoli fullname: Natoli, Gioacchino organization: Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, I-20139 Milan, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24813947$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1LwzAAxYNM3Jz-ByI5emlN0qRpj2N-wtCLnks-t4426ZLmsP_eqhOEB-_x-PEO7xLMnHcGgBuMcoxweb_Pe98p0-UEYZqjSag8AwuMap5RXNLZvzwHlzHu0QSyqr4Ac0IrXNSUL8Bh7YPZpk6MrXfQWzgG4aIK7fBTWKFGH6BsnW7dFgqnoUuqMz763kCvVBqEU0c47oJP2x18eFtBa8SYgonfa73oe9G1wkHjdhNpQrwC51Z00VyffAk-nx4_1i_Z5v35db3aZIpRNGaUS6yE1MRWmtlCC6YNF9RKIbmWtlJlWVjMGdGE0oJIpkypcKU4rZGpFCNLcPe7OwR_SCaOTd_G6a9OOONTbDArKOWUEDShtyc0yd7oZghtL8Kx-buJfAHwHHCs |
| CitedBy_id | crossref_primary_10_1016_j_cell_2015_03_017 crossref_primary_10_3389_fcell_2017_00009 crossref_primary_10_1016_j_smim_2016_04_002 crossref_primary_10_1093_nar_gkv931 crossref_primary_10_4049_jimmunol_2000258 crossref_primary_10_1093_nar_gkv255 crossref_primary_10_1101_gr_208173_116 crossref_primary_10_1161_CIRCRESAHA_116_302832 crossref_primary_10_1101_gad_309583_117 crossref_primary_10_1101_gad_310367_117 crossref_primary_10_1002_wcms_1262 crossref_primary_10_1016_j_ccell_2024_02_010 crossref_primary_10_1016_j_cell_2016_03_011 crossref_primary_10_15252_msb_20167238 crossref_primary_10_1084_jem_20161149 crossref_primary_10_1186_s13072_019_0288_3 crossref_primary_10_7554_eLife_76500 crossref_primary_10_1016_j_immuni_2018_01_012 crossref_primary_10_1101_gad_253443_114 crossref_primary_10_1016_j_smim_2015_02_004 crossref_primary_10_1038_s41594_023_01189_z crossref_primary_10_1101_gr_192542_115 crossref_primary_10_1038_s41576_023_00666_x crossref_primary_10_1038_s41598_017_03199_6 crossref_primary_10_1016_j_coisb_2019_10_012 crossref_primary_10_1126_science_aaf1098 crossref_primary_10_1038_nri_2017_51 crossref_primary_10_1038_s41576_018_0089_8 crossref_primary_10_1016_j_molcel_2024_06_022 crossref_primary_10_1101_gr_279326_124 crossref_primary_10_1111_imr_12213 crossref_primary_10_1093_g3journal_jkad269 crossref_primary_10_7554_eLife_73358 crossref_primary_10_1016_j_molcel_2022_06_029 crossref_primary_10_3389_fimmu_2019_02809 crossref_primary_10_1101_gr_240572_118 crossref_primary_10_3390_molecules23081914 crossref_primary_10_1093_nar_gkab558 crossref_primary_10_1016_j_bpj_2021_04_002 crossref_primary_10_1016_j_pneurobio_2020_101971 crossref_primary_10_1038_cr_2016_1 crossref_primary_10_1073_pnas_1621150114 crossref_primary_10_3390_cells11050898 crossref_primary_10_1038_s41467_018_08236_0 crossref_primary_10_1101_gad_293134_116 crossref_primary_10_1002_bies_201600005 crossref_primary_10_1371_journal_pbio_3002770 crossref_primary_10_1074_jbc_RA119_010149 crossref_primary_10_1038_s41576_020_00300_0 crossref_primary_10_1016_j_cell_2016_07_012 crossref_primary_10_1089_jir_2016_0004 crossref_primary_10_1186_s13059_015_0840_9 crossref_primary_10_1007_s12551_024_01205_6 crossref_primary_10_1016_j_yexcr_2017_05_005 crossref_primary_10_1016_j_bbagen_2017_07_024 crossref_primary_10_1128_MCB_00027_15 crossref_primary_10_1016_j_jbc_2023_105230 crossref_primary_10_1128_MCB_01097_14 crossref_primary_10_1172_JCI137967 crossref_primary_10_1101_gr_238279_118 crossref_primary_10_1038_s41375_019_0474_0 crossref_primary_10_1074_jbc_M116_734186 crossref_primary_10_1101_gr_279652_124 crossref_primary_10_1093_nar_gkx821 crossref_primary_10_1038_s41467_020_16209_5 crossref_primary_10_1111_imr_12955 crossref_primary_10_1038_s41588_018_0140_x crossref_primary_10_4049_jimmunol_1500204 crossref_primary_10_1016_j_cell_2018_03_081 crossref_primary_10_1074_jbc_R117_001232 crossref_primary_10_1101_gr_231423_117 crossref_primary_10_1101_gr_184671_114 crossref_primary_10_1101_gad_349282_121 crossref_primary_10_1016_j_gde_2015_12_003 crossref_primary_10_1186_s12859_024_05852_0 crossref_primary_10_1242_dmm_046516 crossref_primary_10_3390_ijms21239282 crossref_primary_10_1186_s12859_017_1569_0 crossref_primary_10_1016_j_gde_2016_12_007 crossref_primary_10_1016_j_devcel_2016_01_024 crossref_primary_10_1016_j_mce_2023_112103 crossref_primary_10_1084_jem_20151764 crossref_primary_10_1038_s41594_022_00877_6 crossref_primary_10_26508_lsa_202302380 crossref_primary_10_1016_j_biocel_2018_03_012 crossref_primary_10_1093_nar_gkaf587 crossref_primary_10_1093_nar_gkad562 crossref_primary_10_1007_s00438_020_01675_9 crossref_primary_10_1038_s41588_025_02263_6 crossref_primary_10_1016_j_cels_2016_07_001 crossref_primary_10_1101_gr_275864_121 crossref_primary_10_1016_j_ebiom_2021_103559 crossref_primary_10_1101_gad_326348_119 crossref_primary_10_1038_s41588_020_0591_8 crossref_primary_10_1093_nar_gku932 crossref_primary_10_3389_fimmu_2019_02441 crossref_primary_10_3390_polym15071763 crossref_primary_10_1038_s41580_022_00464_z crossref_primary_10_1093_nar_gkv1475 crossref_primary_10_1016_j_molcel_2015_09_018 crossref_primary_10_1016_j_cell_2015_02_008 crossref_primary_10_1016_j_compbiomed_2022_106388 crossref_primary_10_1093_nar_gkz020 crossref_primary_10_1146_annurev_genet_030220_015007 crossref_primary_10_1080_15592294_2017_1297910 crossref_primary_10_1016_j_semcdb_2019_04_017 crossref_primary_10_3390_cells10051074 crossref_primary_10_1134_S1068162015060084 crossref_primary_10_1038_ni_3306 crossref_primary_10_1016_j_immuni_2024_02_004 crossref_primary_10_1016_j_molcel_2022_08_019 crossref_primary_10_1038_s41467_020_14950_5 crossref_primary_10_1016_j_chom_2018_12_006 crossref_primary_10_1038_s41588_024_01911_7 crossref_primary_10_1080_21541264_2017_1291395 crossref_primary_10_1016_j_tibs_2014_07_002 crossref_primary_10_1093_nar_gkw528 crossref_primary_10_1101_gad_257592_114 crossref_primary_10_1016_j_bpj_2021_10_039 crossref_primary_10_1371_journal_pcbi_1005720 crossref_primary_10_1146_annurev_physiol_022516_034348 crossref_primary_10_1016_j_devcel_2023_07_007 crossref_primary_10_1111_tpj_13954 crossref_primary_10_1371_journal_pgen_1006641 crossref_primary_10_1038_s41598_017_03554_7 crossref_primary_10_1093_nar_gkx174 crossref_primary_10_1146_annurev_immunol_101320_031555 crossref_primary_10_1186_1471_2105_15_313 crossref_primary_10_1016_j_tig_2023_10_007 crossref_primary_10_1080_21541264_2019_1673636 crossref_primary_10_1093_molbev_msy099 crossref_primary_10_1080_21541264_2017_1378158 crossref_primary_10_1016_j_cell_2014_11_023 crossref_primary_10_3389_fimmu_2015_00370 crossref_primary_10_1002_cphc_202200644 crossref_primary_10_1016_j_bbagrm_2019_194443 crossref_primary_10_1093_nar_gkac613 crossref_primary_10_4049_jimmunol_1701756 crossref_primary_10_1002_wsbm_1449 crossref_primary_10_1016_j_molcel_2018_05_031 crossref_primary_10_1109_TCBB_2020_3025007 crossref_primary_10_1371_journal_pgen_1006231 crossref_primary_10_1038_nrrheum_2016_91 crossref_primary_10_1016_j_molcel_2016_03_001 crossref_primary_10_1016_j_molcel_2019_06_009 crossref_primary_10_3389_fcvm_2022_972591 crossref_primary_10_1186_s12977_023_00623_w crossref_primary_10_1039_c5ib00321k |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.molcel.2014.04.006 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1097-4164 |
| ExternalDocumentID | 24813947 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: U01 GM103804 – fundername: NIGMS NIH HHS grantid: R01GM106056 – fundername: NIGMS NIH HHS grantid: R01 GM106056 – fundername: NIGMS NIH HHS grantid: U01GM103804 |
| GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 5VS 62- 7-5 AAEDT AAEDW AAHBH AAKRW AAKUH AALRI AAMRU AAQFI AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACNCT ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFFNX AFPUW AFTJW AGCQF AGHFR AGKMS AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ASPBG AVWKF AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NPM O-L O9- OK1 P2P RIG ROL RPZ SDG SES SSZ TR2 7X8 |
| ID | FETCH-LOGICAL-c540t-47b1cabd2f8d5f3da5de7a4fbab7dbf8c663f1752d24432b5ce6c18c7490e8c52 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 167 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340626100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-4164 |
| IngestDate | Sat Sep 27 20:19:48 EDT 2025 Mon Jul 21 05:55:06 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright © 2014 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-47b1cabd2f8d5f3da5de7a4fbab7dbf8c663f1752d24432b5ce6c18c7490e8c52 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S1097276514003165/pdf |
| PMID | 24813947 |
| PQID | 1534474220 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1534474220 pubmed_primary_24813947 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-05 |
| PublicationDateYYYYMMDD | 2014-06-05 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Molecular cell |
| PublicationTitleAlternate | Mol Cell |
| PublicationYear | 2014 |
| References | 23064151 - EMBO J. 2012 Nov 14;31(22):4318-33 20206554 - Immunity. 2010 Mar 26;32(3):317-28 20691053 - BMC Bioinformatics. 2010;11:415 23100115 - Genome Res. 2012 Dec;22(12):2399-408 24214955 - Nucleic Acids Res. 2014 Jan;42(Database issue):D148-55 23953118 - Cell. 2013 Aug 15;154(4):888-903 8079170 - Science. 1994 Sep 9;265(5178):1573-7 22955617 - Nature. 2012 Sep 6;489(7414):75-82 9694804 - Genes Dev. 1998 Aug 1;12(15):2403-12 21160473 - Nature. 2011 Feb 10;470(7333):279-83 24086160 - PLoS Genet. 2013;9(9):e1003830 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37 20074831 - Trends Genet. 2010 Feb;26(2):75-83 20517297 - EMBO J. 2010 Jul 7;29(13):2147-60 16964265 - Nat Genet. 2006 Oct;38(10):1210-5 22036565 - Cell. 2011 Oct 28;147(3):565-76 20485488 - PLoS Biol. 2010 May;8(5):e1000384 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 3670410 - Nature. 1987 Nov 19-25;330(6145):221-6 16862119 - Nature. 2006 Aug 17;442(7104):772-8 11058103 - Nucleic Acids Res. 2000 Nov 1;28(21):4083-9 19865164 - Nature. 2009 Oct 29;461(7268):1248-53 21602827 - Nature. 2011 Jun 23;474(7352):516-20 19092803 - Nature. 2009 Mar 19;458(7236):362-6 22908247 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):E2514-22 20161746 - PLoS One. 2010;5(2):e9129 22086963 - Nucleic Acids Res. 2012 Jan;40(Database issue):D84-90 23085715 - Nat Struct Mol Biol. 2012 Nov;19(11):1185-92 10372352 - Methods Enzymol. 1999;304:3-19 21596991 - Science. 2011 May 20;332(6032):977-80 20393465 - Nature. 2010 May 13;465(7295):182-7 22841002 - Mol Cell. 2012 Jul 27;47(2):183-92 17259967 - Nat Rev Immunol. 2007 Feb;7(2):105-17 24078250 - Nucleic Acids Res. 2014 Jan;42(1):430-41 23463311 - Nat Struct Mol Biol. 2013 Mar;20(3):267-73 17277777 - Nat Genet. 2007 Mar;39(3):311-8 20513432 - Mol Cell. 2010 May 28;38(4):576-89 20716666 - Genome Res. 2010 Oct;20(10):1361-8 23332752 - Cell. 2013 Jan 17;152(1-2):157-71 19596239 - Cell. 2009 Jul 10;138(1):114-28 19261174 - Genome Biol. 2009;10(3):R25 18798982 - Genome Biol. 2008;9(9):R137 20643336 - Immunity. 2010 Jul 23;33(1):12-24 22500808 - Cell. 2012 Apr 13;149(2):467-82 19295514 - Nature. 2009 May 7;459(7243):108-12 21765417 - Nat Struct Mol Biol. 2011 Aug;18(8):956-63 23562153 - Cell Rep. 2013 Apr 25;3(4):1093-104 23703209 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W56-62 19212405 - Nature. 2009 Feb 12;457(7231):854-8 18550805 - Genome Res. 2008 Jul;18(7):1073-83 22056668 - Genes Dev. 2011 Nov 1;25(21):2227-41 23166509 - PLoS Genet. 2012;8(11):e1003036 20028554 - BMC Bioinformatics. 2009;10:442 |
| References_xml | – reference: 20393465 - Nature. 2010 May 13;465(7295):182-7 – reference: 22036565 - Cell. 2011 Oct 28;147(3):565-76 – reference: 24086160 - PLoS Genet. 2013;9(9):e1003830 – reference: 21765417 - Nat Struct Mol Biol. 2011 Aug;18(8):956-63 – reference: 24214955 - Nucleic Acids Res. 2014 Jan;42(Database issue):D148-55 – reference: 22056668 - Genes Dev. 2011 Nov 1;25(21):2227-41 – reference: 9694804 - Genes Dev. 1998 Aug 1;12(15):2403-12 – reference: 23064151 - EMBO J. 2012 Nov 14;31(22):4318-33 – reference: 22500808 - Cell. 2012 Apr 13;149(2):467-82 – reference: 18798982 - Genome Biol. 2008;9(9):R137 – reference: 11058103 - Nucleic Acids Res. 2000 Nov 1;28(21):4083-9 – reference: 16862119 - Nature. 2006 Aug 17;442(7104):772-8 – reference: 19596239 - Cell. 2009 Jul 10;138(1):114-28 – reference: 23166509 - PLoS Genet. 2012;8(11):e1003036 – reference: 20716666 - Genome Res. 2010 Oct;20(10):1361-8 – reference: 21160473 - Nature. 2011 Feb 10;470(7333):279-83 – reference: 19865164 - Nature. 2009 Oct 29;461(7268):1248-53 – reference: 20110278 - Bioinformatics. 2010 Mar 15;26(6):841-2 – reference: 23463311 - Nat Struct Mol Biol. 2013 Mar;20(3):267-73 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 17277777 - Nat Genet. 2007 Mar;39(3):311-8 – reference: 24078250 - Nucleic Acids Res. 2014 Jan;42(1):430-41 – reference: 20161746 - PLoS One. 2010;5(2):e9129 – reference: 10372352 - Methods Enzymol. 1999;304:3-19 – reference: 23100115 - Genome Res. 2012 Dec;22(12):2399-408 – reference: 22841002 - Mol Cell. 2012 Jul 27;47(2):183-92 – reference: 19295514 - Nature. 2009 May 7;459(7243):108-12 – reference: 23562153 - Cell Rep. 2013 Apr 25;3(4):1093-104 – reference: 20517297 - EMBO J. 2010 Jul 7;29(13):2147-60 – reference: 19212405 - Nature. 2009 Feb 12;457(7231):854-8 – reference: 20485488 - PLoS Biol. 2010 May;8(5):e1000384 – reference: 20206554 - Immunity. 2010 Mar 26;32(3):317-28 – reference: 20691053 - BMC Bioinformatics. 2010;11:415 – reference: 17259967 - Nat Rev Immunol. 2007 Feb;7(2):105-17 – reference: 3670410 - Nature. 1987 Nov 19-25;330(6145):221-6 – reference: 18550805 - Genome Res. 2008 Jul;18(7):1073-83 – reference: 20028554 - BMC Bioinformatics. 2009;10:442 – reference: 20643336 - Immunity. 2010 Jul 23;33(1):12-24 – reference: 20513432 - Mol Cell. 2010 May 28;38(4):576-89 – reference: 23473601 - Mol Cell. 2013 Mar 7;49(5):825-37 – reference: 22908247 - Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):E2514-22 – reference: 23085715 - Nat Struct Mol Biol. 2012 Nov;19(11):1185-92 – reference: 19092803 - Nature. 2009 Mar 19;458(7236):362-6 – reference: 23332752 - Cell. 2013 Jan 17;152(1-2):157-71 – reference: 21602827 - Nature. 2011 Jun 23;474(7352):516-20 – reference: 8079170 - Science. 1994 Sep 9;265(5178):1573-7 – reference: 22086963 - Nucleic Acids Res. 2012 Jan;40(Database issue):D84-90 – reference: 16964265 - Nat Genet. 2006 Oct;38(10):1210-5 – reference: 21106759 - Proc Natl Acad Sci U S A. 2010 Dec 14;107(50):21931-6 – reference: 23953118 - Cell. 2013 Aug 15;154(4):888-903 – reference: 22955617 - Nature. 2012 Sep 6;489(7414):75-82 – reference: 23703209 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W56-62 – reference: 21596991 - Science. 2011 May 20;332(6032):977-80 – reference: 20074831 - Trends Genet. 2010 Feb;26(2):75-83 |
| SSID | ssj0014589 |
| Score | 2.5294435 |
| Snippet | Transcription factors (TFs) preferentially bind sites contained in regions of computationally predicted high nucleosomal occupancy, suggesting that nucleosomes... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 844 |
| SubjectTerms | Animals Base Sequence Binding Sites Cells, Cultured Consensus Sequence Enhancer Elements, Genetic Gene Expression Regulation Gene Knockdown Techniques Humans Mice Models, Genetic Nucleosomes - genetics Nucleosomes - metabolism Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism RNA, Small Interfering - genetics Sequence Analysis, DNA Support Vector Machine Trans-Activators - genetics Trans-Activators - metabolism |
| Title | Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24813947 https://www.proquest.com/docview/1534474220 |
| Volume | 54 |
| WOSCitedRecordID | wos000340626100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvC6mCa72e1JSrV4MfSg0FvIvrBgsm1TBf-9s5uUngTBS24Jy87s7Jf5ZuZD6A4ivhGWayK0SQk1LCJ9yhQB04sU4LnURSM2wbNMTCb9cZtwq9uyylVMDIFaO-Vz5PdwMimF_7g4epjNiVeN8uxqK6GxiToJQBlf0sUnaxaBsiCB50lWAsCDrlrnQn1X6T6U8eRDj4Zhp1H6O8gMl81o_7_LPEB7LczEg8YvDtGGqY7QTiM8-X2M5kO3aETowSzYWbz0V9YqgOBGhAfLaWh5wUWlceXnHrvalQa7MJgYgjJuRX7wYzbA1oQRobX_WlmUZcifYFO9e7da1CfobfT0OnwmrfgCUQDiloRy2VOF1LEVmtlEF0wbXlArC8m1tEIBVLGAPWINACGJJVMmVT2hOO1HRigWn6KtylXmHGGpE2Fj6btYFU0tgL4kirT3hDjRTPMuul3tZQ7O7RmLojLus87Xu9lFZ41B8lkzhSOPqQCTU37xh7cv0a63cyjxYleoY-Fom2u0rb6W03pxE7wGntn45Qcxwc5- |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coregulation+of+transcription+factor+binding+and+nucleosome+occupancy+through+DNA+features+of+mammalian+enhancers&rft.jtitle=Molecular+cell&rft.au=Barozzi%2C+Iros&rft.au=Simonatto%2C+Marta&rft.au=Bonifacio%2C+Silvia&rft.au=Yang%2C+Lin&rft.date=2014-06-05&rft.eissn=1097-4164&rft.volume=54&rft.issue=5&rft.spage=844&rft_id=info:doi/10.1016%2Fj.molcel.2014.04.006&rft_id=info%3Apmid%2F24813947&rft_id=info%3Apmid%2F24813947&rft.externalDocID=24813947 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4164&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4164&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4164&client=summon |