Hierarchical Network Models for Exchangeable Structured Interaction Processes
Network data often arises via a series of structured interactions among a population of constituent elements. E-mail exchanges, for example, have a single sender followed by potentially multiple receivers. Scientific articles, on the other hand, may have multiple subject areas and multiple authors....
Gespeichert in:
| Veröffentlicht in: | Journal of the American Statistical Association Jg. 117; H. 540; S. 2056 - 2073 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Taylor & Francis
02.10.2022
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0162-1459, 1537-274X, 1537-274X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Network data often arises via a series of structured interactions among a population of constituent elements. E-mail exchanges, for example, have a single sender followed by potentially multiple receivers. Scientific articles, on the other hand, may have multiple subject areas and multiple authors. We introduce a statistical model, termed the Pitman-Yor hierarchical vertex components model (PY-HVCM), that is well suited for structured interaction data. The proposed PY-HVCM effectively models complex relational data by partial pooling of local information via a latent, shared population-level distribution. The PY-HCVM is a canonical example of hierarchical vertex components models-a subfamily of models for exchangeable structured interaction-labeled networks, that is, networks invariant to interaction relabeling. Theoretical analysis and supporting simulations provide clear model interpretation, and establish global sparsity and power law degree distribution. A computationally tractable Gibbs sampling algorithm is derived for inferring sparsity and power law properties of complex networks. We demonstrate the model on both the Enron e-mail dataset and an ArXiv dataset, showing goodness of fit of the model via posterior predictive validation. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-1459 1537-274X 1537-274X |
| DOI: | 10.1080/01621459.2021.1896526 |