Job Shop Scheduling by Simulated Annealing
We describe an approximation algorithm for the problem of finding the minimum makespan in a job shop. The algorithm is based on simulated annealing, a generalization of the well known iterative improvement approach to combinatorial optimization problems. The generalization involves the acceptance of...
Uloženo v:
| Vydáno v: | Operations research Ročník 40; číslo 1; s. 113 - 125 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Linthicum, MD
INFORMS
01.01.1992
Operations Research Society of America Institute for Operations Research and the Management Sciences |
| Témata: | |
| ISSN: | 0030-364X, 1526-5463 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We describe an approximation algorithm for the problem of finding the minimum makespan in a job shop. The algorithm is based on simulated annealing, a generalization of the well known iterative improvement approach to combinatorial optimization problems. The generalization involves the acceptance of cost-increasing transitions with a nonzero probability to avoid getting stuck in local minima. We prove that our algorithm asymptotically converges in probability to a globally minimal solution, despite the fact that the Markov chains generated by the algorithm are generally not irreducible. Computational experiments show that our algorithm can find shorter makespans than two recent approximation approaches that are more tailored to the job shop scheduling problem. This is, however, at the cost of large running times. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 |
| ISSN: | 0030-364X 1526-5463 |
| DOI: | 10.1287/opre.40.1.113 |