Permutations uniquely identify states and unknown external forces in non-autonomous dynamical systems

It has been shown that a permutation can uniquely identify the joint set of an initial condition and a non-autonomous external force realization added to the deterministic system in given time series data. We demonstrate that our results can be applied to time series forecasting as well as the estim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chaos (Woodbury, N.Y.) Ročník 30; číslo 10; s. 103103
Hlavní autoři: Hirata, Yoshito, Sato, Yuzuru, Faranda, Davide
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.10.2020
ISSN:1089-7682, 1089-7682
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It has been shown that a permutation can uniquely identify the joint set of an initial condition and a non-autonomous external force realization added to the deterministic system in given time series data. We demonstrate that our results can be applied to time series forecasting as well as the estimation of common external forces. Thus, permutations provide a convenient description for a time series data set generated by non-autonomous dynamical systems.It has been shown that a permutation can uniquely identify the joint set of an initial condition and a non-autonomous external force realization added to the deterministic system in given time series data. We demonstrate that our results can be applied to time series forecasting as well as the estimation of common external forces. Thus, permutations provide a convenient description for a time series data set generated by non-autonomous dynamical systems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-7682
1089-7682
DOI:10.1063/5.0009450