Experimental design method to the weld bead geometry optimization for hybrid laser-MAG welding in a narrow chamfer configuration

The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability...

Full description

Saved in:
Bibliographic Details
Published in:Optics and laser technology Vol. 89; pp. 114 - 125
Main Authors: Bidi, Lyes, Le Masson, Philippe, Cicala, Eugen, Primault, Christophe
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 01.03.2017
Elsevier BV
Elsevier
Subjects:
ISSN:0030-3992, 1879-2545
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2mm deposited metal and must provide sufficient lateral penetration of about 0.2mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan. •Control the hybrid laser-MAG welding process in a narrow groove configuration.•Optimization of operating parameters of the welding by the experimental design approach.•The lateral penetration is a complex objective function.•The effects of the two experiment designs for the case of the lateral penetration of welding beads have been analyzed.
AbstractList The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2 mm deposited metal and must provide sufficient lateral penetration of about 0.2 mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4 mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan.
The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2mm deposited metal and must provide sufficient lateral penetration of about 0.2mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan.
The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process used is the hybrid laser-MAG welding, which consists in combining a laser beam with an MAG torch, to increase the productivity and reliability of the chamfer filling operation in several passes over the entire height of the chamfer. Each pass, providing 2mm deposited metal and must provide sufficient lateral penetration of about 0.2mm. The experimental design method has been used in order to estimate the operating parameters effects and their interactions on the lateral penetration on one hand, and to provide a mathematical model that relates the welding parameters of welding to the objective function lateral penetration on the other hand. Furthermore, in this study, we sought to the identification of the set of optimum parameters sufficient to comply with a constraint on the quality of weld bead. This constraint is to simultaneously obtain a total lateral penetration greater than 0.4mm and an H/L ratio less than 0.6. In order to obtain this condition, the multi-objective optimization (for both response functions) of a weld bead by the implementation of the plans method using two categories of Experiments Plans, on two levels has been used: the first is a complete experimental design (CED) with 32 tests and the second a fractional experimental design (FED) with 8 tests. A comparative analysis of the implementation of both types of experiments plans identified the advantages and disadvantages for each type of plan. •Control the hybrid laser-MAG welding process in a narrow groove configuration.•Optimization of operating parameters of the welding by the experimental design approach.•The lateral penetration is a complex objective function.•The effects of the two experiment designs for the case of the lateral penetration of welding beads have been analyzed.
Author Bidi, Lyes
Le Masson, Philippe
Primault, Christophe
Cicala, Eugen
Author_xml – sequence: 1
  givenname: Lyes
  surname: Bidi
  fullname: Bidi, Lyes
  email: bidi.lyes@gmail.com
  organization: University of Freres Mentouri-Constantine, Route de Ain El. Bey, Constantine, Algeria
– sequence: 2
  givenname: Philippe
  surname: Le Masson
  fullname: Le Masson, Philippe
  organization: Université Bretagne Sud, FRE CNRS 3744, IRDL, F-56100 Lorient, France
– sequence: 3
  givenname: Eugen
  surname: Cicala
  fullname: Cicala, Eugen
  organization: Laboratoire Inter disciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université de Bourgogne, IUT-12, Rue de la Fonderie, Le Creusot 71200, France
– sequence: 4
  givenname: Christophe
  surname: Primault
  fullname: Primault, Christophe
  organization: AREVA NP, Centre Technique, Département Soudage, BP40001 Saint Marcel – 71328 Chalon sur Saône Cedex, France
BackLink https://hal.science/hal-01697244$$DView record in HAL
BookMark eNqNkU9vGyEQxVGUSnHSfoYi9dIedgsL-4dDD1aUJpVc9ZKcEQuzXqxdcAEncU_96MV2lUMu7Qk0_N4w894lOnfeAULvKSkpoc3nTem3aVIxgS6rXCiJKAlvztCCdq0oqprX52hBCCMFE6K6QJcxbgjJSM0W6PfN8xaCncElNWED0a4dniGN3uDkcRoBP8FkcA_K4DX4_BT2OP9oZ_tLJesdHnzA474P1uA8BoTi-_L2KLJuja3DCjsVgn_CelTzAAFr7wa73oWj_C16M6gpwru_5xV6-Hpzf31XrH7cfrtergpdsy4VPVem1i0jNbB24BTyhYpu6BXXTDcDIdCStmv7StMaKkaI7vsODNVCCKo5u0KfTn1HNclt3liFvfTKyrvlSh5q2TrRVpw_0sx-PLHb4H_uICY526hhmpQDv4uSdg2vW15VXUY_vEI3fhdc3kRSwUXDuWBNptoTpYOPMcDwMgEl8pCi3MiXFOUhRUmEzBFl5ZdXSm3T0bgUlJ3-Q7886SF7-2ghyKgtOA3GBtBJGm__2eMPtX3CNg
CitedBy_id crossref_primary_10_1016_j_optlastec_2017_09_038
crossref_primary_10_1088_1742_6596_2160_1_012026
crossref_primary_10_1557_adv_2019_364
crossref_primary_10_1007_s40194_021_01085_4
crossref_primary_10_1016_j_oceaneng_2021_110411
crossref_primary_10_3390_met15030326
crossref_primary_10_1016_j_optlastec_2019_03_036
crossref_primary_10_1088_1742_6596_1676_1_012162
crossref_primary_10_1007_s42243_020_00503_z
crossref_primary_10_1007_s00170_024_13244_0
Cites_doi 10.1016/j.optlastec.2011.12.014
10.1016/j.optlastec.2010.03.019
10.1016/j.optlastec.2010.06.006
10.1016/j.optlaseng.2012.10.016
10.1016/j.msea.2004.11.026
10.1007/s00170-012-4721-z
10.1016/j.matdes.2014.03.070
10.1016/j.optlastec.2008.10.005
10.1016/j.apsusc.2007.02.144
10.1016/j.jmatprotec.2007.03.065
10.1016/j.matdes.2014.04.060
10.1016/j.jmatprotec.2007.03.001
10.1016/j.matdes.2009.11.043
10.1016/j.optlaseng.2008.04.009
10.1016/j.optlastec.2010.07.011
10.1016/j.optlastec.2015.04.021
10.1016/j.optlastec.2012.03.033
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright Elsevier BV Mar 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7U5
8FD
F28
FR3
H8D
L7M
1XC
DOI 10.1016/j.optlastec.2016.09.046
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
Aerospace Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-2545
EndPage 125
ExternalDocumentID oai:HAL:hal-01697244v1
10_1016_j_optlastec_2016_09_046
S0030399216304285
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
XFK
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7U5
8FD
F28
FR3
H8D
L7M
1XC
ID FETCH-LOGICAL-c538t-b4ad5c7305e37f41e05e198fba4c3c6f00e70787b2c15e2300cbb8ed1c9991c43
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389160800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-3992
IngestDate Sat Nov 29 15:10:14 EST 2025
Sun Nov 09 10:04:09 EST 2025
Sun Nov 09 06:41:25 EST 2025
Tue Nov 18 22:19:39 EST 2025
Sat Nov 29 03:05:54 EST 2025
Fri Feb 23 02:29:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chamfer configuration
Experimental design
Hybrid laser-MAG welding
Weld bead geometry
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c538t-b4ad5c7305e37f41e05e198fba4c3c6f00e70787b2c15e2300cbb8ed1c9991c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2721-8504
PQID 1949644936
PQPubID 2045422
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_01697244v1
proquest_miscellaneous_1864574228
proquest_journals_1949644936
crossref_primary_10_1016_j_optlastec_2016_09_046
crossref_citationtrail_10_1016_j_optlastec_2016_09_046
elsevier_sciencedirect_doi_10_1016_j_optlastec_2016_09_046
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Optics and laser technology
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Leo, Renna, Casalino, Olabi (bib18) 2015; 73
Goupy (bib20) 2001
Casalino, Mortello, Leo, Benyounis, Olabi (bib17) 2014; 61
Huang (bib10) 2010; 31
Bidi, Mattei, Cicala, Andrzejewski, Le Masson, Schroeder (bib12) 2011; 43
Cicala, Duffet, Andrzejewski, Grevey, Ignat (bib3) 2005; 395
dongxia, Lixiaoyan, Hedingyong, Niezuoren, Huanghui (bib14) 2012; 44
Cicala (bib21) 2005
Ilie, Cicala, Grevey, Mattei, Stoica (bib8) 2009; 41
Zhao, Wang, Wang, Wang, Chen, Liang (bib16) 2014; 60
Tani, Campana, Fortunato, Ascari (bib5) 2007; 253
Nichici, Cicală, Mee (bib19) 1996
El Rayes, Walz, Sepold (bib2) 2004; 83
Casalino, Campanelli, Ludovico (bib1) 2013; 68
Campana, Fortunato, Ascari, Tani, Tomesani (bib6) 2007; 191
Ascari, Fortunato, Orazi, Campana (bib13) 2012; 44
Moradi, Ghoreishi, Frostevarg, Kaplan (bib15) 2013; 51
Khan, Romoli, Fiaschi, Dini, Sarri (bib11) 2011; 43
Padmanaban, Balasubramanian (bib9) 2010; 42
Casalino (bib4) 2007; 191
Soveja, Cicala, Grevey, Jouvard (bib7) 2008; 46
Huang (10.1016/j.optlastec.2016.09.046_bib10) 2010; 31
Casalino (10.1016/j.optlastec.2016.09.046_bib4) 2007; 191
Moradi (10.1016/j.optlastec.2016.09.046_bib15) 2013; 51
Casalino (10.1016/j.optlastec.2016.09.046_bib1) 2013; 68
Ascari (10.1016/j.optlastec.2016.09.046_bib13) 2012; 44
Campana (10.1016/j.optlastec.2016.09.046_bib6) 2007; 191
Tani (10.1016/j.optlastec.2016.09.046_bib5) 2007; 253
Cicala (10.1016/j.optlastec.2016.09.046_bib21) 2005
Bidi (10.1016/j.optlastec.2016.09.046_bib12) 2011; 43
Soveja (10.1016/j.optlastec.2016.09.046_bib7) 2008; 46
dongxia (10.1016/j.optlastec.2016.09.046_bib14) 2012; 44
El Rayes (10.1016/j.optlastec.2016.09.046_bib2) 2004; 83
Ilie (10.1016/j.optlastec.2016.09.046_bib8) 2009; 41
Khan (10.1016/j.optlastec.2016.09.046_bib11) 2011; 43
Casalino (10.1016/j.optlastec.2016.09.046_bib17) 2014; 61
Zhao (10.1016/j.optlastec.2016.09.046_bib16) 2014; 60
Padmanaban (10.1016/j.optlastec.2016.09.046_bib9) 2010; 42
Nichici (10.1016/j.optlastec.2016.09.046_bib19) 1996
Leo (10.1016/j.optlastec.2016.09.046_bib18) 2015; 73
Goupy (10.1016/j.optlastec.2016.09.046_bib20) 2001
Cicala (10.1016/j.optlastec.2016.09.046_bib3) 2005; 395
References_xml – volume: 83
  start-page: 147s
  year: 2004
  end-page: 153s
  ident: bib2
  article-title: The influence of various hybrid welding parameters on bead geometry
  publication-title: Weld. Res. Suppl.
– volume: 395
  start-page: 1
  year: 2005
  end-page: 9
  ident: bib3
  article-title: Hot cracking in Al–Mg–Si alloy laser welding – operating parameters and their effects
  publication-title: Mater. Sci. Eng. A
– volume: 73
  start-page: 118
  year: 2015
  end-page: 126
  ident: bib18
  article-title: Effect of power distribution on the weld quality during hybrid laser welding of an Al-Mg alloy”
  publication-title: Opt. Laser Technol.
– year: 2001
  ident: bib20
  article-title: Introduction aux plans d′expériences
– volume: 191
  start-page: 106
  year: 2007
  end-page: 110
  ident: bib4
  article-title: Statistical analysis of MIG-laser CO
  publication-title: J. Mater. Process. Technol.
– start-page: 320
  year: 2005
  ident: bib21
  article-title: Metoda experimentelor factoriale, proiectarea experimentelor, modelare, optimizare
  publication-title: Ed. Politeh. Timiş.
– volume: 44
  start-page: 1485
  year: 2012
  end-page: 1490
  ident: bib13
  article-title: The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy
  publication-title: Opt. Laser Technol.
– volume: 41
  start-page: 608
  year: 2009
  end-page: 614
  ident: bib8
  article-title: Diode laser welding of ABS: experiments and process modeling
  publication-title: Opt. Laser Technol.
– volume: 61
  start-page: 191
  year: 2014
  end-page: 198
  ident: bib17
  article-title: Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy
  publication-title: Mater. Des.
– volume: 43
  start-page: 158
  year: 2011
  end-page: 172
  ident: bib11
  article-title: Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration
  publication-title: Opt. Laser Technol.
– volume: 68
  start-page: 209
  year: 2013
  end-page: 216
  ident: bib1
  article-title: Laser-arc hybrid welding of wrought to selective laser molten stainless steel
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 253
  start-page: 8050
  year: 2007
  end-page: 8053
  ident: bib5
  article-title: The influence of shielding gas in hybrid laser-MIG welding
  publication-title: Appl. Surf. Sci.
– volume: 31
  start-page: 2488
  year: 2010
  end-page: 2495
  ident: bib10
  article-title: Effects of activating flux on the welded joint characteristics in gas metal arc welding
  publication-title: Mater. Des.
– volume: 51
  start-page: 481
  year: 2013
  end-page: 487
  ident: bib15
  article-title: An investigation on stability of laser hybrid arc welding
  publication-title: Opt. Lasers Eng.
– volume: 46
  start-page: 671
  year: 2008
  end-page: 678
  ident: bib7
  article-title: Optimisation of TA6V alloy surface laser texturing using an experimental design approach
  publication-title: Opt. Lasers Eng.
– volume: 43
  start-page: 537
  year: 2011
  end-page: 545
  ident: bib12
  article-title: The use of exploratory experimental designs combined with thermal numerical modelling to obtain a predictive tool for hybrid laser/MIG welding and coating processes
  publication-title: Opt. Laser Technol.
– volume: 44
  start-page: 2020
  year: 2012
  end-page: 2025
  ident: bib14
  article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach
  publication-title: Opt. Laser Technol.
– volume: 191
  start-page: 111
  year: 2007
  end-page: 113
  ident: bib6
  article-title: The influence of arc transfer mode in hybrid laser-MIG welding
  publication-title: J. Mater. Process. Technol.
– volume: 42
  start-page: 1253
  year: 2010
  end-page: 1260
  ident: bib9
  article-title: Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy
  publication-title: Opt. Laser Technol.
– start-page: 163
  year: 1996
  ident: bib19
  article-title: Prelucrarea datelor experimentale
– volume: 60
  start-page: 479
  year: 2014
  end-page: 489
  ident: bib16
  article-title: Process analysis and optimization for failure energy of spot welded titanium alloy
  publication-title: Mater. Des.
– volume: 44
  start-page: 1485
  year: 2012
  ident: 10.1016/j.optlastec.2016.09.046_bib13
  article-title: The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2011.12.014
– volume: 83
  start-page: 147s
  year: 2004
  ident: 10.1016/j.optlastec.2016.09.046_bib2
  article-title: The influence of various hybrid welding parameters on bead geometry
  publication-title: Weld. Res. Suppl.
– start-page: 163
  year: 1996
  ident: 10.1016/j.optlastec.2016.09.046_bib19
– volume: 42
  start-page: 1253
  year: 2010
  ident: 10.1016/j.optlastec.2016.09.046_bib9
  article-title: Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2010.03.019
– start-page: 320
  year: 2005
  ident: 10.1016/j.optlastec.2016.09.046_bib21
  article-title: Metoda experimentelor factoriale, proiectarea experimentelor, modelare, optimizare
  publication-title: Ed. Politeh. Timiş.
– volume: 43
  start-page: 158
  year: 2011
  ident: 10.1016/j.optlastec.2016.09.046_bib11
  article-title: Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2010.06.006
– volume: 51
  start-page: 481
  year: 2013
  ident: 10.1016/j.optlastec.2016.09.046_bib15
  article-title: An investigation on stability of laser hybrid arc welding
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2012.10.016
– volume: 395
  start-page: 1
  year: 2005
  ident: 10.1016/j.optlastec.2016.09.046_bib3
  article-title: Hot cracking in Al–Mg–Si alloy laser welding – operating parameters and their effects
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2004.11.026
– volume: 68
  start-page: 209
  year: 2013
  ident: 10.1016/j.optlastec.2016.09.046_bib1
  article-title: Laser-arc hybrid welding of wrought to selective laser molten stainless steel
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4721-z
– year: 2001
  ident: 10.1016/j.optlastec.2016.09.046_bib20
– volume: 60
  start-page: 479
  year: 2014
  ident: 10.1016/j.optlastec.2016.09.046_bib16
  article-title: Process analysis and optimization for failure energy of spot welded titanium alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.03.070
– volume: 41
  start-page: 608
  year: 2009
  ident: 10.1016/j.optlastec.2016.09.046_bib8
  article-title: Diode laser welding of ABS: experiments and process modeling
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2008.10.005
– volume: 253
  start-page: 8050
  year: 2007
  ident: 10.1016/j.optlastec.2016.09.046_bib5
  article-title: The influence of shielding gas in hybrid laser-MIG welding
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.02.144
– volume: 191
  start-page: 106
  year: 2007
  ident: 10.1016/j.optlastec.2016.09.046_bib4
  article-title: Statistical analysis of MIG-laser CO2 hybrid welding of Al- Mg alloy
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.03.065
– volume: 61
  start-page: 191
  year: 2014
  ident: 10.1016/j.optlastec.2016.09.046_bib17
  article-title: Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.04.060
– volume: 191
  start-page: 111
  year: 2007
  ident: 10.1016/j.optlastec.2016.09.046_bib6
  article-title: The influence of arc transfer mode in hybrid laser-MIG welding
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.03.001
– volume: 31
  start-page: 2488
  year: 2010
  ident: 10.1016/j.optlastec.2016.09.046_bib10
  article-title: Effects of activating flux on the welded joint characteristics in gas metal arc welding
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.11.043
– volume: 46
  start-page: 671
  year: 2008
  ident: 10.1016/j.optlastec.2016.09.046_bib7
  article-title: Optimisation of TA6V alloy surface laser texturing using an experimental design approach
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2008.04.009
– volume: 43
  start-page: 537
  issue: 3
  year: 2011
  ident: 10.1016/j.optlastec.2016.09.046_bib12
  article-title: The use of exploratory experimental designs combined with thermal numerical modelling to obtain a predictive tool for hybrid laser/MIG welding and coating processes
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2010.07.011
– volume: 73
  start-page: 118
  year: 2015
  ident: 10.1016/j.optlastec.2016.09.046_bib18
  article-title: Effect of power distribution on the weld quality during hybrid laser welding of an Al-Mg alloy”
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2015.04.021
– volume: 44
  start-page: 2020
  year: 2012
  ident: 10.1016/j.optlastec.2016.09.046_bib14
  article-title: Optimization of weld bead geometry in laser welding with filler wire process using Taguchi’s approach
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.03.033
SSID ssj0004653
Score 2.2159207
Snippet The work presented in this paper relates to the optimization of operating parameters of the welding by the experimental design approach. The welding process...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms Beads
Chamfer configuration
Chamfering
Comparative analysis
Design of experiments
Design optimization
Engineering Sciences
Experimental design
Hybrid laser-MAG welding
Laser beam welding
Mathematical models
Metal active gas welding
Multiple objective analysis
Optimization
Parameter estimation
Parameter identification
Parameters
Penetration
Productivity
Response functions
Studies
Weld bead geometry
Welding
Welding parameters
Title Experimental design method to the weld bead geometry optimization for hybrid laser-MAG welding in a narrow chamfer configuration
URI https://dx.doi.org/10.1016/j.optlastec.2016.09.046
https://www.proquest.com/docview/1949644936
https://www.proquest.com/docview/1864574228
https://hal.science/hal-01697244
Volume 89
WOSCitedRecordID wos000389160800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2545
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004653
  issn: 0030-3992
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa6DSR4QDCY6BjIIMRLlalpfjjmraCOgbpuDx3qm5U4TtepS7s2Ldsbfxp_Gnexk6ZsMHjgJYqS2kl9X-7O9t13hLxt-TKBDzC24siPLJcx3-JMwnfF0RyH0rWTKC82wXq9YDDgJ7XajyIXZjlmaRpcXfHpfxU1XANhY-rsP4i77BQuwDkIHY4gdjj-leA7Vc7-OA_QMHWiCz_zmxqD2wnCbQzVBG7hLjtojguTkplHHp5dYypXA3xrNbOO2p_yRib_JWykOXUjZg1fJGqGoevJaLiYraRs3N3jackCnffUyG6s5H8YxTpB-3oVzXgEHr2OBtDrPVNMOyp3SxBWoU7SGa4S2U6QNmMxzqJ1yoTqqgZYyjKsSy-1lek2X6va2wGbwXXtvH2lFXbAuAWTXK-q0XVRIqOSbZ2kesNU6FWL830YYBgB-PsY5-fnpLfuLeTcvWNxcNrtin5n0H83vbSwbhnu75siLhtkq8U8Dnp1q_25M_hSyc01TKjm3ddiDG999u88pI0zDNX9xWPI3aD-Y_LIzF9oW-PuCampdJs8rLBabpP7eVSxnD8l36tYpBqLVGORZhMKWKQIK4pYpAUWaRWLFLBINRZpiUVqsEhHKQ2pxiI1WKRrWHxGTg86_Y-Hlin5YUmwvJkVuWHsSbA6nnJY4toKTmweJFHoSkf6SbOpkJ6KRS1pewqmz00ZRYGKbYkTHek6O2QznaTqOaGBHTqqJaUbe5ErwczIAOcLMmglvgwDp078YpiFNHz4WJZlLIrAx3NRykegfESTC5BPnTTLhlNNCXN3k_eFHIXxbLXHKgCNdzd-A5IvH4V88IftrsBrSKXEwEFf2nWyVwBDGGU0FzZ3Ocx3uAN9vC5vg_3ATcEwVZMF_CbwXY8hEeDun7t4QR6sPtQ9spnNFuoluSeX2Wg-e2Vg_xPlau1c
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+design+method+to+the+weld+bead+geometry+optimization+for+hybrid+laser-MAG+welding+in+a+narrow+chamfer+configuration&rft.jtitle=Optics+and+laser+technology&rft.au=Bidi%2C+Lyes&rft.au=Masson%2C+Philippe+Le&rft.au=Cicala%2C+Eugen&rft.au=Primaultb%2C+Christophe&rft.date=2017-03-01&rft.pub=Elsevier+BV&rft.issn=0030-3992&rft.eissn=1879-2545&rft.volume=89&rft.spage=114&rft_id=info:doi/10.1016%2Fj.optlastec.2016.09.046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon