An Optimal Approximate Dynamic Programming Algorithm for the Lagged Asset Acquisition Problem
We consider a multistage asset acquisition problem where assets are purchased now, at a price that varies randomly over time, to be used to satisfy a random demand at a particular point in time in the future. We provide a rare proof of convergence for an approximate dynamic programming algorithm usi...
Uloženo v:
| Vydáno v: | Mathematics of operations research Ročník 34; číslo 1; s. 210 - 237 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Linthicum
INFORMS
01.02.2009
Institute for Operations Research and the Management Sciences |
| Témata: | |
| ISSN: | 0364-765X, 1526-5471 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider a multistage asset acquisition problem where assets are purchased now, at a price that varies randomly over time, to be used to satisfy a random demand at a particular point in time in the future. We provide a rare proof of convergence for an approximate dynamic programming algorithm using pure exploitation, where the states we visit depend on the decisions produced by solving the approximate problem. The resulting algorithm does not require knowing the probability distribution of prices or demands, nor does it require any assumptions about its functional form. The algorithm and its proof rely on the fact that the true value function is a family of piecewise linear concave functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0364-765X 1526-5471 |
| DOI: | 10.1287/moor.1080.0360 |