An Optimal Approximate Dynamic Programming Algorithm for the Lagged Asset Acquisition Problem

We consider a multistage asset acquisition problem where assets are purchased now, at a price that varies randomly over time, to be used to satisfy a random demand at a particular point in time in the future. We provide a rare proof of convergence for an approximate dynamic programming algorithm usi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics of operations research Ročník 34; číslo 1; s. 210 - 237
Hlavní autoři: Nascimento, Juliana M, Powell, Warren B
Médium: Journal Article
Jazyk:angličtina
Vydáno: Linthicum INFORMS 01.02.2009
Institute for Operations Research and the Management Sciences
Témata:
ISSN:0364-765X, 1526-5471
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a multistage asset acquisition problem where assets are purchased now, at a price that varies randomly over time, to be used to satisfy a random demand at a particular point in time in the future. We provide a rare proof of convergence for an approximate dynamic programming algorithm using pure exploitation, where the states we visit depend on the decisions produced by solving the approximate problem. The resulting algorithm does not require knowing the probability distribution of prices or demands, nor does it require any assumptions about its functional form. The algorithm and its proof rely on the fact that the true value function is a family of piecewise linear concave functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.1080.0360