Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health
Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in...
Saved in:
| Published in: | Redox biology Vol. 12; pp. 929 - 936 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier
01.08.2017
|
| Subjects: | |
| ISSN: | 2213-2317, 2213-2317 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R
=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. |
|---|---|
| AbstractList | Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R
=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100 g of the food used to inhibit lipid peroxidation of 200 g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS–rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. Keywords: Stomach, Red-meat, Lipid-peroxidation, Malondialdehyde – MDA, Postprandial, Polyphenols Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health.Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100g of the food used to inhibit lipid peroxidation of 200g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS-rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive cytotoxic aldehydes including malondialdehyde (MDA). MDA is absorbed in the blood system reacts with cell proteins to form adducts resulting in advanced lipid peroxidation end products (ALEs), producing dysfunctional proteins and cellular responses. The pathological consequences of ALEs tissue damage include inflammation and increased risk for many chronic diseases that are associated with a Western-type diet. In earlier studies we used the simulated gastric fluid (SGF) condition to show that the in vitro generation of MDA from red meat closely resembles that in human blood after consumption the same amount of meat. In vivo and in vitro MDA generations were similarly suppressed by polyphenol-rich beverages (red wine and coffee) consumed with the meal. The present study uses the in vitro SGF to assess the capacity of more than 50 foods of plant origin to suppress red meat peroxidation and formation of MDA. The results were calculated as reducing POS index (rPOSI) which represents the capacity in percent of 100 g of the food used to inhibit lipid peroxidation of 200 g red-meat a POSI enhancer (ePOSI). The index permitted to extrapolate the need of rPOSI from a food alone or in ensemble such Greek salad, to neutralize an ePOSI in stomach medium, (ePOS–rPOSI=0). The correlation between the rPOSI and polyphenols in the tested foods was R2=0.75. The Index was validated by comparison of the predicted rPOSI for a portion of Greek salad or red-wine to real inhibition of POS enhancers. The POS Index permit to better balancing nutrition for human health. • Absorption of diet MDA and ALEs in blood could induce risk factors for CVD and other diseases. • Red-meat generated MDA and ALEs in SGF are defined as ePOSI. • Reducing agents present in plant foods, reduced MDA and ALEs in SGF, are defined as rPOSI. • Calculated plant reducing agents by rPOSI was found to highly predict the reducing of ePOSI. • The POS index would help to quantify nutrition for promoting human health. |
| Author | Rabkin, Boris Tirosh, Oren Selhub, Jacob Shacham, Inbal Shpaizer, Adi Kanner, Joseph |
| AuthorAffiliation | b Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel c Vitamin Metabolism and Aging, Jean Mayer USDA at Tufts University, Boston, MA, USA a Department of Food Science, ARO Volcani Center, Bet-Dagan, Israel |
| AuthorAffiliation_xml | – name: c Vitamin Metabolism and Aging, Jean Mayer USDA at Tufts University, Boston, MA, USA – name: b Institute of Biochemistry, Food Science and Nutrtion, Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel – name: a Department of Food Science, ARO Volcani Center, Bet-Dagan, Israel |
| Author_xml | – sequence: 1 givenname: Joseph surname: Kanner fullname: Kanner, Joseph – sequence: 2 givenname: Jacob surname: Selhub fullname: Selhub, Jacob – sequence: 3 givenname: Adi surname: Shpaizer fullname: Shpaizer, Adi – sequence: 4 givenname: Boris surname: Rabkin fullname: Rabkin, Boris – sequence: 5 givenname: Inbal surname: Shacham fullname: Shacham, Inbal – sequence: 6 givenname: Oren surname: Tirosh fullname: Tirosh, Oren |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28478382$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1u3CAUha0qVZOmeYJKFct0MS5gbHAXlaqoPyNFmqhJ1-hiw5iRDVPA0eQB-t5lMmmUdFE2IDjnu-je87o4ct7ponhLcEkwaT5syqB7vyspJrzErMS0fVGcUEqqBa0IP3pyPi7OYtzgvIRglOBXxTEVjItK0JPi9489Bg1-0j4miDYi61BMfoJuQJPu7TwhdYeM9338iG4Gja6ycBvA9RZGtNrZHpK91eg6BR0jWrpe79D51ep6-T67AlIwguusWyM3p2CT9Q5lMxrmCRwaNIxpeFO8NDBGffawnxY_v365ufi-uFx9W158vlx0dcXToq2Mosb0DIhi3KiGa2g5pzVlShkDoERNhWpbaOuOE861bgSuGmWEIdi01WmxPHB7Dxu5DXaCcCc9WHl_4cNaQki2G7WsKBZtV1EKvGe5BLAmk0VdE6Oh6XhmfTqwtrPKfeq0SwHGZ9DnL84Ocu1vZc1ogyuSAecPgOB_zTomOdnY6TG3S_s5SiLahlHMGc7Sd09rPRb5O8csqA6CLvgYgzaPEoLlPjByI-8DI_eBkZjJHJjsav9xdTbBfkL5w3b8r_cPLbXKMw |
| CitedBy_id | crossref_primary_10_1038_s41538_024_00282_x crossref_primary_10_3390_antiox10081262 crossref_primary_10_3390_antiox11081513 crossref_primary_10_3390_nu16142274 crossref_primary_10_1016_j_envres_2019_04_035 crossref_primary_10_1080_09637486_2019_1677570 crossref_primary_10_3390_molecules30163356 crossref_primary_10_1007_s13410_022_01095_y crossref_primary_10_1016_j_foodres_2018_03_034 crossref_primary_10_1016_j_biopha_2018_07_053 crossref_primary_10_3390_ijms25094769 crossref_primary_10_3390_biom10010146 crossref_primary_10_1016_j_foodchem_2021_129246 crossref_primary_10_3390_molecules25184105 crossref_primary_10_3390_antiox9070638 crossref_primary_10_1016_j_foodchem_2024_141774 crossref_primary_10_3389_fendo_2025_1393883 crossref_primary_10_1016_j_fbio_2022_101747 crossref_primary_10_3390_diseases9040066 crossref_primary_10_1016_j_ijgfs_2025_101147 crossref_primary_10_1155_2021_9965916 crossref_primary_10_1111_jfbc_13624 crossref_primary_10_3390_nu10101388 crossref_primary_10_1016_j_ijbiomac_2024_130897 crossref_primary_10_1016_j_foodchem_2021_129241 crossref_primary_10_3390_biom13060886 crossref_primary_10_3390_molecules24224028 crossref_primary_10_1016_j_foodres_2024_114969 crossref_primary_10_1038_s41598_025_98977_y crossref_primary_10_1111_1750_3841_14460 crossref_primary_10_1080_10715762_2019_1612059 crossref_primary_10_1002_cche_10039 crossref_primary_10_3390_antiox12122103 crossref_primary_10_3390_ijms21176451 crossref_primary_10_1016_j_foodchem_2024_141085 crossref_primary_10_3390_nu11102373 crossref_primary_10_1016_j_bbapap_2022_140797 crossref_primary_10_3390_antiox9090797 crossref_primary_10_3390_foods10092230 crossref_primary_10_3390_antiox10050665 crossref_primary_10_3390_ijms242015068 |
| Cites_doi | 10.1016/j.atherosclerosis.2015.01.026 10.1016/S0891-5849(01)00718-3 10.1021/jf703700d 10.1021/jf040400w 10.1002/biof.1018 10.1007/s11745-005-1402-4 10.3109/10715762.2015.1040009 10.1172/JCI1314 10.1155/2017/8361493 10.1002/mnfr.200600303 10.1016/j.bbrc.2015.01.140 10.1002/mnfr.201200557 10.1021/jf040402g 10.1186/1741-7015-12-77 10.1111/dme.12120 10.1080/10408398709527457 10.1038/nature10146 10.1021/jf60226a057 10.3945/an.115.008433 10.1016/0140-6736(93)90206-V 10.1016/j.mam.2010.09.006 10.1074/jbc.271.17.9982 10.1007/s11154-016-9341-8 10.1016/j.redox.2016.01.010 10.1016/j.abb.2015.11.014 10.1039/C4FO00269E 10.1111/j.1365-2125.2012.04272.x 10.1073/pnas.94.12.6474 10.3945/jn.110.131490 10.1016/j.foodchem.2011.08.055 10.1681/ASN.2014101047 10.1016/j.jff.2012.09.008 10.18632/oncotarget.6920 10.2337/dc11-0091 10.1096/fj.07-9041com 10.1021/jf60219a025 10.3109/10715762.2015.1036052 10.1016/0309-1740(94)90040-X 10.1016/0003-9861(85)90282-6 10.1021/jf040401o 10.1007/BF02534512 10.1021/jf300193g 10.1016/j.numecd.2013.12.014 10.1021/acs.jafc.5b02149 10.1016/j.freeradbiomed.2004.09.017 10.1016/j.cardiores.2006.10.004 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017. Published by Elsevier B.V. 2017 The Authors. Published by Elsevier B.V. 2017 |
| Copyright_xml | – notice: Copyright © 2017. Published by Elsevier B.V. – notice: 2017 The Authors. Published by Elsevier B.V. 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.redox.2017.04.029 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2213-2317 |
| EndPage | 936 |
| ExternalDocumentID | oai_doaj_org_article_32089c322a7d4725a468b98551fea6c7 PMC5426031 28478382 10_1016_j_redox_2017_04_029 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 457 53G 5VS AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABGSF ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADRAZ ADUVX ADVLN AENEX AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV CITATION DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB M48 MO0 M~E O-L O9- OK1 RIG ROL RPM SSZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c537t-93fb2ffd4a1b47fb67ea9772524bbffaab8528b99a95c7177ee68036bf8f10f93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403328700092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2213-2317 |
| IngestDate | Fri Oct 03 12:51:03 EDT 2025 Tue Sep 30 16:05:10 EDT 2025 Fri Jul 11 07:59:32 EDT 2025 Mon Jul 21 06:08:21 EDT 2025 Wed Nov 05 20:49:51 EST 2025 Tue Nov 18 22:33:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Red-meat Polyphenols Stomach Malondialdehyde – MDA Lipid-peroxidation Postprandial |
| Language | English |
| License | Copyright © 2017. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c537t-93fb2ffd4a1b47fb67ea9772524bbffaab8528b99a95c7177ee68036bf8f10f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/32089c322a7d4725a468b98551fea6c7 |
| PMID | 28478382 |
| PQID | 1896420740 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_32089c322a7d4725a468b98551fea6c7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5426031 proquest_miscellaneous_1896420740 pubmed_primary_28478382 crossref_primary_10_1016_j_redox_2017_04_029 crossref_citationtrail_10_1016_j_redox_2017_04_029 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Redox biology |
| PublicationTitleAlternate | Redox Biol |
| PublicationYear | 2017 |
| Publisher | Elsevier |
| Publisher_xml | – name: Elsevier |
| References | Libby (10.1016/j.redox.2017.04.029_bib1) 2011; 473 Kanner (10.1016/j.redox.2017.04.029_bib35) 2001; 31 Halliwell (10.1016/j.redox.2017.04.029_bib48) 2013; 75 Amaki (10.1016/j.redox.2017.04.029_bib17) 2004; 90 Gorelik (10.1016/j.redox.2017.04.029_bib20) 2008; 56 Kanner (10.1016/j.redox.2017.04.029_bib38) 1978; 26 Kadiiska (10.1016/j.redox.2017.04.029_bib19) 2005; 38 Ursini (10.1016/j.redox.2017.04.029_bib47) 2016; 8 Gorelik (10.1016/j.redox.2017.04.029_bib21) 2013; 5 Kanner (10.1016/j.redox.2017.04.029_bib4) 2012; 60 Koschinsky (10.1016/j.redox.2017.04.029_bib22) 1997; 94 Croft (10.1016/j.redox.2017.04.029_bib26) 2016; 595 Tresserra-Rimbau (10.1016/j.redox.2017.04.029_bib31) 2014; 24 Gobert (10.1016/j.redox.2017.04.029_bib30) 2014; 5 Tresserra-Rimbau (10.1016/j.redox.2017.04.029_bib32) 2014; 12 Lapidot (10.1016/j.redox.2017.04.029_bib40) 2005; 53 Stinghen (10.1016/j.redox.2017.04.029_bib11) 2016; 27 Lapidot (10.1016/j.redox.2017.04.029_bib43) 2005; 53 Hull (10.1016/j.redox.2017.04.029_bib44) 2012; 131 Gorelik (10.1016/j.redox.2017.04.029_bib8) 2008; 22 Li (10.1016/j.redox.2017.04.029_bib28) 2013; 30 Suomela (10.1016/j.redox.2017.04.029_bib6) 2005; 40 Draper (10.1016/j.redox.2017.04.029_bib5) 1984; 19 Kanner (10.1016/j.redox.2017.04.029_bib41) 1987; 25 Del Turco (10.1016/j.redox.2017.04.029_bib10) 2012; 38 Urquiaga (10.1016/j.redox.2017.04.029_bib29) 2017; 2017 Gorelik (10.1016/j.redox.2017.04.029_bib37) 2005; 53 Fu (10.1016/j.redox.2017.04.029_bib45) 1996; 271 Uchida (10.1016/j.redox.2017.04.029_bib14) 2015; 49 Kanner (10.1016/j.redox.2017.04.029_bib3) 2007; 51 Tomita (10.1016/j.redox.2017.04.029_bib12) 2016; 7 Steinberg (10.1016/j.redox.2017.04.029_bib16) 1989; 320 Ito (10.1016/j.redox.2017.04.029_bib18) 2015; 239 Sirota (10.1016/j.redox.2017.04.029_bib33) 2013; 57 Uribarri (10.1016/j.redox.2017.04.029_bib9) 2015; 6 Rabbani (10.1016/j.redox.2017.04.029_bib15) 2015; 458 Frankel (10.1016/j.redox.2017.04.029_bib23) 1993; 341 Grootveld (10.1016/j.redox.2017.04.029_bib7) 1998; 101 Tirosh (10.1016/j.redox.2017.04.029_bib34) 2015; 63 Kanner (10.1016/j.redox.2017.04.029_bib36) 1985; 237 Ceriello (10.1016/j.redox.2017.04.029_bib2) 2016; 17 Fraga (10.1016/j.redox.2017.04.029_bib24) 2010; 31 Uribarri (10.1016/j.redox.2017.04.029_bib46) 2011; 34 Wei (10.1016/j.redox.2017.04.029_bib13) 2015; 49 Kanner (10.1016/j.redox.2017.04.029_bib42) 1994; 36 Halliwell (10.1016/j.redox.2017.04.029_bib25) 2007; 73 Hollman (10.1016/j.redox.2017.04.029_bib27) 2011; 141 Kanner (10.1016/j.redox.2017.04.029_bib39) 1979; 27 26165509 - J Agric Food Chem. 2015 Aug 12;63(31):7016-23 25968950 - Free Radic Res. 2015;49(7):896-904 6521608 - Lipids. 1984 Nov;19(11):836-43 9502761 - J Clin Invest. 1998 Mar 15;101(6):1210-8 23322503 - Mol Nutr Food Res. 2013 May;57(5):916-9 22061459 - Meat Sci. 1994;36(1-2):169-89 16094852 - Lipids. 2005 May;40(5):437-44 15853377 - J Agric Food Chem. 2005 May 4;53(9):3391-6 27095227 - Arch Biochem Biophys. 2016 Apr 1;595:120-4 26178030 - Adv Nutr. 2015 Jul 15;6(4):461-73 8626637 - J Biol Chem. 1996 Apr 26;271(17):9982-6 24552647 - Nutr Metab Cardiovasc Dis. 2014 Jun;24(6):639-47 544662 - J Agric Food Chem. 1979 Nov-Dec;27(6):1316-8 26880302 - Rev Endocr Metab Disord. 2016 Mar;17 (1):111-6 15721980 - Free Radic Biol Med. 2005 Mar 15;38(6):698-710 23320544 - Diabet Med. 2013 May;30(5):590-5 3304843 - Crit Rev Food Sci Nutr. 1987;25(4):317-64 20854840 - Mol Aspects Med. 2010 Dec;31(6):435-45 18540628 - J Agric Food Chem. 2008 Jul 9;56(13):5002-7 9177242 - Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6474-9 22420826 - Br J Clin Pharmacol. 2013 Mar;75(3):637-44 15853376 - J Agric Food Chem. 2005 May 4;53(9):3383-90 25682029 - Atherosclerosis. 2015 Apr;239(2):311-7 26783961 - Oncotarget. 2016 Mar 8;7(10 ):11018-32 21709297 - Diabetes Care. 2011 Jul;34(7):1610-6 2648148 - N Engl J Med. 1989 Apr 6;320(14):915-24 28243359 - Oxid Med Cell Longev. 2017;2017:8361493 25029433 - Food Funct. 2014 Sep;5(9):2166-74 22530973 - J Agric Food Chem. 2012 Sep 12;60(36):8790-6 11728810 - Free Radic Biol Med. 2001 Dec 1;31(11):1388-95 25968945 - Free Radic Res. 2015;49(7):905-17 25666945 - Biochem Biophys Res Commun. 2015 Mar 6;458(2):221-6 8094487 - Lancet. 1993 Feb 20;341(8843):454-7 3977316 - Arch Biochem Biophys. 1985 Mar;237(2):314-21 17712060 - FASEB J. 2008 Jan;22(1):41-6 15853378 - J Agric Food Chem. 2005 May 4;53(9):3397-402 21593864 - Nature. 2011 May 19;473(7347):317-25 15367526 - Heart. 2004 Oct;90(10):1211-3 21451125 - J Nutr. 2011 May;141(5):989S-1009S 17854006 - Mol Nutr Food Res. 2007 Sep;51(9):1094-101 26311460 - J Am Soc Nephrol. 2016 Feb;27(2):354-70 24886552 - BMC Med. 2014 May 13;12:77 22488968 - Biofactors. 2012 Jul-Aug;38(4):266-74 26820564 - Redox Biol. 2016 Aug;8:205-15 17141749 - Cardiovasc Res. 2007 Jan 15;73(2):341-7 |
| References_xml | – volume: 239 start-page: 311 year: 2015 ident: 10.1016/j.redox.2017.04.029_bib18 article-title: Malondialdehyde-modified low-density lipoprotein is a predictor of cardiac events in patients with stable angina on lipid-lowering therapy after percutaneous coronary intervention using drug-eluting stent publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2015.01.026 – volume: 31 start-page: 1388 year: 2001 ident: 10.1016/j.redox.2017.04.029_bib35 article-title: The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00718-3 – volume: 56 start-page: 5002 year: 2008 ident: 10.1016/j.redox.2017.04.029_bib20 article-title: The stomach as a "bioreactor": when red meat meets red wine publication-title: J. Agric. Food Chem. doi: 10.1021/jf703700d – volume: 53 start-page: 3391 year: 2005 ident: 10.1016/j.redox.2017.04.029_bib43 article-title: Lipid hydroperoxidase activity of myoglobin and phenolic antioxidants in simulated gastric fluid publication-title: J. Agric. Food Chem. doi: 10.1021/jf040400w – volume: 38 start-page: 266 year: 2012 ident: 10.1016/j.redox.2017.04.029_bib10 article-title: An update on advanced glycation endproducts and atherosclerosis publication-title: BioFactors doi: 10.1002/biof.1018 – volume: 40 start-page: 437 year: 2005 ident: 10.1016/j.redox.2017.04.029_bib6 article-title: Triacylglycerol oxidation in pig lipoproteins after a diet rich in oxidized sunflower seed oil publication-title: Lipids doi: 10.1007/s11745-005-1402-4 – volume: 49 start-page: 905 year: 2015 ident: 10.1016/j.redox.2017.04.029_bib13 article-title: Covalent modification of DNA by alpha, beta-unsaturated aldehydes derived from lipid peroxidation: recent progress and challenges publication-title: Free Radic. Res. doi: 10.3109/10715762.2015.1040009 – volume: 101 start-page: 1210 year: 1998 ident: 10.1016/j.redox.2017.04.029_bib7 article-title: In vivo absorption, metabolism, and urinary excretion of alpha, beta-unsaturated aldehydes in experimental animals. relevance to the development of cardiovascular diseases by the dietary ingestion of thermally stressed polyunsaturate-rich culinary oils publication-title: J. Clin. Investig. doi: 10.1172/JCI1314 – volume: 2017 start-page: 8361493 year: 2017 ident: 10.1016/j.redox.2017.04.029_bib29 article-title: A Chilean berry concentrate protects against postprandial oxidative stress and increases plasma antioxidant activity in healthy humans publication-title: Oxid. Med. Cell Long. doi: 10.1155/2017/8361493 – volume: 51 start-page: 1094 year: 2007 ident: 10.1016/j.redox.2017.04.029_bib3 article-title: Dietary advanced lipid oxidation endproducts are risk factors to human health publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200600303 – volume: 458 start-page: 221 year: 2015 ident: 10.1016/j.redox.2017.04.029_bib15 article-title: Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.01.140 – volume: 57 start-page: 916 year: 2013 ident: 10.1016/j.redox.2017.04.029_bib33 article-title: Coffee polyphenols protect human plasma from postprandial carbonyl modifications publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201200557 – volume: 53 start-page: 3383 year: 2005 ident: 10.1016/j.redox.2017.04.029_bib40 article-title: Lipid peroxidation by "free" iron ions and myoglobin as affected by dietary antioxidants in simulated gastric fluids publication-title: J. Agric. Food Chem. doi: 10.1021/jf040402g – volume: 12 start-page: 77 year: 2014 ident: 10.1016/j.redox.2017.04.029_bib32 article-title: Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial publication-title: BMC Med. doi: 10.1186/1741-7015-12-77 – volume: 30 start-page: 590 year: 2013 ident: 10.1016/j.redox.2017.04.029_bib28 article-title: Decrease of postprandial endothelial dysfunction by spice mix added to high-fat hamburger meat in men with Type2 diabetes mellitus publication-title: Diabet. Med. doi: 10.1111/dme.12120 – volume: 25 start-page: 317 year: 1987 ident: 10.1016/j.redox.2017.04.029_bib41 article-title: Initiation of lipid peroxidation in biological systems publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398709527457 – volume: 473 start-page: 317 year: 2011 ident: 10.1016/j.redox.2017.04.029_bib1 article-title: Progress and challenges in translating the biology of atherosclerosis publication-title: Nature doi: 10.1038/nature10146 – volume: 27 start-page: 1316 year: 1979 ident: 10.1016/j.redox.2017.04.029_bib39 article-title: Content and stability of Alpha-tocopherol in fresh and dehydrated pepper fruits (Capsicum-Annuum-L) publication-title: J. Agric. Food Chem. doi: 10.1021/jf60226a057 – volume: 6 start-page: 461 year: 2015 ident: 10.1016/j.redox.2017.04.029_bib9 article-title: Dietary advanced glycation end products and their role in health and disease publication-title: Adv. Nutr. doi: 10.3945/an.115.008433 – volume: 341 start-page: 454 year: 1993 ident: 10.1016/j.redox.2017.04.029_bib23 article-title: Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine publication-title: Lancet doi: 10.1016/0140-6736(93)90206-V – volume: 31 start-page: 435 year: 2010 ident: 10.1016/j.redox.2017.04.029_bib24 article-title: Basic biochemical mechanisms behind the health benefits of polyphenols publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2010.09.006 – volume: 271 start-page: 9982 year: 1996 ident: 10.1016/j.redox.2017.04.029_bib45 article-title: The advanced glycation end product, N-(epsilon)(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.17.9982 – volume: 17 start-page: 111 year: 2016 ident: 10.1016/j.redox.2017.04.029_bib2 article-title: Atherogenicity of postprandial hyperglycemia and lipotoxicity publication-title: Rev. Endocr. Metab. Disord. doi: 10.1007/s11154-016-9341-8 – volume: 8 start-page: 205 year: 2016 ident: 10.1016/j.redox.2017.04.029_bib47 article-title: Redox homeostasis: the golden mean of healthy living publication-title: Redox Biol. doi: 10.1016/j.redox.2016.01.010 – volume: 595 start-page: 120 year: 2016 ident: 10.1016/j.redox.2017.04.029_bib26 article-title: Dietary polyphenols: antioxidants or not? publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2015.11.014 – volume: 5 start-page: 2166 year: 2014 ident: 10.1016/j.redox.2017.04.029_bib30 article-title: Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion publication-title: Food Funct. doi: 10.1039/C4FO00269E – volume: 75 start-page: 637 year: 2013 ident: 10.1016/j.redox.2017.04.029_bib48 article-title: The antioxidant paradox: less paradoxical now? publication-title: Br. J. Clin. Pharmacol. doi: 10.1111/j.1365-2125.2012.04272.x – volume: 94 start-page: 6474 year: 1997 ident: 10.1016/j.redox.2017.04.029_bib22 article-title: Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.12.6474 – volume: 141 start-page: 989S year: 2011 ident: 10.1016/j.redox.2017.04.029_bib27 article-title: The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established publication-title: J. Nutr. doi: 10.3945/jn.110.131490 – volume: 131 start-page: 170 year: 2012 ident: 10.1016/j.redox.2017.04.029_bib44 article-title: N-epsilon-(carboxymethyl)lysine content of foods commonly consumed in a Western style diet publication-title: Food Chem. doi: 10.1016/j.foodchem.2011.08.055 – volume: 27 start-page: 354 year: 2016 ident: 10.1016/j.redox.2017.04.029_bib11 article-title: Uremic toxicity of advanced glycation end products in CKD publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2014101047 – volume: 320 start-page: 915 year: 1989 ident: 10.1016/j.redox.2017.04.029_bib16 article-title: Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity publication-title: N. Engl. J. Med. – volume: 5 start-page: 163 year: 2013 ident: 10.1016/j.redox.2017.04.029_bib21 article-title: A rational approach to prevent postprandial modification of LDL by dietary polyphenols publication-title: J. Funct. Foods doi: 10.1016/j.jff.2012.09.008 – volume: 7 start-page: 11018 year: 2016 ident: 10.1016/j.redox.2017.04.029_bib12 article-title: Aldehyde dehydrogenase 1A1 in stem cells and cancer publication-title: Oncotarget doi: 10.18632/oncotarget.6920 – volume: 90 start-page: 1211 year: 2004 ident: 10.1016/j.redox.2017.04.029_bib17 article-title: Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease publication-title: Heart (Br. Card. Soc.) – volume: 34 start-page: 1610 year: 2011 ident: 10.1016/j.redox.2017.04.029_bib46 article-title: Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes potential role of AGER1 and SIRT1 publication-title: Diabetes Care doi: 10.2337/dc11-0091 – volume: 22 start-page: 41 year: 2008 ident: 10.1016/j.redox.2017.04.029_bib8 article-title: A novel function of red wine polyphenols in humans: prevention of absorption of cytotoxic lipid peroxidation products publication-title: FASEB J. doi: 10.1096/fj.07-9041com – volume: 26 start-page: 1238 year: 1978 ident: 10.1016/j.redox.2017.04.029_bib38 article-title: Invertase (Beta-Fructofuranosidase) Activity in 3 Date Cultivars publication-title: J. Agric. Food Chem. doi: 10.1021/jf60219a025 – volume: 49 start-page: 896 year: 2015 ident: 10.1016/j.redox.2017.04.029_bib14 article-title: Aldehyde adducts generated during lipid peroxidation modification of proteins publication-title: Free Radic. Res. doi: 10.3109/10715762.2015.1036052 – volume: 36 start-page: 169 year: 1994 ident: 10.1016/j.redox.2017.04.029_bib42 article-title: Oxidative processes in meat and meat-products - quality implications publication-title: Meat Sci. doi: 10.1016/0309-1740(94)90040-X – volume: 237 start-page: 314 year: 1985 ident: 10.1016/j.redox.2017.04.029_bib36 article-title: Initiation of membranal lipid-peroxidation by activated metmyoglobin and methemoglobin publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(85)90282-6 – volume: 53 start-page: 3397 year: 2005 ident: 10.1016/j.redox.2017.04.029_bib37 article-title: Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: health implications publication-title: J. Agric. Food Chem. doi: 10.1021/jf040401o – volume: 19 start-page: 836 year: 1984 ident: 10.1016/j.redox.2017.04.029_bib5 article-title: Urinary malondialdehyde as an indicator of lipid peroxidation in the diet and in the tissues publication-title: Lipids doi: 10.1007/BF02534512 – volume: 60 start-page: 8790 year: 2012 ident: 10.1016/j.redox.2017.04.029_bib4 article-title: Protection by polyphenols of postprandial human plasma and low-density lipoprotein modification: the stomach as a bioreactor publication-title: J. Agric. Food Chem. doi: 10.1021/jf300193g – volume: 24 start-page: 639 year: 2014 ident: 10.1016/j.redox.2017.04.029_bib31 article-title: Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study publication-title: Nutr. Metab. Cardiovasc. Dis. doi: 10.1016/j.numecd.2013.12.014 – volume: 63 start-page: 7016 year: 2015 ident: 10.1016/j.redox.2017.04.029_bib34 article-title: Lipid peroxidation in a stomach medium is affected by dietary oils (olive/fish) and antioxidants: the Mediterranean versus Western Diet publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b02149 – volume: 38 start-page: 698 year: 2005 ident: 10.1016/j.redox.2017.04.029_bib19 article-title: Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2004.09.017 – volume: 73 start-page: 341 year: 2007 ident: 10.1016/j.redox.2017.04.029_bib25 article-title: Dietary polyphenols: good, bad, or indifferent for your health? publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2006.10.004 – reference: 26178030 - Adv Nutr. 2015 Jul 15;6(4):461-73 – reference: 23320544 - Diabet Med. 2013 May;30(5):590-5 – reference: 2648148 - N Engl J Med. 1989 Apr 6;320(14):915-24 – reference: 26165509 - J Agric Food Chem. 2015 Aug 12;63(31):7016-23 – reference: 26311460 - J Am Soc Nephrol. 2016 Feb;27(2):354-70 – reference: 22061459 - Meat Sci. 1994;36(1-2):169-89 – reference: 6521608 - Lipids. 1984 Nov;19(11):836-43 – reference: 26820564 - Redox Biol. 2016 Aug;8:205-15 – reference: 24552647 - Nutr Metab Cardiovasc Dis. 2014 Jun;24(6):639-47 – reference: 17141749 - Cardiovasc Res. 2007 Jan 15;73(2):341-7 – reference: 22420826 - Br J Clin Pharmacol. 2013 Mar;75(3):637-44 – reference: 15853376 - J Agric Food Chem. 2005 May 4;53(9):3383-90 – reference: 26880302 - Rev Endocr Metab Disord. 2016 Mar;17 (1):111-6 – reference: 3304843 - Crit Rev Food Sci Nutr. 1987;25(4):317-64 – reference: 17712060 - FASEB J. 2008 Jan;22(1):41-6 – reference: 15853377 - J Agric Food Chem. 2005 May 4;53(9):3391-6 – reference: 15721980 - Free Radic Biol Med. 2005 Mar 15;38(6):698-710 – reference: 3977316 - Arch Biochem Biophys. 1985 Mar;237(2):314-21 – reference: 17854006 - Mol Nutr Food Res. 2007 Sep;51(9):1094-101 – reference: 26783961 - Oncotarget. 2016 Mar 8;7(10 ):11018-32 – reference: 25682029 - Atherosclerosis. 2015 Apr;239(2):311-7 – reference: 25968945 - Free Radic Res. 2015;49(7):905-17 – reference: 21709297 - Diabetes Care. 2011 Jul;34(7):1610-6 – reference: 15367526 - Heart. 2004 Oct;90(10):1211-3 – reference: 25968950 - Free Radic Res. 2015;49(7):896-904 – reference: 22530973 - J Agric Food Chem. 2012 Sep 12;60(36):8790-6 – reference: 20854840 - Mol Aspects Med. 2010 Dec;31(6):435-45 – reference: 22488968 - Biofactors. 2012 Jul-Aug;38(4):266-74 – reference: 11728810 - Free Radic Biol Med. 2001 Dec 1;31(11):1388-95 – reference: 544662 - J Agric Food Chem. 1979 Nov-Dec;27(6):1316-8 – reference: 27095227 - Arch Biochem Biophys. 2016 Apr 1;595:120-4 – reference: 18540628 - J Agric Food Chem. 2008 Jul 9;56(13):5002-7 – reference: 16094852 - Lipids. 2005 May;40(5):437-44 – reference: 9177242 - Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6474-9 – reference: 25029433 - Food Funct. 2014 Sep;5(9):2166-74 – reference: 24886552 - BMC Med. 2014 May 13;12:77 – reference: 28243359 - Oxid Med Cell Longev. 2017;2017:8361493 – reference: 21593864 - Nature. 2011 May 19;473(7347):317-25 – reference: 8626637 - J Biol Chem. 1996 Apr 26;271(17):9982-6 – reference: 25666945 - Biochem Biophys Res Commun. 2015 Mar 6;458(2):221-6 – reference: 9502761 - J Clin Invest. 1998 Mar 15;101(6):1210-8 – reference: 23322503 - Mol Nutr Food Res. 2013 May;57(5):916-9 – reference: 15853378 - J Agric Food Chem. 2005 May 4;53(9):3397-402 – reference: 21451125 - J Nutr. 2011 May;141(5):989S-1009S – reference: 8094487 - Lancet. 1993 Feb 20;341(8843):454-7 |
| SSID | ssj0000884210 |
| Score | 2.3476503 |
| Snippet | Red-meat lipid peroxidation in the stomach results in postprandial oxidative stress (POS) which is characterized by the generation of a variety of reactive... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 929 |
| SubjectTerms | Diet, Western Food Homeostasis - drug effects Humans In Vitro Techniques Lipid Peroxidation - drug effects Malondialdehyde - metabolism Oxidation-Reduction - drug effects Oxidative Stress - drug effects Polyphenols - pharmacology Postprandial Period Red Meat - analysis Research Paper Stomach - drug effects Stomach - metabolism |
| Title | Redox homeostasis in stomach medium by foods: The Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28478382 https://www.proquest.com/docview/1896420740 https://pubmed.ncbi.nlm.nih.gov/PMC5426031 https://doaj.org/article/32089c322a7d4725a468b98551fea6c7 |
| Volume | 12 |
| WOSCitedRecordID | wos000403328700092&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2213-2317 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884210 issn: 2213-2317 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2213-2317 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884210 issn: 2213-2317 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagAokL4k0oVEbiABIRiWPHNjdAreiBtqIg7c3yU5uKTarNbtVeuPG_GTubZRchuHDJIfE41szYMyPPfIPQC21r6qjweS2cy6nhJpfB1TmzjlUeAhJGbGo2wY-OxGQiTzZafcWcsAEeeGDcm4oUQlpQO80d5YRpWgsjBRj64HVtUx15weVGMJXOYCEoSVAEhJRVDk4MHyGHUnJXBOO8jIldPAGdJgfzl1lK6P1_cjl_z5zcMEUHd9DtlQ-J3w1rv4uu-fYeujl0lby6j358jr_F027mO_D9-qbHTYvByZtpO8XxMn05w-YKh65z_VsMioJjy97zeaxwgXmPLxuX4MDxaSokwYcRURG_PDk-PXwFVHNsYj6kBaOH2xHMHwMxTg3_8FBa-QB9Pdj_8uFjvuq2kFtW8UUuq2BICI7q0lAeTM29BueQMEKNCUFrIxgB1kstmYUgkHtfC7B_JohQFkFWD9FO27X-McJMlL6kxDqYEsLvWkZqOEhZ7Wionc8QGZmt7AqKPHbE-KbGnLMzlSSkooRUQRVIKEOv10TnAxLH34e_j1JcD40w2ukFKJdaKZf6l3Jl6PmoAwq2XbxL0a3vlr0qhYTIDfyvIkOPBp1Y_ypafFEJkiG-pS1ba9n-0jbTBO3NYsOAqnzyPxa_i25FfgzZik_RzmK-9M_QDXuxaPr5HrrOJ2Iv7Rp4fvq-_xP-IR2p |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redox+homeostasis+in+stomach+medium+by+foods%3A+The+Postprandial+Oxidative+Stress+Index+%28POSI%29+for+balancing+nutrition+and+human+health&rft.jtitle=Redox+biology&rft.au=Kanner%2C+Joseph&rft.au=Selhub%2C+Jacob&rft.au=Shpaizer%2C+Adi&rft.au=Rabkin%2C+Boris&rft.date=2017-08-01&rft.eissn=2213-2317&rft.volume=12&rft.spage=929&rft_id=info:doi/10.1016%2Fj.redox.2017.04.029&rft_id=info%3Apmid%2F28478382&rft.externalDocID=28478382 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-2317&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-2317&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-2317&client=summon |