Lossless Reversible Data Hiding in Encrypted Image for Multiple Data Hiders Based on Pixel Value Order and Secret Sharing

Reversible data hiding in encrypted images (RDH-EI) is instrumental in image privacy protection and data embedding. However, conventional RDH-EI models, involving image providers, data hiders, and receivers, limit the number of data hiders to one, which restricts its applicability in scenarios requi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 10; p. 4865
Main Authors: Yu, Haoyang, Zhang, Junwei, Xiang, Zixiao, Liu, Biao, Feng, Huamin
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 18.05.2023
MDPI
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reversible data hiding in encrypted images (RDH-EI) is instrumental in image privacy protection and data embedding. However, conventional RDH-EI models, involving image providers, data hiders, and receivers, limit the number of data hiders to one, which restricts its applicability in scenarios requiring multiple data embedders. Therefore, the need for an RDH-EI accommodating multiple data hiders, especially for copyright protection, has become crucial. Addressing this, we introduce the application of Pixel Value Order (PVO) technology to encrypted reversible data hiding, combined with the secret image sharing (SIS) scheme. This creates a novel scheme, PVO, Chaotic System, Secret Sharing-based Reversible Data Hiding in Encrypted Image (PCSRDH-EI), which satisfies the (k,n) threshold property. An image is partitioned into N shadow images, and reconstruction is feasible when at least k shadow images are available. This method enables separate data extraction and image decryption. Our scheme combines stream encryption, based on chaotic systems, with secret sharing, underpinned by the Chinese remainder theorem (CRT), ensuring secure secret sharing. Empirical tests show that PCSRDH-EI can reach a maximum embedding rate of 5.706 bpp, outperforming the state-of-the-art and demonstrating superior encryption effects.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23104865