Efficient parallel derivation of short distinguishing sequences for nondeterministic finite state machines using MapReduce

Distinguishing sequences are widely used in finite state machine-based conformance testing to solve the state identification problem. In this paper, we address the scalability issue encountered while deriving distinguishing sequences from complete observable nondeterministic finite state machines by...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of big data Ročník 8; číslo 1; s. 1 - 27 / 145
Hlavní autori: Elghadyry, Bilal, Ouardi, Faissal, Lotfi, Zineb, Verel, Sébastien
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 20.11.2021
Springer Nature B.V
Springer
SpringerOpen
Predmet:
ISSN:2196-1115, 2196-1115
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Distinguishing sequences are widely used in finite state machine-based conformance testing to solve the state identification problem. In this paper, we address the scalability issue encountered while deriving distinguishing sequences from complete observable nondeterministic finite state machines by introducing a massively parallel MapReduce version of the well-known Exact Algorithm. To the best of our knowledge, this is the first study to tackle this task using the MapReduce approach. First, we give a concise overview of the well-known Exact Algorithm for deriving distinguishing sequences from nondeterministic finite state machines. Second, we propose a parallel algorithm for this problem using the MapReduce approach and analyze its communication cost using Afrati et al. model. Furthermore, we conduct a variety of intensive and comparative experiments on a wide range of finite state machine classes to demonstrate that our proposed solution is efficient and scalable.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2196-1115
2196-1115
DOI:10.1186/s40537-021-00535-6