Inertial proximal alternating minimization for nonconvex and nonsmooth problems

In this paper, we study the minimization problem of the type L ( x , y ) = f ( x ) + R ( x , y ) + g ( y ) , where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of inequalities and applications Ročník 2017; číslo 1; s. 232 - 13
Hlavní autori: Zhang, Yaxuan, He, Songnian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 2017
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we study the minimization problem of the type L ( x , y ) = f ( x ) + R ( x , y ) + g ( y ) , where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove that if H satisfies the Kurdyka-Lojasiewicz inequality, then every bounded sequence generated by the algorithm converges strongly to a critical point of L .
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-017-1504-y