Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm
The proximal gradient algorithm is an appealing approach in finding solutions of non-smooth composite optimization problems, which may only has weak convergence in the infinite-dimensional setting. In this paper, we introduce a modified proximal gradient algorithm with outer perturbations in Hilbert...
Saved in:
| Published in: | Journal of inequalities and applications Vol. 2018; no. 1; pp. 103 - 15 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
2018
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1029-242X, 1025-5834, 1029-242X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The proximal gradient algorithm is an appealing approach in finding solutions of non-smooth composite optimization problems, which may only has weak convergence in the infinite-dimensional setting. In this paper, we introduce a modified proximal gradient algorithm with outer perturbations in Hilbert space and prove that the algorithm converges strongly to a solution of the composite optimization problem. We also discuss the bounded perturbation resilience of the basic algorithm of this iterative scheme and illustrate it with an application. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1029-242X 1025-5834 1029-242X |
| DOI: | 10.1186/s13660-018-1695-x |