Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm

The proximal gradient algorithm is an appealing approach in finding solutions of non-smooth composite optimization problems, which may only has weak convergence in the infinite-dimensional setting. In this paper, we introduce a modified proximal gradient algorithm with outer perturbations in Hilbert...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of inequalities and applications Ročník 2018; číslo 1; s. 103 - 15
Hlavní autori: Guo, Yanni, Cui, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 2018
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1029-242X, 1025-5834, 1029-242X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The proximal gradient algorithm is an appealing approach in finding solutions of non-smooth composite optimization problems, which may only has weak convergence in the infinite-dimensional setting. In this paper, we introduce a modified proximal gradient algorithm with outer perturbations in Hilbert space and prove that the algorithm converges strongly to a solution of the composite optimization problem. We also discuss the bounded perturbation resilience of the basic algorithm of this iterative scheme and illustrate it with an application.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-018-1695-x