Electronic structure of the parent compound of superconducting infinite-layer nickelates
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors 1 – 10 . The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO 2 (refs. 11 , 12 ) has strengthened these efforts. Here, we use X-ray sp...
Saved in:
| Published in: | Nature materials Vol. 19; no. 4; pp. 381 - 385 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.04.2020
Nature Publishing Group Springer Nature - Nature Publishing Group |
| Subjects: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors
1
–
10
. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO
2
(refs.
11
,
12
) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO
2
and NdNiO
2
, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5
d
metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with
3
d
x
2
−
y
2
symmetry in the NiO
2
layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics
13
–
15
, which are well known for heavy fermion behaviour, where the NiO
2
correlated layers play an analogous role to the 4
f
states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like ‘oxide-intermetallic’ replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.
X-ray spectroscopy and density functional theory are used to show that the electronic structure of the parent compound of superconducting infinite-layer nickelates, while similar to the copper-based high-temperature superconductors, has significant differences. |
|---|---|
| AbstractList | The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors
. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO
(refs.
) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO
and NdNiO
, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO
layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics
, which are well known for heavy fermion behaviour, where the NiO
correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1–10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx2−y2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13–15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like ‘oxide-intermetallic’ replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.X-ray spectroscopy and density functional theory are used to show that the electronic structure of the parent compound of superconducting infinite-layer nickelates, while similar to the copper-based high-temperature superconductors, has significant differences. The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors 1 – 10 . The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO 2 (refs. 11 , 12 ) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO 2 and NdNiO 2 , while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5 d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with 3 d x 2 − y 2 symmetry in the NiO 2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics 13 – 15 , which are well known for heavy fermion behaviour, where the NiO 2 correlated layers play an analogous role to the 4 f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like ‘oxide-intermetallic’ replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. X-ray spectroscopy and density functional theory are used to show that the electronic structure of the parent compound of superconducting infinite-layer nickelates, while similar to the copper-based high-temperature superconductors, has significant differences. The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula: see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping. |
| Author | Hwang, H. Y. Huang, H. Y. Zhou, K. J. Zaanen, J. Jia, C. J. Lee, W. S. Rossi, M. Been, E. Nag, A. Garcia-Fernandez, M. Osada, M. Shen, Z. X. Huang, D. J. Moritz, B. Tseng, Y. Hussain, Z. Schmitt, T. Devereaux, T. P. Lu, H. Li, D. Hikita, Y. Paris, E. Chuang, Y.-D. Hepting, M. Feng, X. |
| Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-5824-8901 surname: Hepting fullname: Hepting, M. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Max Planck Institute for Solid State Research – sequence: 2 givenname: D. orcidid: 0000-0001-6894-6765 surname: Li fullname: Li, D. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 3 givenname: C. J. orcidid: 0000-0001-7999-1932 surname: Jia fullname: Jia, C. J. email: chunjing@stanford.edu organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 4 givenname: H. surname: Lu fullname: Lu, H. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 5 givenname: E. surname: Paris fullname: Paris, E. organization: Photon Science Division, Swiss Light Source, Paul Scherrer Institut – sequence: 6 givenname: Y. surname: Tseng fullname: Tseng, Y. organization: Photon Science Division, Swiss Light Source, Paul Scherrer Institut – sequence: 7 givenname: X. surname: Feng fullname: Feng, X. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 8 givenname: M. surname: Osada fullname: Osada, M. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 9 givenname: E. surname: Been fullname: Been, E. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 10 givenname: Y. surname: Hikita fullname: Hikita, Y. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 11 givenname: Y.-D. surname: Chuang fullname: Chuang, Y.-D. organization: Advanced Light Source, Lawrence Berkeley National Laboratory – sequence: 12 givenname: Z. surname: Hussain fullname: Hussain, Z. organization: Advanced Light Source, Lawrence Berkeley National Laboratory – sequence: 13 givenname: K. J. orcidid: 0000-0001-9293-0595 surname: Zhou fullname: Zhou, K. J. organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 14 givenname: A. surname: Nag fullname: Nag, A. organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 15 givenname: M. surname: Garcia-Fernandez fullname: Garcia-Fernandez, M. organization: Diamond Light Source, Harwell Science and Innovation Campus – sequence: 16 givenname: M. orcidid: 0000-0002-4254-0713 surname: Rossi fullname: Rossi, M. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 17 givenname: H. Y. surname: Huang fullname: Huang, H. Y. organization: NSRRC, Hsinchu Science Park – sequence: 18 givenname: D. J. surname: Huang fullname: Huang, D. J. organization: NSRRC, Hsinchu Science Park – sequence: 19 givenname: Z. X. orcidid: 0000-0002-1454-0281 surname: Shen fullname: Shen, Z. X. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University – sequence: 20 givenname: T. surname: Schmitt fullname: Schmitt, T. organization: Photon Science Division, Swiss Light Source, Paul Scherrer Institut – sequence: 21 givenname: H. Y. surname: Hwang fullname: Hwang, H. Y. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 22 givenname: B. surname: Moritz fullname: Moritz, B. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 23 givenname: J. surname: Zaanen fullname: Zaanen, J. organization: Instituut-Lorentz for theoretical Physics, Leiden University – sequence: 24 givenname: T. P. surname: Devereaux fullname: Devereaux, T. P. organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory – sequence: 25 givenname: W. S. orcidid: 0000-0001-7677-0421 surname: Lee fullname: Lee, W. S. email: leews@stanford.edu organization: Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31959951$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1605376$$D View this record in Osti.gov |
| BookMark | eNp9kUtv1TAQhS1URB_wA9igCDbdBPwcJ0tUFYpUqZtWYmf5OpPWJdcOtrNofz2-ygWkSq03tqzvzJyZc0wOQgxIyHtGPzMqui9ZMgWipaxvqepU-_iKHDGpoZUA9GD_ZozzQ3Kc8z2lnCkFb8ihYL3qe8WOyM_zCV1JMXjX5JIWV5aETRybcofNbBOG0ri4neMSht13XmZMLoahkj7cNj6MPviC7WQfMDW1zC-cbMH8lrwe7ZTx3f4-ITffzq_PLtrLq-8_zr5etk4JKO0GOo3auh5B9gMFvdGiZ6Ogzo4SEESnJAXqNFA-IIeObTgw7CwduGAKxQn5uNaNuXiTXfXi7qrBUMcyDKgSGip0ukJzir8XzMVsfXY4TTZgXLLhQgoqdQddRT89Qe_jkkIdwXCpVV07Z_JFqhJ9PaAr9WFPLZstDmZOfmvTg_m7_gqwFXAp5pxw_IcwanYRmzViUyM2u4jNY9XoJ5o6sy0-hpKsn15U8lWZa5dwi-m_6edFfwAJh7k0 |
| CitedBy_id | crossref_primary_10_1103_PhysRevX_10_021061 crossref_primary_10_1038_s41467_024_49533_1 crossref_primary_10_1103_PhysRevB_111_045133 crossref_primary_10_1017_S1431927622009758 crossref_primary_10_1038_s41563_023_01510_7 crossref_primary_10_1038_s41467_023_44616_x crossref_primary_10_1016_j_cclet_2023_108485 crossref_primary_10_1088_1367_2630_ac465e crossref_primary_10_3389_fphy_2022_846639 crossref_primary_10_1016_j_ceramint_2024_10_004 crossref_primary_10_1016_j_physc_2023_1354388 crossref_primary_10_1038_s41467_024_49940_4 crossref_primary_10_1002_qute_202200065 crossref_primary_10_1007_s11433_023_2329_x crossref_primary_10_1038_s42005_021_00621_4 crossref_primary_10_1103_PhysRevB_103_195101 crossref_primary_10_1103_PhysRevMaterials_7_125001 crossref_primary_10_1088_1361_6668_abb11a crossref_primary_10_3390_molecules28103999 crossref_primary_10_3389_fphy_2021_719534 crossref_primary_10_1063_5_0275212 crossref_primary_10_1038_s41563_022_01330_1 crossref_primary_10_1038_s41598_025_08013_2 crossref_primary_10_1002_adfm_202501893 crossref_primary_10_1002_smll_202304146 crossref_primary_10_1103_PhysRevLett_126_127401 crossref_primary_10_1038_s43586_024_00322_6 crossref_primary_10_1038_s42005_022_00993_1 crossref_primary_10_1103_tptb_8hb4 crossref_primary_10_1063_5_0097618 crossref_primary_10_1088_1361_648X_adb2d2 crossref_primary_10_1063_5_0141039 crossref_primary_10_1103_PhysRevResearch_4_043036 crossref_primary_10_1038_s41597_023_02079_1 crossref_primary_10_1364_PRJ_523591 crossref_primary_10_1038_s42005_023_01163_7 crossref_primary_10_1088_0256_307X_41_11_117404 crossref_primary_10_1088_0256_307X_41_7_077402 crossref_primary_10_1103_PhysRevMaterials_7_114803 crossref_primary_10_1146_annurev_conmatphys_032922_093307 crossref_primary_10_1088_2516_1075_ac5c6a crossref_primary_10_1557_jmr_2020_261 crossref_primary_10_1103_PhysRevX_10_041002 crossref_primary_10_1209_0295_5075_ac2073 crossref_primary_10_3389_fphy_2022_836959 crossref_primary_10_1103_PhysRevResearch_2_013219 crossref_primary_10_1103_PhysRevResearch_2_013214 crossref_primary_10_1103_PhysRevB_103_L060504 crossref_primary_10_3389_fphy_2022_834658 crossref_primary_10_1016_j_ssc_2024_115434 crossref_primary_10_1002_advs_202302839 crossref_primary_10_1088_1361_648X_ada908 crossref_primary_10_1557_s43578_020_00070_9 crossref_primary_10_3389_fphy_2021_810220 crossref_primary_10_1038_s41586_023_05853_8 crossref_primary_10_1038_s43246_024_00729_4 crossref_primary_10_1002_adma_202415844 crossref_primary_10_1103_PhysRevResearch_2_043144 crossref_primary_10_1017_S1431927621004517 crossref_primary_10_3390_sym14030464 crossref_primary_10_1038_s41578_020_0186_0 crossref_primary_10_21468_SciPostPhysCodeb_51 crossref_primary_10_3389_fphy_2022_842578 crossref_primary_10_1002_adfm_202304187 crossref_primary_10_1103_PhysRevB_111_245121 crossref_primary_10_1063_5_0244086 crossref_primary_10_1088_0256_307X_38_7_077401 crossref_primary_10_1063_5_0064201 crossref_primary_10_1103_PhysRevB_105_085118 crossref_primary_10_1038_s41563_024_01797_0 crossref_primary_10_1103_bq5m_yw6f crossref_primary_10_1038_s41563_021_01142_9 crossref_primary_10_7498_aps_74_20250171 crossref_primary_10_1038_s41586_023_06129_x crossref_primary_10_1103_PhysRevB_111_165137 crossref_primary_10_1103_PhysRevLett_126_087001 crossref_primary_10_1016_j_matt_2022_01_020 crossref_primary_10_1038_s41467_024_54660_w crossref_primary_10_3389_fphy_2022_834682 crossref_primary_10_1103_PhysRevResearch_3_L042015 crossref_primary_10_3390_ma17112546 crossref_primary_10_1038_s41586_024_07482_1 crossref_primary_10_1038_s41586_025_08893_4 crossref_primary_10_1088_1361_6633_adc330 crossref_primary_10_1103_PhysRevB_104_L220505 crossref_primary_10_7498_aps_74_20250856 crossref_primary_10_1103_PhysRevLett_126_206401 crossref_primary_10_1063_5_0174045 crossref_primary_10_1103_PhysRevB_104_035148 crossref_primary_10_1016_j_jssc_2021_122806 crossref_primary_10_1038_s42005_020_0347_x crossref_primary_10_1103_PhysRevMaterials_9_044802 crossref_primary_10_1016_j_physb_2022_413860 crossref_primary_10_1088_1367_2630_add6cc crossref_primary_10_1103_PhysRevB_107_165124 crossref_primary_10_1002_adts_202100235 crossref_primary_10_1007_s11433_020_1578_3 crossref_primary_10_1093_nsr_nwaa218 crossref_primary_10_1103_PhysRevB_111_165145 crossref_primary_10_1103_PhysRevResearch_7_L012066 crossref_primary_10_1103_PhysRevX_11_041009 crossref_primary_10_1088_0256_307X_41_8_087402 crossref_primary_10_1080_07315171_2023_2300596 crossref_primary_10_1103_PhysRevB_103_075123 crossref_primary_10_1038_s43246_024_00478_4 crossref_primary_10_1088_1674_1056_ac0bb1 crossref_primary_10_1103_PhysRevResearch_2_023112 crossref_primary_10_1557_s43579_025_00689_x crossref_primary_10_1103_nhg9_l5l1 crossref_primary_10_1016_j_jpowsour_2025_237457 crossref_primary_10_1088_0256_307X_38_4_047401 crossref_primary_10_3389_fphy_2021_808683 crossref_primary_10_1038_s41563_023_01766_z crossref_primary_10_1103_PhysRevB_103_115101 crossref_primary_10_1103_PhysRevB_111_075140 crossref_primary_10_1039_D4MH00134F crossref_primary_10_1126_science_abd7726 crossref_primary_10_1093_nsr_nwad112 crossref_primary_10_1103_7lqb_pjkm crossref_primary_10_1016_j_commatsci_2020_109853 crossref_primary_10_1038_s42005_023_01464_x crossref_primary_10_1038_s41467_022_32065_x crossref_primary_10_1103_PhysRevX_12_011055 crossref_primary_10_1038_s41586_022_05657_2 crossref_primary_10_1002_advs_202305252 crossref_primary_10_1103_PhysRevX_14_040501 crossref_primary_10_1103_PhysRevX_11_011050 crossref_primary_10_1140_epjb_e2020_10343_7 crossref_primary_10_1038_s41535_024_00659_x crossref_primary_10_3389_fphy_2021_813483 crossref_primary_10_1209_0295_5075_accbe8 crossref_primary_10_1038_s42005_023_01213_0 crossref_primary_10_1088_0256_307X_42_4_047402 crossref_primary_10_1002_adma_202300617 crossref_primary_10_1088_1674_1056_ad6a0d crossref_primary_10_1088_1361_648X_aba314 crossref_primary_10_1038_s42005_024_01642_5 crossref_primary_10_3389_fphy_2022_824144 crossref_primary_10_1002_aelm_202300116 crossref_primary_10_1103_PhysRevResearch_2_033445 crossref_primary_10_3389_fphy_2022_835942 crossref_primary_10_1103_PhysRevResearch_4_023093 crossref_primary_10_1038_s41467_022_28390_w crossref_primary_10_1103_PhysRevB_111_045151 crossref_primary_10_3389_fphy_2021_813532 crossref_primary_10_1103_PhysRevX_15_021048 crossref_primary_10_1093_nsr_nwae194 crossref_primary_10_1038_s42005_025_01971_z crossref_primary_10_1088_1674_1056_abf646 crossref_primary_10_1088_1742_6596_2622_1_012017 crossref_primary_10_1103_PhysRevB_103_085110 crossref_primary_10_1134_S1063776121040026 crossref_primary_10_1038_s41535_023_00568_5 crossref_primary_10_1088_1361_6633_ac5a60 crossref_primary_10_1103_PhysRevB_105_085150 crossref_primary_10_1063_5_0056328 crossref_primary_10_3389_fphy_2021_810394 crossref_primary_10_3389_fphy_2022_836784 crossref_primary_10_1073_pnas_2007683118 crossref_primary_10_1016_j_ceramint_2025_03_089 crossref_primary_10_1088_0256_307X_38_6_067401 crossref_primary_10_1103_PhysRevB_111_085117 crossref_primary_10_1103_PhysRevX_15_011012 crossref_primary_10_1038_s41467_023_41236_3 crossref_primary_10_1007_s11433_021_1871_x crossref_primary_10_1093_pnasnexus_pgad108 crossref_primary_10_7498_aps_73_20240898 crossref_primary_10_1103_PhysRevB_106_115132 crossref_primary_10_1002_adma_202416187 crossref_primary_10_1016_j_jallcom_2021_160888 crossref_primary_10_1038_s41567_022_01660_6 crossref_primary_10_1038_s41567_022_01684_y |
| Cites_doi | 10.1103/PhysRevLett.114.026801 10.1080/00107518708223691 10.1103/PhysRevB.71.035105 10.1038/320124a0 10.1016/j.physc.2013.09.007 10.1016/j.cpc.2014.05.003 10.1038/ncomms13017 10.1103/PhysRevLett.103.016401 10.1103/PhysRevLett.66.104 10.1103/PhysRevB.70.165109 10.1103/PhysRevLett.100.016404 10.1038/nphys4149 10.1103/PhysRevB.85.165113 10.1063/1.3078276 10.1103/PhysRevB.44.943 10.1016/j.jssc.2005.01.023 10.1103/PhysRevLett.55.418 10.1088/0953-8984/21/39/395502 10.1103/PhysRevB.59.7901 10.1103/PhysRevMaterials.1.021801 10.1103/PhysRevB.39.1541 10.1126/science.1202647 10.1038/nmat2958 10.1021/ja991573i 10.1103/RevModPhys.73.797 10.1016/0022-4596(90)90202-9 10.1038/ncomms4314 10.1038/d41586-019-02518-3 10.1103/PhysRevLett.62.221 10.1103/PhysRevB.77.165127 10.1103/RevModPhys.78.17 10.1038/s41586-019-1496-5 10.1146/annurev-matsci-070115-032057 10.1088/0959-5309/49/4S/308 10.7567/APEX.9.061101 10.1107/S0909049510019862 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
| CorporateAuthor | SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
| DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U 7X8 OIOZB OTOTI |
| DOI | 10.1038/s41563-019-0585-z |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (NC Live) Technology collection ProQuest One ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database (ProQuest) Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1476-4660 |
| EndPage | 385 |
| ExternalDocumentID | 1605376 31959951 10_1038_s41563_019_0585_z |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract DE-AC02-76SF00515 |
| GroupedDBID | --- 0R~ 29M 39C 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DU5 DWQXO EBS EE. ESN ESX EXGXG F5P FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HZ~ KB. KC. L6V M1P M2P M7S NNMJJ O9- P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG UKHRP AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS ABAWZ ABDBF ACUHS DB5 EJD EMOBN FEDTE HVGLF I-F MK~ NFIDA NPM ODYON RIG SV3 ~8M 3V. 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OIOZB OTOTI |
| ID | FETCH-LOGICAL-c536t-b687e7ac9e649d067b7391f30caf46e63854060c7602de2681b261e8a0d2315e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 291 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508325000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-1122 1476-4660 |
| IngestDate | Mon Jul 10 02:30:43 EDT 2023 Thu Sep 04 20:08:16 EDT 2025 Mon Oct 06 17:15:35 EDT 2025 Mon Oct 06 17:01:02 EDT 2025 Thu Apr 03 07:05:23 EDT 2025 Sat Nov 29 03:30:31 EST 2025 Tue Nov 18 22:18:31 EST 2025 Fri Feb 21 02:40:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c536t-b687e7ac9e649d067b7391f30caf46e63854060c7602de2681b261e8a0d2315e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Gordon and Betty Moore Foundation Swiss National Science Foundation (SNF) USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division USDOE Office of Science (SC), Basic Energy Sciences (BES) AC02-76SF00515; GBMF4415; 51NF40_141828; CRSII2_160765/1; AC02-05CH11231 |
| ORCID | 0000-0002-5824-8901 0000-0001-7677-0421 0000-0001-6894-6765 0000-0002-4254-0713 0000-0002-1454-0281 0000-0001-9293-0595 0000-0001-7999-1932 0000000214540281 0000000176770421 0000000168946765 0000000179991932 0000000258248901 0000000192930595 0000000242540713 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1605376 |
| PMID | 31959951 |
| PQID | 2382999967 |
| PQPubID | 27576 |
| PageCount | 5 |
| ParticipantIDs | osti_scitechconnect_1605376 proquest_miscellaneous_2343047868 proquest_journals_2475038214 proquest_journals_2382999967 pubmed_primary_31959951 crossref_primary_10_1038_s41563_019_0585_z crossref_citationtrail_10_1038_s41563_019_0585_z springer_journals_10_1038_s41563_019_0585_z |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationTitle | Nature materials |
| PublicationTitleAbbrev | Nat. Mater |
| PublicationTitleAlternate | Nat Mater |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Springer Nature - Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Nature - Nature Publishing Group |
| References | Hayward, Green, Rosseinsky, Sloan (CR19) 1999; 121 Mostofi (CR37) 2014; 185 Chaloupka, Khaliullin (CR4) 2008; 100 Kurmaev (CR23) 2008; 77 Cococcioni, de Gironcoli (CR33) 2005; 71 Zaanen, Sawatzky (CR25) 1990; 88 Kawai (CR30) 2009; 94 Jia (CR35) 2014; 5 Bisogni (CR24) 2016; 7 Chen (CR26) 1991; 66 Strocov (CR32) 2010; 17 Anisimov, Zaanen, Anderson (CR28) 1991; 44 Jia, Wohlfeld, Wang, Moritz, Devereaux (CR36) 2016; 6 Li (CR11) 2019; 572 Benckiser (CR8) 2011; 10 Zaanen, Sawatzky, Allen (CR21) 1985; 55 Middey (CR6) 2016; 46 Giannozzi (CR34) 2009; 21 Fisk, Ott, Rice, Smith (CR13) 1986; 320 Ikeda, Krockenberger, Irie, Naito, Yamamoto (CR20) 2016; 9 Lee, Nagaosa, Wen (CR17) 2006; 78 Kuiper, Kruizinga, Ghijsen, Sawatzky (CR22) 1989; 62 Sawatzky (CR12) 2019; 572 Stewart (CR15) 2001; 73 Crespin, Isnard, F. Dubois, Choisnet, Odier (CR18) 2005; 178 Anisimov, Bukhvalov, Rice (CR1) 1999; 59 Boris (CR7) 2011; 332 Mott, Peierls (CR16) 1937; 49 Botana, Pardo, Norman (CR3) 2017; 1 Disa (CR9) 2015; 114 Hansmann (CR5) 2009; 103 Zhang (CR10) 2017; 13 Grioni (CR27) 1989; 39 Haverkort, Zwierzycki, Andersen (CR29) 2012; 85 Ikeda, Manabe, Naito (CR31) 2013; 495 Lee, Pickett (CR2) 2004; 70 Coles (CR14) 1987; 28 VI Anisimov (585_CR1) 1999; 59 GA Sawatzky (585_CR12) 2019; 572 J Zaanen (585_CR25) 1990; 88 E Benckiser (585_CR8) 2011; 10 J Zaanen (585_CR21) 1985; 55 MO Crespin (585_CR18) 2005; 178 P Kuiper (585_CR22) 1989; 62 EZ Kurmaev (585_CR23) 2008; 77 VN Strocov (585_CR32) 2010; 17 MW Haverkort (585_CR29) 2012; 85 Z Fisk (585_CR13) 1986; 320 M Cococcioni (585_CR33) 2005; 71 AA Mostofi (585_CR37) 2014; 185 S Middey (585_CR6) 2016; 46 NF Mott (585_CR16) 1937; 49 MA Hayward (585_CR19) 1999; 121 V Bisogni (585_CR24) 2016; 7 A Ikeda (585_CR20) 2016; 9 D Li (585_CR11) 2019; 572 BR Coles (585_CR14) 1987; 28 CT Chen (585_CR26) 1991; 66 K-W Lee (585_CR2) 2004; 70 M Kawai (585_CR30) 2009; 94 VI Anisimov (585_CR28) 1991; 44 CJ Jia (585_CR35) 2014; 5 PA Lee (585_CR17) 2006; 78 AS Botana (585_CR3) 2017; 1 AV Boris (585_CR7) 2011; 332 J Zhang (585_CR10) 2017; 13 J Chaloupka (585_CR4) 2008; 100 P Hansmann (585_CR5) 2009; 103 C Jia (585_CR36) 2016; 6 GR Stewart (585_CR15) 2001; 73 M Grioni (585_CR27) 1989; 39 A Ikeda (585_CR31) 2013; 495 AS Disa (585_CR9) 2015; 114 P Giannozzi (585_CR34) 2009; 21 32661388 - Nat Mater. 2020 Sep;19(9):1036 |
| References_xml | – volume: 114 start-page: 026801 year: 2015 ident: CR9 article-title: Orbital engineering in symmetry-breaking polar heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.026801 – volume: 28 start-page: 143 year: 1987 end-page: 157 ident: CR14 article-title: Heavy-fermion intermetallic compounds publication-title: Contemp. Phys. doi: 10.1080/00107518708223691 – volume: 71 start-page: 035105 year: 2005 ident: CR33 article-title: Linear response approach to the calculation of the effective interaction parameters in the LDA + method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.035105 – volume: 320 start-page: 124 year: 1986 end-page: 129 ident: CR13 article-title: Heavy-electron metals publication-title: Nature doi: 10.1038/320124a0 – volume: 495 start-page: 134 year: 2013 end-page: 140 ident: CR31 article-title: Improved conductivity of infinite-layer LaNiO thin films by metal organic decomposition publication-title: Phys. C doi: 10.1016/j.physc.2013.09.007 – volume: 185 start-page: 2309 year: 2014 end-page: 2310 ident: CR37 article-title: An updated version of Wannier90: a tool for obtaining maximally-localised Wannier functions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.003 – volume: 7 year: 2016 ident: CR24 article-title: Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates publication-title: Nat. Commun. doi: 10.1038/ncomms13017 – volume: 103 start-page: 016401 year: 2009 ident: CR5 article-title: Turning a nickelate Fermi surface into a cuprate-like one through heterostructuring publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.016401 – volume: 6 start-page: 021020 year: 2016 ident: CR36 article-title: Using RIXS to uncover elementary charge and spin excitations publication-title: Phys. Rev. X – volume: 66 start-page: 104 year: 1991 ident: CR26 article-title: Electronic states in La Sr CuO probed by soft-X-ray absorption publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.104 – volume: 70 start-page: 165109 year: 2004 ident: CR2 article-title: Infinite-layer LaNiO : Ni is not Cu publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.165109 – volume: 100 start-page: 016404 year: 2008 ident: CR4 article-title: Orbital order and possible superconductivity in LaNiO /LaMO superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.016404 – volume: 13 start-page: 864 year: 2017 end-page: 869 ident: CR10 article-title: Large orbital polarization in a metallic square-planar nickelate publication-title: Nat. Phys. doi: 10.1038/nphys4149 – volume: 85 start-page: 165113 year: 2012 ident: CR29 article-title: Multiplet ligand-field theory using Wannier orbitals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.165113 – volume: 94 start-page: 082102 year: 2009 ident: CR30 article-title: Reversible changes of epitaxial thin films from perovskite LaNiO to infinite-layer structure LaNiO publication-title: Appl. Phys. Lett. doi: 10.1063/1.3078276 – volume: 44 start-page: 943 year: 1991 ident: CR28 article-title: Band theory and Mott insulators: Hubbard instead of Stoner publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.943 – volume: 178 start-page: 1326 year: 2005 end-page: 1334 ident: CR18 article-title: LaNiO : synthesis and structural characterization publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2005.01.023 – volume: 55 start-page: 418 year: 1985 ident: CR21 article-title: Band gaps and electronic structure of transition-metal compounds publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.418 – volume: 21 start-page: 395502 year: 2009 ident: CR34 article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 59 start-page: 7901 year: 1999 end-page: 7906 ident: CR1 article-title: Electronic structure of possible nickelate analogs to the cuprates publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7901 – volume: 1 start-page: 021801(R) year: 2017 ident: CR3 article-title: Electron doped layered nickelates: spanning the phase diagram of the cuprates publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.021801 – volume: 39 start-page: 1541 year: 1989 ident: CR27 article-title: Studies of copper valence states with Cu X-ray-absorption spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.1541 – volume: 332 start-page: 937 year: 2011 end-page: 940 ident: CR7 article-title: Dimensionality control of electronic phase transitions in nickel-oxide superlattices publication-title: Science doi: 10.1126/science.1202647 – volume: 10 start-page: 189 year: 2011 end-page: 193 ident: CR8 article-title: Orbital reflectometry of oxide heterostructures publication-title: Nat. Mater. doi: 10.1038/nmat2958 – volume: 121 start-page: 8843 year: 1999 end-page: 8854 ident: CR19 article-title: Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(i) oxide LaNiO publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991573i – volume: 73 start-page: 797 year: 2001 end-page: 855 ident: CR15 article-title: Non-Fermi-liquid behavior in - and -electron metals publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.797 – volume: 88 start-page: 8 year: 1990 end-page: 27 ident: CR25 article-title: Systematics in band gaps and optical spectra of 3D transition metal compounds publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(90)90202-9 – volume: 5 year: 2014 ident: CR35 article-title: Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering publication-title: Nat. Commun. doi: 10.1038/ncomms4314 – volume: 572 start-page: 592 year: 2019 end-page: 593 ident: CR12 article-title: Superconductivity seen in a nickel oxide publication-title: Nature doi: 10.1038/d41586-019-02518-3 – volume: 62 start-page: 221 year: 1989 ident: CR22 article-title: Character of holes in Li Ni O and their magnetic behavior publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.221 – volume: 77 start-page: 165127 year: 2008 ident: CR23 article-title: Oxygen X-ray emission and absorption spectra as a probe of the electronic structure of strongly correlated oxides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.165127 – volume: 78 start-page: 17 year: 2006 end-page: 85 ident: CR17 article-title: Doping a Mott insulator: physics of high-temperature superconductivity publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.17 – volume: 572 start-page: 624 year: 2019 end-page: 627 ident: CR11 article-title: Superconductivity in an infinite-layer nickelate publication-title: Nature doi: 10.1038/s41586-019-1496-5 – volume: 46 start-page: 305 year: 2016 end-page: 334 ident: CR6 article-title: Physics of ultrathin films and heterostructures of rare-earth nickelates publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032057 – volume: 49 start-page: 72 year: 1937 end-page: 73 ident: CR16 article-title: Discussion of the paper by de Boerand Verwey publication-title: Proc. Phys. Soc. doi: 10.1088/0959-5309/49/4S/308 – volume: 9 start-page: 061101 year: 2016 ident: CR20 article-title: Direct observation of infinite NiO planes in LaNiO films publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.061101 – volume: 17 start-page: 631 year: 2010 end-page: 643 ident: CR32 article-title: High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049510019862 – volume: 13 start-page: 864 year: 2017 ident: 585_CR10 publication-title: Nat. Phys. doi: 10.1038/nphys4149 – volume: 121 start-page: 8843 year: 1999 ident: 585_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja991573i – volume: 572 start-page: 592 year: 2019 ident: 585_CR12 publication-title: Nature doi: 10.1038/d41586-019-02518-3 – volume: 49 start-page: 72 year: 1937 ident: 585_CR16 publication-title: Proc. Phys. Soc. doi: 10.1088/0959-5309/49/4S/308 – volume: 70 start-page: 165109 year: 2004 ident: 585_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.165109 – volume: 320 start-page: 124 year: 1986 ident: 585_CR13 publication-title: Nature doi: 10.1038/320124a0 – volume: 88 start-page: 8 year: 1990 ident: 585_CR25 publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(90)90202-9 – volume: 10 start-page: 189 year: 2011 ident: 585_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat2958 – volume: 572 start-page: 624 year: 2019 ident: 585_CR11 publication-title: Nature doi: 10.1038/s41586-019-1496-5 – volume: 178 start-page: 1326 year: 2005 ident: 585_CR18 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2005.01.023 – volume: 62 start-page: 221 year: 1989 ident: 585_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.221 – volume: 5 year: 2014 ident: 585_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms4314 – volume: 1 start-page: 021801(R) year: 2017 ident: 585_CR3 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.021801 – volume: 103 start-page: 016401 year: 2009 ident: 585_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.016401 – volume: 77 start-page: 165127 year: 2008 ident: 585_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.165127 – volume: 71 start-page: 035105 year: 2005 ident: 585_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.035105 – volume: 17 start-page: 631 year: 2010 ident: 585_CR32 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049510019862 – volume: 21 start-page: 395502 year: 2009 ident: 585_CR34 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 85 start-page: 165113 year: 2012 ident: 585_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.165113 – volume: 495 start-page: 134 year: 2013 ident: 585_CR31 publication-title: Phys. C doi: 10.1016/j.physc.2013.09.007 – volume: 73 start-page: 797 year: 2001 ident: 585_CR15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.797 – volume: 78 start-page: 17 year: 2006 ident: 585_CR17 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.78.17 – volume: 55 start-page: 418 year: 1985 ident: 585_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.418 – volume: 39 start-page: 1541 year: 1989 ident: 585_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.1541 – volume: 46 start-page: 305 year: 2016 ident: 585_CR6 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-032057 – volume: 185 start-page: 2309 year: 2014 ident: 585_CR37 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.003 – volume: 7 year: 2016 ident: 585_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms13017 – volume: 332 start-page: 937 year: 2011 ident: 585_CR7 publication-title: Science doi: 10.1126/science.1202647 – volume: 100 start-page: 016404 year: 2008 ident: 585_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.016404 – volume: 9 start-page: 061101 year: 2016 ident: 585_CR20 publication-title: Appl. Phys. Express doi: 10.7567/APEX.9.061101 – volume: 44 start-page: 943 year: 1991 ident: 585_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.943 – volume: 114 start-page: 026801 year: 2015 ident: 585_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.026801 – volume: 66 start-page: 104 year: 1991 ident: 585_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.104 – volume: 59 start-page: 7901 year: 1999 ident: 585_CR1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.7901 – volume: 28 start-page: 143 year: 1987 ident: 585_CR14 publication-title: Contemp. Phys. doi: 10.1080/00107518708223691 – volume: 6 start-page: 021020 year: 2016 ident: 585_CR36 publication-title: Phys. Rev. X – volume: 94 start-page: 082102 year: 2009 ident: 585_CR30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3078276 – reference: 32661388 - Nat Mater. 2020 Sep;19(9):1036 |
| SSID | ssj0021556 |
| Score | 2.7113278 |
| Snippet | The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors
1
–
10
. The recent... The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors . The recent discovery of... The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1–10. The recent discovery... The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery... |
| SourceID | osti proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 381 |
| SubjectTerms | 639/301 639/766 Biomaterials Chemistry and Materials Science Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Copper compounds Cuprates Density functional theory Earth Electronic properties Electronic structure Electrons Fermions High temperature High temperature superconductors Letter Materials Science Nanotechnology Nickel Optical and Electronic Materials Physics Rare earth elements Spectrum analysis Superconductivity X-ray spectroscopy |
| Title | Electronic structure of the parent compound of superconducting infinite-layer nickelates |
| URI | https://link.springer.com/article/10.1038/s41563-019-0585-z https://www.ncbi.nlm.nih.gov/pubmed/31959951 https://www.proquest.com/docview/2382999967 https://www.proquest.com/docview/2475038214 https://www.proquest.com/docview/2343047868 https://www.osti.gov/servlets/purl/1605376 |
| Volume | 19 |
| WOSCitedRecordID | wos000508325000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M7S dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: KB. dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Health and Medical Complete customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLQc48H6ElipInECm2djx44Qo2goJsVrxkPZmeR1bqloly2aXQ389M3kBovTCxVJeVpKZyXzjmXwD8NKZ3DsfBEMooJmIJjKjfMZMEY3mUntZxrbZhJrP9XJpFv2CW9OXVQ7fxPZDXdae1siPc0EZN51Pxdv1d0Zdoyi72rfQ2IN9YioTE9g_mc0Xn8eQC71l93-RkgyRRT7kNbk-bih0oVoiwzLEzOzyD880qdHCrkKdf2VMW0d0evd_H-Ee3OkhaPqu05n7cCNUD-D2b8SED2E5G7vjpB3D7G4T0jqmCBdTqlmvtikVo1NPJtrd7NZhg5E1kcfiBCmq7RmBWXbhENKnOM05Fd2F5hF8O519ff-B9T0YmC-43LKV1Coo502QwpTo2laKm2nkmXdRyIDWi5BPZl7JLC9DLhEFY0wWtMtKRI5F4I9hUtVVeAppdLi7iCsnYsBruFsRFzw3riwiL4RIIBvev_U9QTn1ybiwbaKca9uJzKLILInMXibwarxk3bFzXHfyAQnVIrQgflxPhUR-a6eypbRJ4HAQmu3NuLGIZ9BdY0iorj48CjSBF-NhtE9Kurgq1DuaQlBmU0udwJNOhcZb5cTsgxA3gdeDTv2a_J_P8ez6WzmAWzmtCbTVRYcwQSUJz-Gm_7E9azZHsKeWqh31UW8suPXx5A2On_IFjerLT6f7Gsc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBQk4lDekLRAkuFBZzcaOYx8qhKBVq7arHoq0N-N1bKmiSpbNLoj-KH5jZ5JNAFF664FrHqM8vhl_k5l8A_Da6tRZ5wVDKqCYCDownbuE6SxoxaVysgjNsIl8NFLjsT5egZ_dvzDUVtnFxCZQF5Wjb-RbqaCKm0qH4t30K6OpUVRd7UZotLA48D--Y8pWb-9_xPf7Jk13d04-7LHlVAHmMi7nbCJV7nPrtJdCFxisJznXw8ATZ4OQHvGIJEYmLpdJWvhUIq_DLMMrmxTIhTLP0e4NuCkwEyK_OkqP-wQP1-b2b6ZcMuQxaVdF5WqrpkSJOpc0S5Chs_M_1sFBhf58Gcf9qz7bLHu79_63B3YfVpcEO37fesQDWPHlQ7j7m-ziIxjv9LN_4lY_dzHzcRViJMMxdeSX85ha7WniFG2uF1M_c1VJ0rhoIEanPCWqzs4sJiwxmvlCLYW-fgyfruXWnsCgrEr_DOJgcXMWJlYEj-dwOyGle65tkQWeCRFB0r1v45by6zQF5Mw0bQBcmRYiBiFiCCLmPIK3_SnTVnvkqoPXCUQGiROp_zpqk3JzM5SNYE8EGx1IzDJI1QbZGpIRTHjzy3f3AIrgVb8bow-VlGzpqwWZEFS3VVJF8LSFbH-pnHSLkMBHsNlh-Jfxf97H2tWX8hJu750cHZrD_dHBOtxJ6etH00e1AQMEjH8Ot9y3-Wk9e9G4ZgyfrxvaF8LYb08 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VBSE48H6EFggSXEDWZmPHsQ8IIdoVVdGqEiDtzXgdW6qokmWzC6I_jV_HTF6AKL31wDVORk7yefxN5ssMwFOrU2edFwypgGIi6MB07hKms6AVl8rJIjTNJvLZTM3n-nALfvT_wpCssveJjaMuKkffyMepoIybSidiHDpZxOHu9NXyC6MOUpRp7dtptBA58N-_YfhWv9zfxXf9LE2nex_evGVdhwHmMi7XbCFV7nPrtJdCF-i4FznXk8ATZ4OQHrGJhEYmLpdJWvhUIsfDiMMrmxTIizLP0e4FuJgL5AmNbPD9EOzhPt3-2ZRLhpwm7TOqXI1rCppIxaRZgmydnfyxJ44qXNun8d2_crXNFji9_j8_vBtwrSPe8et2pdyELV_egqu_lWO8DfO9oSdQ3NbV3ax8XIUYSXJMSv1yHZMEnzpR0eF6s_QrV5VUMhcNxLhYj4jCs2OLgUyMZj6T1NDXd-DjudzaXRiVVenvQxwsHs7Cworg8RpuF1QBn2tbZIFnQkSQ9O_euK4sO3UHOTaNPIAr08LFIFwMwcWcRPB8uGTZ1iQ56-RtApRBQkVVgR3Jp9zaTGRTyCeCnR4wpnNetUEWhyQFA-H89OEBTBE8GYbRK1GqyZa-2pAJQflcJVUE91r4DlPlVM8IiX0EL3o8_zL-z_t4cPZUHsNlRLR5tz872IYrKX0UaeRVOzBCvPiHcMl9XR_Vq0fNKo3h03kj-ydjs3gf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+structure+of+the+parent+compound+of+superconducting+infinite-layer+nickelates&rft.jtitle=Nature+materials&rft.au=Hepting%2C+M&rft.au=Li+D&rft.au=Jia%2C+C+J&rft.au=Lu+H&rft.date=2020-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=19&rft.issue=4&rft.spage=381&rft.epage=385&rft_id=info:doi/10.1038%2Fs41563-019-0585-z&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |