A New Class of Uniformly Accurate Numerical Schemes for Highly Oscillatory Evolution Equations
We introduce a new methodology to design uniformly accurate methods for oscillatory evolution equations. The targeted models are envisaged in a wide spectrum of regimes, from non-stiff to highly oscillatory. Thanks to an averaging transformation, the stiffness of the problem is softened, allowing fo...
Uložené v:
| Vydané v: | Foundations of computational mathematics Ročník 20; číslo 1; s. 1 - 33 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.02.2020
Springer Nature B.V Springer Verlag |
| Predmet: | |
| ISSN: | 1615-3375, 1615-3383 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We introduce a new methodology to design
uniformly accurate methods
for oscillatory evolution equations. The targeted models are envisaged in a wide spectrum of regimes, from non-stiff to highly oscillatory. Thanks to an averaging transformation, the stiffness of the problem is softened, allowing for standard schemes to retain their usual orders of convergence. Overall, high-order numerical approximations are obtained with errors and at a cost
independent
of the regime. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1615-3375 1615-3383 |
| DOI: | 10.1007/s10208-019-09413-3 |