Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt
Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm productivity can be increased by understanding and forecasting crop performance in a variety of environmental c...
Saved in:
| Published in: | Sensors (Basel, Switzerland) Vol. 16; no. 11; p. 1884 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
09.11.2016
MDPI |
| Subjects: | |
| ISSN: | 1424-8220, 1424-8220 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm productivity can be increased by understanding and forecasting crop performance in a variety of environmental conditions. Crop recommendation is currently based on data collected in field-based agricultural studies that capture crop performance under a variety of conditions (e.g., soil quality and environmental conditions). However, crop performance data collection is currently slow, as such crop studies are often undertaken in remote and distributed locations, and such data are typically collected manually. Furthermore, the quality of manually collected crop performance data is very low, because it does not take into account earlier conditions that have not been observed by the human operators but is essential to filter out collected data that will lead to invalid conclusions (e.g., solar radiation readings in the afternoon after even a short rain or overcast in the morning are invalid, and should not be used in assessing crop performance). Emerging Internet of Things (IoT) technologies, such as IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras, and smart phones) can be used to collate vast amount of environmental and crop performance data, ranging from time series data from sensors, to spatial data from cameras, to human observations collected and recorded via mobile smart phone applications. Such data can then be analysed to filter out invalid data and compute personalised crop recommendations for any specific farm. In this paper, we present the design of SmartFarmNet, an IoT-based platform that can automate the collection of environmental, soil, fertilisation, and irrigation data; automatically correlate such data and filter-out invalid data from the perspective of assessing crop performance; and compute crop forecasts and personalised crop recommendations for any particular farm. SmartFarmNet can integrate virtually any IoT device, including commercially available sensors, cameras, weather stations, etc., and store their data in the cloud for performance analysis and recommendations. An evaluation of the SmartFarmNet platform and our experiences and lessons learnt in developing this system concludes the paper. SmartFarmNet is the first and currently largest system in the world (in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop performance analysis and recommendations. |
|---|---|
| AbstractList | Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population growth across the world. Farm productivity can be increased by understanding and forecasting crop performance in a variety of environmental conditions. Crop recommendation is currently based on data collected in field-based agricultural studies that capture crop performance under a variety of conditions (e.g., soil quality and environmental conditions). However, crop performance data collection is currently slow, as such crop studies are often undertaken in remote and distributed locations, and such data are typically collected manually. Furthermore, the quality of manually collected crop performance data is very low, because it does not take into account earlier conditions that have not been observed by the human operators but is essential to filter out collected data that will lead to invalid conclusions (e.g., solar radiation readings in the afternoon after even a short rain or overcast in the morning are invalid, and should not be used in assessing crop performance). Emerging Internet of Things (IoT) technologies, such as IoT devices (e.g., wireless sensor networks, network-connected weather stations, cameras, and smart phones) can be used to collate vast amount of environmental and crop performance data, ranging from time series data from sensors, to spatial data from cameras, to human observations collected and recorded via mobile smart phone applications. Such data can then be analysed to filter out invalid data and compute personalised crop recommendations for any specific farm. In this paper, we present the design of SmartFarmNet, an IoT-based platform that can automate the collection of environmental, soil, fertilisation, and irrigation data; automatically correlate such data and filter-out invalid data from the perspective of assessing crop performance; and compute crop forecasts and personalised crop recommendations for any particular farm. SmartFarmNet can integrate virtually any IoT device, including commercially available sensors, cameras, weather stations, etc., and store their data in the cloud for performance analysis and recommendations. An evaluation of the SmartFarmNet platform and our experiences and lessons learnt in developing this system concludes the paper. SmartFarmNet is the first and currently largest system in the world (in terms of the number of sensors attached, crops assessed, and users it supports) that provides crop performance analysis and recommendations. |
| Author | Zaslavsky, Arkady Yavari, Ali Jayaraman, Prem Morshed, Ahsan Georgakopoulos, Dimitrios |
| AuthorAffiliation | 2 Data 61, CSIRO, Melbourne 3168, Australia; ali.yavari@rmit.edu.au (A.Y.); Arkady.Zaslavsky@csiro.au (A.Z.) 1 Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne 3022, Australia; dgeorgakopoulos@swin.edu.au (D.G.); amorshed@swin.edu.au (A.M.) 3 Computer Science and Information Technology, RMIT University, Melbourne 3001, Australia |
| AuthorAffiliation_xml | – name: 1 Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne 3022, Australia; dgeorgakopoulos@swin.edu.au (D.G.); amorshed@swin.edu.au (A.M.) – name: 2 Data 61, CSIRO, Melbourne 3168, Australia; ali.yavari@rmit.edu.au (A.Y.); Arkady.Zaslavsky@csiro.au (A.Z.) – name: 3 Computer Science and Information Technology, RMIT University, Melbourne 3001, Australia |
| Author_xml | – sequence: 1 givenname: Prem surname: Jayaraman fullname: Jayaraman, Prem – sequence: 2 givenname: Ali orcidid: 0000-0002-0588-5931 surname: Yavari fullname: Yavari, Ali – sequence: 3 givenname: Dimitrios surname: Georgakopoulos fullname: Georgakopoulos, Dimitrios – sequence: 4 givenname: Ahsan surname: Morshed fullname: Morshed, Ahsan – sequence: 5 givenname: Arkady surname: Zaslavsky fullname: Zaslavsky, Arkady |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27834862$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkk1vEzEQhi1URD_gwB9AK3Eph7T-XHs5IKGqpZGCQGp7trzecepo1w62U8G_xyFt1ZaLx_a88-i1Zw7RXogBEHpP8AljHT7NpCWEKMVfoQPCKZ8pSvHek_0-Osx5hTFljKk3aJ9Kxbhq6QH6Pg8FUoDSRNdc3_qwzM3P0RQX09TUpbmaTCrNhUlTzX1uzn-vIXkIFnJjwtAsIOcYco0mhfIWvXZmzPDuPh6hm4vz67PL2eLHt_nZ18XMCibKjA-dIUCkVLTr2663lknmHO4FdkxyMK0aLKtHJfqBuPoAjHsuTK9M7zBh7AjNd9whmpVeJ19N_tHReP3vIqalrq69HUFbwAJzwAws5QKkIox33BoqDcdAbWV92bHWm36CwUIoyYzPoM8zwd_qZbzTopIE35o5vgek-GsDuejJZwvjaALETdZEsY5QKimp0o8vpKu4SaF-laYE1wa2komq-vDU0aOVh65VwelOYFPMOYHT1hdTfNwa9KMmWG_nQj_ORa349KLiAfq_9i89l7XQ |
| CitedBy_id | crossref_primary_10_1016_j_compag_2021_106387 crossref_primary_10_1007_s40012_024_00402_8 crossref_primary_10_3390_agronomy14030579 crossref_primary_10_1002_sres_3048 crossref_primary_10_32628_IJSRST24116169 crossref_primary_10_3390_horticulturae10010049 crossref_primary_10_3390_s19051044 crossref_primary_10_3390_s18114051 crossref_primary_10_1016_j_jksuci_2021_09_015 crossref_primary_10_1088_1742_6596_1724_1_012047 crossref_primary_10_1109_ACCESS_2024_3390581 crossref_primary_10_1109_MCAS_2020_3005467 crossref_primary_10_1108_BFJ_05_2021_0571 crossref_primary_10_1080_22797254_2024_2352386 crossref_primary_10_3390_s19173643 crossref_primary_10_3390_computers11090135 crossref_primary_10_3390_agriculture11080728 crossref_primary_10_3390_s22207772 crossref_primary_10_1016_j_procs_2019_11_038 crossref_primary_10_3389_fpls_2024_1435301 crossref_primary_10_3390_s17050966 crossref_primary_10_3390_s22134868 crossref_primary_10_1109_COMST_2022_3205377 crossref_primary_10_1109_ACCESS_2020_3006036 crossref_primary_10_1109_COMST_2021_3081450 crossref_primary_10_3390_s17102305 crossref_primary_10_3390_s18061795 crossref_primary_10_3390_s21237889 crossref_primary_10_1007_s11119_022_09951_x crossref_primary_10_1016_j_iot_2021_100367 crossref_primary_10_1080_14735903_2023_2221108 crossref_primary_10_1002_spe_2847 crossref_primary_10_1109_JIOT_2021_3051418 crossref_primary_10_1016_j_iot_2020_100268 crossref_primary_10_1109_MIC_2021_3129271 crossref_primary_10_3390_s24196200 crossref_primary_10_1016_j_compeleceng_2021_106982 crossref_primary_10_3390_fi13040099 crossref_primary_10_1016_j_adhoc_2019_102047 crossref_primary_10_3390_hydrology10030060 crossref_primary_10_1109_JIOT_2025_3578203 crossref_primary_10_3390_agriculture10090387 crossref_primary_10_1109_ACCESS_2020_2974977 crossref_primary_10_1007_s43926_021_00006_7 crossref_primary_10_3390_agriculture10050180 crossref_primary_10_3390_s19040930 crossref_primary_10_4018_IJEGR_300774 crossref_primary_10_1007_s00607_024_01346_2 crossref_primary_10_1007_s13593_018_0549_8 crossref_primary_10_1016_j_future_2018_06_027 crossref_primary_10_1002_rob_22473 crossref_primary_10_11623_frj_2019_27_4_01 crossref_primary_10_1007_s11356_024_32115_5 crossref_primary_10_1016_j_compag_2017_12_012 crossref_primary_10_1109_TCSI_2022_3208523 crossref_primary_10_1007_s11277_023_10234_5 crossref_primary_10_1155_2018_1028578 crossref_primary_10_3103_S1068367424010117 crossref_primary_10_3390_s22093273 crossref_primary_10_1109_ACCESS_2024_3356118 crossref_primary_10_3390_s20010021 crossref_primary_10_1038_s41467_024_45725_x crossref_primary_10_1016_j_measurement_2018_07_067 crossref_primary_10_3390_su11030782 crossref_primary_10_3390_su162210103 crossref_primary_10_1016_j_compag_2023_108392 crossref_primary_10_1155_2021_4535567 crossref_primary_10_3390_s18061731 crossref_primary_10_1002_ett_3958 crossref_primary_10_1080_10496505_2019_1638264 crossref_primary_10_3390_s17051031 crossref_primary_10_1590_1678_992x_2024_0202 crossref_primary_10_1142_S0218126625502226 crossref_primary_10_1016_j_comnet_2020_107147 crossref_primary_10_3390_s21217218 crossref_primary_10_15446_ing_investig_v38n1_65638 crossref_primary_10_1007_s42979_021_00700_x crossref_primary_10_29244_jai_2025_13_1_94_104 crossref_primary_10_3390_fi13080206 crossref_primary_10_1080_07352689_2017_1336047 crossref_primary_10_3390_s18061888 crossref_primary_10_1016_j_compag_2023_108243 crossref_primary_10_1108_JRIM_10_2024_0484 crossref_primary_10_1007_s11831_022_09761_4 crossref_primary_10_1016_j_compag_2018_12_039 crossref_primary_10_1109_JIOT_2023_3318298 crossref_primary_10_1186_s43067_024_00184_8 crossref_primary_10_1007_s10098_025_03293_8 crossref_primary_10_1016_j_engappai_2023_106335 crossref_primary_10_3390_agriculture12020297 crossref_primary_10_1016_j_compag_2021_106352 crossref_primary_10_1109_ACCESS_2025_3539775 crossref_primary_10_1016_j_ifacol_2020_12_230 crossref_primary_10_1016_j_future_2018_03_024 crossref_primary_10_1109_ACCESS_2018_2873689 crossref_primary_10_1016_j_measurement_2021_110609 crossref_primary_10_1016_j_neucom_2018_06_094 crossref_primary_10_1109_JIOT_2020_3048439 crossref_primary_10_1016_j_futures_2022_102998 crossref_primary_10_3390_fi14020064 crossref_primary_10_7717_peerj_cs_2309 crossref_primary_10_1016_j_iot_2022_100580 crossref_primary_10_1051_shsconf_202521601018 crossref_primary_10_1515_comp_2020_0002 crossref_primary_10_1016_j_iot_2020_100187 crossref_primary_10_1109_ACCESS_2019_2949703 crossref_primary_10_1051_e3sconf_202344909006 crossref_primary_10_1002_agj2_21385 crossref_primary_10_1016_j_biosystemseng_2019_12_013 crossref_primary_10_1080_14942119_2024_2323238 crossref_primary_10_1016_j_atech_2022_100035 crossref_primary_10_1109_ACCESS_2019_2919582 crossref_primary_10_1016_j_njas_2019_04_003 crossref_primary_10_1016_j_compag_2022_107252 crossref_primary_10_3390_agriculture12060838 crossref_primary_10_3390_s24206738 crossref_primary_10_1016_j_biombioe_2022_106629 crossref_primary_10_3390_fi14080233 crossref_primary_10_3390_s17122806 crossref_primary_10_1155_2021_9916440 crossref_primary_10_1016_j_techfore_2022_122075 crossref_primary_10_1016_j_jenvman_2021_113488 crossref_primary_10_1016_j_scs_2022_103949 crossref_primary_10_3390_agriculture14060900 crossref_primary_10_1270_jsbbs_18180 crossref_primary_10_3390_s20154231 crossref_primary_10_1016_j_jksuci_2021_05_013 crossref_primary_10_3390_agronomy11010181 crossref_primary_10_3390_s22176566 crossref_primary_10_3390_agriculture12020310 crossref_primary_10_3390_inventions4030052 crossref_primary_10_1016_j_procs_2019_11_016 crossref_primary_10_1109_MM_2021_3137401 crossref_primary_10_3390_s22103843 crossref_primary_10_1002_adma_202002936 crossref_primary_10_1007_s42853_020_00078_3 crossref_primary_10_1109_JSEN_2025_3549073 crossref_primary_10_1016_j_ecoinf_2023_102433 crossref_primary_10_3390_s17081781 crossref_primary_10_62497_IRABCS_129 crossref_primary_10_1038_s41598_024_72117_4 crossref_primary_10_1386_tmsd_00083_1 crossref_primary_10_1016_j_procs_2019_09_001 crossref_primary_10_3390_app12189215 crossref_primary_10_3390_electronics9020319 crossref_primary_10_1108_JADEE_07_2020_0140 |
| Cites_doi | 10.1007/s00607-016-0510-0 10.1109/eScience.2008.27 10.1145/2822529 10.1109/ISSNIP.2015.7106951 10.1186/s13007-015-0097-z 10.1109/SUTC.2010.29 10.1109/JSAC.2015.2393491 |
| ContentType | Journal Article |
| Copyright | 2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016 |
| Copyright_xml | – notice: 2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2016 by the authors; licensee MDPI, Basel, Switzerland. 2016 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.3390/s16111884 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ce0504e03ec245e7813494ca27a40e2c PMC5134543 27834862 10_3390_s16111884 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c535t-4d9a1e177829b69bcc373ff0b50f374ea68dc30b585bd1f22000b45ab8abf0133 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 194 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389641700117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Mon Nov 10 04:33:01 EST 2025 Tue Nov 04 02:00:37 EST 2025 Sun Nov 09 10:13:39 EST 2025 Tue Oct 07 06:50:09 EDT 2025 Wed Feb 19 02:41:09 EST 2025 Sat Nov 29 07:09:29 EST 2025 Tue Nov 18 21:06:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Internet of Things smart agriculture semantic web |
| Language | English |
| License | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c535t-4d9a1e177829b69bcc373ff0b50f374ea68dc30b585bd1f22000b45ab8abf0133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0588-5931 |
| OpenAccessLink | https://doaj.org/article/ce0504e03ec245e7813494ca27a40e2c |
| PMID | 27834862 |
| PQID | 2108846735 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ce0504e03ec245e7813494ca27a40e2c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5134543 proquest_miscellaneous_1839122721 proquest_journals_2108846735 pubmed_primary_27834862 crossref_citationtrail_10_3390_s16111884 crossref_primary_10_3390_s16111884 |
| PublicationCentury | 2000 |
| PublicationDate | 20161109 |
| PublicationDateYYYYMMDD | 2016-11-09 |
| PublicationDate_xml | – month: 11 year: 2016 text: 20161109 day: 9 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2016 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 ref_13 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_30 ref_19 ref_18 ref_17 ref_16 ref_15 Georgakopoulos (ref_6) 2016; 98 ref_25 ref_24 ref_22 ref_21 Salehi (ref_4) 2015; 11 ref_20 ref_1 Zaslavsky (ref_23) 2015; 2015 ref_3 ref_2 ref_29 ref_28 ref_27 ref_26 ref_9 Serrano (ref_31) 2015; 33 ref_8 ref_5 ref_7 26649067 - Plant Methods. 2015 Dec 08;11:53 |
| References_xml | – ident: ref_7 – ident: ref_28 – volume: 98 start-page: 10 year: 2016 ident: ref_6 article-title: Internet of things: From internet scale sensing to smart services publication-title: Computing doi: 10.1007/s00607-016-0510-0 – ident: ref_9 – ident: ref_30 – ident: ref_32 – ident: ref_3 – ident: ref_26 – ident: ref_34 – ident: ref_11 – ident: ref_16 – ident: ref_14 – ident: ref_24 doi: 10.1109/eScience.2008.27 – ident: ref_1 – ident: ref_18 – ident: ref_21 – volume: 2015 start-page: 1 year: 2015 ident: ref_23 article-title: Discovery in the Internet of Things: The Internet of Things (Ubiquity Symposium) publication-title: Ubiquity doi: 10.1145/2822529 – ident: ref_5 doi: 10.1109/ISSNIP.2015.7106951 – ident: ref_8 – volume: 11 start-page: 53 year: 2015 ident: ref_4 article-title: SensorDB: A virtual laboratory for the integration, visualization and analysis of varied biological sensor data publication-title: Plant Methods doi: 10.1186/s13007-015-0097-z – ident: ref_29 – ident: ref_33 – ident: ref_27 – ident: ref_2 – ident: ref_12 – ident: ref_10 – ident: ref_15 – ident: ref_13 – ident: ref_17 – ident: ref_19 – ident: ref_25 doi: 10.1109/SUTC.2010.29 – volume: 33 start-page: 676 year: 2015 ident: ref_31 article-title: Defining the Stack for Service Delivery Models and Interoperability in the Internet of Things: A Practical Case With OpenIoT-VDK publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2015.2393491 – ident: ref_22 – ident: ref_20 – reference: 26649067 - Plant Methods. 2015 Dec 08;11:53 |
| SSID | ssj0023338 |
| Score | 2.6204648 |
| Snippet | Improving farm productivity is essential for increasing farm profitability and meeting the rapidly growing demand for food that is fuelled by rapid population... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1884 |
| SubjectTerms | Cameras Internet of Things semantic web Sensors smart agriculture Smartphones |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4QAHyrMECjKIA5eoiR-xwwUVxIoDVJUAaW-R44xLpTYpm5Tfz9jJZruo4sIlUmIfRvlm7Pn8-AbgjVdZXXqiqQXXLpUoMDVK-tSU3hUNl5jnTSw2oY-OzHJZHk8Lbv10rHI9JsaBuulcWCM_IGpiwlwp1PuLX2moGhV2V6cSGjfhViibHfxcLzeESxD_GtWEBFH7g56yG-pm5NYcFKX6r8sv_z4meWXeWez-r8X34d6UcbLD0UUewA1sH8LdKzqEj-DruC6IA-s8Gyt5suMzO4SEltGDfTsnD2MLGw7OnLxjG33kntm2YV9ouCTvZVGsdXgMPxafvn_8nE51FlKnhBpS2ZQ2x1xTslDWRVk7J7TwPqtV5oWWaAvTOEGvRtVN7nm43VNLZWtja4JZiCew03YtPgWGBAJmlnOPDQHv61ISCLkKuniUurkE3q7_fOUmEfJQC-OsIjISQKpmkBJ4PXe9GJU3ruv0IcA3dwhi2fFDtzqpptirHGYqk5gJdFwq1CZIMkpnubYyQ05G7a8BrKYI7qsNegm8mpsp9sKGim2xu-yrkF3mnBOJTmBv9JXZkljBhOhiAnrLi7ZM3W5pT39GfW9F9ikpnv3brOdwh5K3It6LLPdhZ1hd4gu47X4Pp_3qZQyEP8UYEpc priority: 102 providerName: ProQuest |
| Title | Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27834862 https://www.proquest.com/docview/2108846735 https://www.proquest.com/docview/1839122721 https://pubmed.ncbi.nlm.nih.gov/PMC5134543 https://doaj.org/article/ce0504e03ec245e7813494ca27a40e2c |
| Volume | 16 |
| WOSCitedRecordID | wos000389641700117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5B4QAHxJtAWRnEgUvUxI_Y4UbRrkBiVxEPaTlFtmNDpZKtmrRHfjtjJxt2USUuXCwl9mE848f3JfY3AK-8yEzpkaYWVNqUO-ZSJbhPVelt0VDu8ryJySbkaqXW67LaSfUVzoQN8sCD446sy0TGXcacpVw4qYKeHreaSs0zR21YfTNZbsnUSLUYMq9BR4ghqT_qENcgklZ8b_eJIv1XIcu_D0ju7DiLu3BnhIrk7WDiPbjm2vtwe0dA8AEshw96ricbT4YUnKQ61X1AogQL8vkn9pAsdDjx8v0N-SNs3BHdNuQjrnM47EhUWe0fwtfF_Mu79-mYICG1gok-5U2pc5dL3OVLU5TGWiaZ95kRmWeSO12oxjJ8VMI0uafhWo7hQhulDcaHsUdw0G5a9wSIU5K5TFPqXYMR86bk6MNcBEE7xFw2gddbx9V2VA8PSSxOa2QRwcf15OMEXk5NzwbJjKsaHQfvTw2CynV8gbGvx9jX_4p9Aofb2NXj1Otq5LAqgComEngxVeOkCX9CdOs2F10dYGFOKbLfBB4PoZ4sialHkOclIPcGwZ6p-zXtyY8ozC3QPsHZ0__Rt2dwC7FZEa89lodw0J9fuOdw0172J935DK7LtYylmsGN4_mq-jSLMwDL5a85vqs-LKtvvwGG-Ap2 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qChJwYF8CBQwCiUvUxEvsICHENmrV6agSRZpb6jh2qVSSMklB_Cl-I8_ZpoMqbj1wiZTYh-f4e5uX7wG8cCLKU4dpakKlCbllNlSCu1ClziQF5TaOi7bYhJzN1Hye7q3B7-EujD9WOdjE1lAXlfFr5JuYmijvK5l4e_I99FWj_O7qUEKjg8WO_fUTU7b6zfZHnN-XlE4-7X_YCvuqAqERTDQhL1Id21iia0zzJM2NYZI5F-UickxyqxNVGIavSuRF7Ki_y5JzoXOlcxyUXwBFk38J7bj0yZ6cLxM8hvlex17EWBpt1hhNYfyu-IrPa0sDnBfP_n0s84yfm9z43_7QTbjeR9TkXacCt2DNlrfh2hmexTuw26172oZUjnSVSsnesW58wE7wQT5_Qw0iE-0PBh2-Jkv-55rosiBTdAeonaQlo23uwpcLGc89WC-r0j4AYpVkNtKUOlsgsF2ecpz0WHjePwxNTQCvhpnOTE-y7mt9HGeYbHlQZCMoAng-dj3pmEXO6_Tew2Xs4MnA2w_V4jDrbUtmbCQibiNmDeXCSuUpJ7nRVGoeWYpCbQyAyXoLVWdLtATwbGxG2-I3jHRpq9M689FzTKmkcQD3O2yOkrQVWjAdDkCuoHZF1NWW8uhry18uUD7B2cN_i_UUrmzt706z6fZs5xFcxUA1ae-Aphuw3ixO7WO4bH40R_XiSauEBA4uGtN_AMr2b4Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VW4TgwBsaKGAQSFyiTfyIEySEgLJi1XYVCZDKKTiOXSq1SdmkIP4av45xXu2iilsPXCIl8WEcf575xrG_AXhmRZAnFtPUiErtc8OMHwtu_TixOiooN2FYtMUm5GIR7-0l6Rr8Hs7CuG2Vg09sHXVRabdGPsXUJHaxkomp7bdFpFuz18fffVdByv1pHcppdBDZNr9-YvpWv5pv4Vg_p3T2_tO7D35fYcDXgonG50WiQhNKDJNJHiW51kwya4NcBJZJblQUF5rhbSzyIrTUnWvJuVB5rHLsoFsMRfe_jpSc0wmsp_Pd9MuY7jHM_jotI8aSYFojt0I2H_OVCNgWCjiP3f69SfNM1Jtd_5-_1w241nNt8qabHDdhzZS34OoZBcbbsNutiJqGVJZ0NUxJeqgaR-UJXsjHI5xbZKbclqH9l-RUGbomqizIDgYKnLeklalt7sDnC-nPXZiUVWk2gJhYMhMoSq0pEPI2TzgCIBROERBJq_bgxTDqme7l110VkMMM0zAHkGwEiAdPx6bHnebIeY3eOuiMDZxMePugWu5nvdfJtAlEwE3AjKZcGBk7MUquFZWKB4aiUZsDeLLed9XZKXI8eDK-Rq_jfiWp0lQndeZ4dUippKEH9zqcjpa0tVswUfZAriB4xdTVN-XBt1bZXKB9grP7_zbrMVxGKGc788X2A7iCDDZqD4cmmzBplifmIVzSP5qDevmon5EEvl40qP8AYHB50w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Internet+of+Things+Platform+for+Smart+Farming%3A+Experiences+and+Lessons+Learnt&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Jayaraman%2C+Prem&rft.au=Yavari%2C+Ali&rft.au=Georgakopoulos%2C+Dimitrios&rft.au=Morshed%2C+Ahsan&rft.date=2016-11-09&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=16&rft.issue=11&rft.spage=1884&rft_id=info:doi/10.3390%2Fs16111884&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s16111884 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |